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Abstract: The identification of common targets in Alzheimer’s disease (AD) and cardiovascular
disease (CVD) in recent years makes the study of the CVD/AD axis a research topic of great interest.
Besides aging, other links between CVD and AD have been described, suggesting the existence of
common molecular mechanisms. Our study aimed to identify common targets in the CVD/AD
axis. For this purpose, genomic data from calcified and healthy femoral artery samples were used
to identify differentially expressed genes (DEGs), which were used to generate a protein–protein
interaction network, where a module related to AD was identified. This module was enriched with
the functionally closest proteins and analyzed using different centrality algorithms to determine
the main targets in the CVD/AD axis. Validation was performed by proteomic and data mining
analyses. The proteins identified with an important role in both pathologies were apolipoprotein E
and haptoglobin as DEGs, with a fold change about +2 and −2, in calcified femoral artery vs healthy
artery, respectively, and clusterin and alpha-2-macroglobulin as close interactors that matched in
our proteomic analysis. However, further studies are needed to elucidate the specific role of these
proteins, and to evaluate its function as biomarkers or therapeutic targets.

Keywords: Alzheimer’s disease; bioinformatics; cardiovascular disease; differentially expressed
genes; hubs; protein–protein interaction network

1. Introduction

Cardiovascular disease (CVD) is the leading cause of mortality worldwide. The World
Health Organization (WHO) estimates that in 2015 (the latest year for which data have
been published), 31% of all deaths worldwide were due to CVD. CVD is mainly caused by
the development of atherosclerosis, and encompasses coronary heart disease, peripheral
arterial disease and cerebrovascular disease. There are several well-known risk factors
that increase the likelihood of developing CVD, such as hypertension, smoking, decreased
serum high-density-lipoprotein (HDL), increased serum low-density lipoprotein (LDL), di-
abetes, sedentary lifestyle, obesity, family history, age, and alcohol consumption. Scientific
evidence has shown that CVD could be related to other pathologies which a priori might
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appear to be independent of each other, such as bone [1–3] or neurological disorders [4,5].
In this context, experimental and clinical studies on brain ischemia provide ample evi-
dence that ischemia is involved in the development of the phenotype and genotype of
Alzheimer’s disease (AD) [6].

AD, defined by the WHO as a neurodegenerative disease of unknown etiology charac-
terized by a progressive deterioration of memory and cognitive function [7], accounts for
approximately 50–75% of all cases of dementia. According to worldwide statistics from the
Global Burden Disease Study, AD was among the 50 main causes of mortality in the period
between 1990 and 2013. There are currently about 34 million people with AD worldwide
and the prevalence is expected to triple in the next 40 years due to demographic changes
and longer life expectancy, which translates to 1 in 85 people worldwide being affected
with AD by 2050 [8]. Risk factors that have been associated with the development of AD
include female gender [9], age [10], smoking [11], obesity [12,13] and diabetes mellitus [14],
among others.

Traditionally, attempts to understand AD have focused on trying to predict the pres-
ence of amyloid plaques and neurofibrillary tangles, and on understanding the origin
of their accumulation. However, there is growing scientific evidence linking it to other
molecular determinants, such as apolipoprotein E, lipid metabolism, neuroinflammation
and mitochondrial function, that appear to play a key role in the development of AD [15].

Although aging is the most important risk factor for the development of CVD and
AD [16], cardiovascular-related risk factors play a key role in cognitive disorders by their
involvement in the amyloid clearance process. For instance, several cardiovascular risk
factors, such as hyper and hypotension, heart failure, coronary artery disease, stroke,
emboli and atherosclerosis, have been reported as potential factors with a role in cognitive
decline in AD patients [17–19].

Similarly, obesity, a major CVD risk factor, has been consistently associated with the
presence of dementia, as well as a higher midlife body mass index, which proportionally
increases AD risk [20].

On the other hand, brain alterations in AD patients are often accompanied by vascular
alterations, including blood vessels with collapsed or degenerated endothelia in more
than 90% of cases [21]. Other studies have reported the presence of amyloid deposits in
distal organs, vessels and the heart of AD patients, causing damage to these organs and
promoting the development of cardiovascular complications, especially heart diastolic
dysfunction [18,19,22]. In addition, CVD patients and AD patients share common brain
structural alterations [22].

Scientific evidences from genetic studies have also supported the link between CVD
and AD [23]. The study of Ray et al. (2008), through a computational analysis, shows
the co-existence in a single functional module of genes typically related to AD and genes
associated with CVD. This study shows the existence of extensive links between AD and
CVD in terms of co-expression and co-regulation [24]. Moreover, genetic meta-analyses of
AD have identified new risk loci involved in lipid processing highly related to CVD [25].

In the therapeutic context, there is some scientific evidence which supports this link
between CVD and AD. Thus, a beneficial effect has been observed in the use of certain
direct oral anticoagulants, such as dabigatran, rivaroxaban and apixaban, for the treatment
of cerebral amyloid angiopathy. These molecules have therefore been proposed to improve
the vascular-mediated progression of neurodegenerative and cognitive changes in AD [26].

In this line, the evidence supports that the short- [25] and long-term [26] administration
of dabigatran can induce a recovery of cognitive impairment, as well as decrease oxidative
stress and neuroinflammation, and reduce the deposition of amyloid plaques [27].

Consistent with these findings, a recent article using computational tools of virtual
screening and molecular docking simulations describes the use of potential multimodal
agents, such as certain coagulation factors (thr and/or fXa), for the treatment of AD [26].

Furthermore, epidemiological studies have also supported the coexistence of both
pathologies, showing a positive correlation between dementia and CVD in several pop-
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ulations. For instance, both disorders have been reported in 18% of a dementia autopsy
series [27] and in individuals with congestive heart failure [28]. Cerebral ischemia and
stroke may lead to hypoxia, amyloid beta (Aβ) deposition, and impairment of the blood–
brain barrier, leading to neuronal degeneration [29]. Therefore, we hypothesize that there
are overlapping molecular mechanisms in CVD and AD.

Considering the high proportion of patients affected by CVD, it would be of great
interest to identify those with a higher risk of developing cognitive deterioration in order to
establish early preventive and therapeutic measures, and to delay the onset of neurological
disorders. On the other hand, it could also be useful to study the potential development of
cardiovascular complications in patients diagnosed with AD in order to prevent irreversible
damages. Hence, we aim to characterize common factors in the development of CVD and
AD by using bioinformatics and experimental approaches to generate biological networks
to identify the essential proteins (hubs) that play a key role in the signaling and regulatory
processes [30] in both pathologies. The identification of these proteins could be useful to
study their potential usefulness as early biomarkers of AD in patients with CVD.

2. Materials and Methods
2.1. Data Acquisition

The first step in acquiring the data of interest was to search the GEO database (https://
www.ncbi.nlm.nih.gov/geo/; accessed on 19 November 2021) based on the terms “artery”,
“femoral artery” or “artery atherosclerosis”. The requirements for selecting the datasets
included the following aspects: (a) tissue samples from human femoral arteries; (b) in
arteries without atherosclerotic lesions, the source had to be from healthy organ donors;
and (c) at least 10 samples per group.

2.2. Data Preprocessing and Identification of Differentially Expressed Genes (DEGs)

The DEGs between calcified and healthy artery samples from patients aged 67 ± 9 years
(85% males) were analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
(MD, USA), allowing the comparison of two or more datasets in a GEO series [31]. The
adjusted p-values (adj. p) and Benjamini and Hochberg false discovery rate were applied
to provide a balance between the discovery of statistically significant genes and limitations
of false-positives. The absolute value of log fold change (FC) ≥ 1.5 and adj. p < 0.05 were
considered as statistically significant.

2.3. Protein–Protein Interaction (PPI) Network Performance and Module Analysis

The PPI network was predicted using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING, v. 1.7.0) application [32] in the Cytoscape program (v. 3.9.0) [33].
Cytoscape is an open-source bioinformatic software platform for visualizing molecular in-
teraction networks. The proteins that were used as seeds for the creation of the PPI network
were the DEGs obtained in the previous section. For the initial exploration, the confidence
score was set to high (score 0.007). Proteins without matches in the STRING database and
proteins without interactions with other proteins within the network were discarded.

To find the highest connected regions based on topology within the whole PPI net-
work, the Molecular Complex Detection (MCODE, v. 2.0.0) [34], a Cytoscape plug-in, was
used. The criteria for selection were as follows: degree cutoff = 2, K-core = 2, node score
cutoff = 0.2 and max depth up to 100. Thus, highly interconnected regions (modules) in
the network were identified and, therefore, the functionality of the modules was studied
in depth.

Subsequently, the analyses of genes associated with diseases in these modules and the
Gene Ontology (GO) enrichment analysis were performed using the DAVID online database
(https://david.ncifcrf.gov/home.jsp) (MD, USA) to identify the modules of interest related
to AD.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/home.jsp
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2.4. Construction of a Secondary Related PPI Network and Identification of Hubs

The proteins belonging to the module of interest identified in the previous section
were selected for the construction of a new PPI network. Similar to the prediction of the first
PPI network, Cytoscape’s STRING application was used. This secondary PPI network kept
the same high confidence score of 0.007. In addition, the maximum number of interactors
to display was set in 50.

Based on the open-source platform Cytoscape, a convenient app called CytoNCA
(v.2.1.6) [35] for network centrality analysis was used to explore the secondary PPI network.
The two algorithms used were Degree and Betweenness, to identify important nodes in a
large number of interactions and the total number of shortest pathways between two nodes,
respectively. Through this tool, the most important nodes within the network (called hubs)
were identified. Additionally, a KEGG and GO enrichment analysis was performed in the
DAVID database on the secondary PPI network. This analysis allowed for the identification
of the most significant GO terms and pathways for this set of proteins.

2.5. Validation of Target Proteins by Data-Mining and Proteomic Analysis

Factors associated with AD were identified using DisGeNET (http://www.DisGeNET.
org/home/) (Spain) [36], a discovery platform which integrates information on GDAs from
several public data sources and the scientific literature about gene expression, biomarkers,
clinical phenotype associations with the corresponding diseases, variant-disease associ-
ations, and single nucleotide polymorphisms. The current version of, DisGeNET (v.7.0)
(Spain) contains 1,134,942 GDAs between 21,671 genes and 30,170 diseases and traits.

A proteomic analysis of calcified femoral artery samples from 7 patients diagnosed
with type 2 diabetes, according to the criteria established in the American Diabetes Asso-
ciation (2011), was performed to validate the results obtained through bioinformatic ap-
proaches. The cohort of patients was represented by adult males (mean age 74 ± 10 years)
who were monitored at the University Hospital Clínico San Cecilio of Granada. All patients
were diagnosed with critical ischemia, according to the consensus document on periph-
eral disease TASC II [37], with an indication of lower limb amputation. Briefly, protein
samples from the vascular tissue were extracted, followed by concentration, clean up and
digestion standard procedures. Then, protein separation and identification were performed
using nano-scale liquid chromatographic tandem mass spectrometry (nLC-MS/MS) and
Proteome Discoverer, respectively, as previously reported [38]

The detailed protocol is extensively described in the Supplementary Materials.
Both the disease-associated indicators obtained from DisGeNET and the proteins

identified in the proteomic analysis were confronted with the list of proteins of interest
obtained in the PPI network.

The workflow schematic performed in this study is summarized in Figure 1.

http://www.DisGeNET.org/home/
http://www.DisGeNET.org/home/
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Figure 1. Flowchart of the methodology used. This scheme summarizes the whole process, from the
search in databases of CVD and AD related targets to the validation by data-mining and proteomic
analysis. DEG’s: differential expressed genes; PPI: protein–protein interaction; CVD: cardiovascular
disease; AD: Alzheimer’s disease. Created with BioRender.com.

3. Results
3.1. Data Acquisition

After an exhaustive search, the microarray expression profile dataset GSE100927
were downloaded from the GEO database, which was based on GPL17077 Agilent-039494
SurePrint G3 Human GE v2 8x60K Microarray 039381. The GSE100927 dataset included
26 atheromatous plaque samples harvested from patients undergoing femoral endarterec-
tomy and 12 healthy artery samples free of atherosclerotic lesions obtained from organ
donors [39].

3.2. Data Preprocessing and Identification of DEGs

The selection of DEGs analyzed with GEO2R between the femoral artery with atheroscle-
rotic lesions and the healthy femoral arteries are presented in a volcano diagram (Figure 2).
A total of 163 DEGs were identified in atheromatous plaques compared to controls, includ-
ing 143 upregulated and 20 downregulated DEGs (Supplementary Table S1).

BioRender.com
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Figure 2. Volcano plot of differentially expressed genes (DEGs) between calcified femoral artery
samples and control samples. The data were obtained from dataset GSE100927 from the GEO database.
From left to right: downregulated genes (red dots), non-significant genes (grey dots, bottom panel),
significant genes that do not meet the established fold change value (dark gray dots, upper panel) and
upregulated genes (green dots). Log fold change ≥ 1.5 and adjusted p-value < 0.05 were considered
as the cutoff for statistical significance.

3.3. PPI Network Performance and Module Analysis

The 163 DEGs obtained in the previous section were entered into the STRING applica-
tion. Once the filters were set for the whole dataset, a PPI network including 79 proteins
(nodes) and 166 interactions (edges) resulted (Figure 3A).
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The analysis performed by MCODE for the determination of the network modules
resulted in a prediction of six modules including highly connected nodes (Figure 3B).

Each of the modules obtained was analyzed through the DAVID enrichment tool, and
only the module most related to AD was selected (module 2, Figure 3B). Table 1 shows
the enrichment results of module 2 obtained after analysis by the DAVID tool. The other
modules did not offer obvious linkage with the pathologies under study.

Table 1. Enrichment results of the module most related to Alzheimer’s disease (Module 2).

Category Term % p-Value Genes

GAD_DISEASE cardiovascular disease 80 3.56 × 10−7 APOC1, HP, APOE, PLA2G7

GAD_DISEASE atherosclerosis, coronary 80 6.64 × 10−6 APOC1, HP, APOE, PLA2G7

GOTERM_CC_DIRECT GO:0005576~extracellular region 100 6.07 × 10−5 APOC1, HP, HPR, APOE, PLA2G7

GAD_DISEASE cholesterol 80 1.38 × 10−4 APOC1, HPR, APOE, PLA2G7

GAD_DISEASE coronary disease; coronary heart
disease 60 1.61 × 10−4 APOC1, APOE, PLA2G7

GOTERM_CC_DIRECT GO:0072562~blood microparticle 60 4.10 × 10−4 HP, HPR, APOE

GAD_DISEASE familial dysbetalipoproteinemia 40 6.17 × 10−4 APOC1, APOE

GOTERM_BP_DIRECT GO:0034447~very-low-density
lipoprotein particle clearance 40 7.14 × 10−4 APOC1, APOE

GOTERM_BP_DIRECT GO:0006898~receptor-mediated
endocytosis 60 7.22 × 10−4 HP, HPR, APOE

GAD_DISEASE type 2 diabetes; edema; rosiglitazone 100 8.23 × 10−4 APOC1, HP, HPR, APOE, PLA2G7

GAD_DISEASE

coronary disease; diabetes
complications;

hypercholesterolemia;
hypertension; myocardial infarction

40 9.25 × 10−4 APOC1, APOE

GOTERM_MF_DIRECT GO:0030492~hemoglobin binding 40 9.48 × 10−4 HP, HPR

GAD_DISEASE cholesterol; coronary heart disease;
lipoproteins 40 1.23 × 10−3 APOC1, APOE

GAD_DISEASE cardiovascular diseases 60 1.24 × 10−3 APOC1, APOE, PLA2G7

GOTERM_MF_DIRECT
GO:0060228~phosphatidylcholine-
sterol O-acyltransferase activator

activity
40 1.42 × 10−3 APOC1, APOE

GOTERM_BP_DIRECT GO:0034382~chylomicron remnant
clearance 40 1.43 × 10−3 APOC1, APOE

GAD_DISEASE Alzheimer’s disease 80 1.48 × 10−3 APOC1, HP, APOE, PLA2G7

GAD_DISEASE memory disturbance 40 1.85 × 10−3 APOC1, APOE

Category indicates the classification shown by the DAVID database; % indicates the proportion of proteins of
the module involved in the corresponding category; p-value consists of the modified Fisher exact p-value for
the enrichment performed; APOC1: apolipoprotein C1; HP: haptoglobin; APOE: apolipoprotein E; PLA2G7:
platelet-activating factor acetylhydrolase; HPR: haptoglobin related-protein.

3.4. Enrichment of the Secondary PPI Network and Identification of Hubs

Once the AD-related module was identified, the proteins forming the module were
selected for visualization (Figure 4A) and enriched with the 50 functionally nearest proteins
(Figure 4B).

For the determination of the most important proteins (hubs) from the secondary PPI
network, CytoNCA was used by applying the “Betweenness” and “Degree” centrality
algorithms. Table 2 shows the result of the 15 proteins with the highest centrality value
within this secondary PPI network derived from the initial module 2.
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Figure 4. (A) Proteins belonging to module 2 (APOC1, HP, HPR, APOE and PLA2G7). (B) Protein–
protein interaction (PPI) network adding the 50 functionally nearest proteins to module 2.

Table 2. List of hubs of the secondary PPI network according to “Betweenness” and “Degree”
algorithms from CytoNCA.

Symbol Description Degree Betweenness

APOE Apolipoprotein E 50.0 416.64447
APOA1 Apolipoprotein A1 42.0 118.15003
APOC2 Apolipoprotein C2 40.0 71.67373

APP Amyloid Beta Precursor Protein 39.0 196.27913
APOA2 Apolipoprotein A2 39.0 57.75081
APOC1 Apolipoprotein C1 39.0 97.92878
APOB Apolipoprotein B 38.0 47.32024
CLU Clusterin 37.0 84.87135

APOC3 Apolipoprotein C3 37.0 36.22977
PLTP Phospholipid Transfer Protein 36.0 41.08785
CETP Cholesteryl Ester Transfer Protein 36.0 43.38615

HP Haptoglobin 36.0 234.20578
APOA4 Apolipoprotein A4 35.0 25.99814
APOC4 Apolipoprotein C4 33.0 32.60615
APOA5 Apolipoprotein A5 33.0 416.64447

GO and KEGG enrichment analysis shows that most genes of the secondary PPI
network are involved in pathways related to lipid metabolism, and inflammation processes,
as well as immune response. Some of them also appear to be involved in AD-related
pathways (Supplementary Table S2).

3.5. Validation of Target Proteins by Data-Mining and Proteomic Analysis

Both datamining-based techniques and laboratory proteomic analysis techniques were
used for the validation.

The genes associated with AD were obtained through the DisGeNET platform. Once
the cutoff threshold was set at 0.3, the gene–disease associations (GDAs) were included in
the Venn diagram (Figure 5A). A total of 124 indicators of AD were identified in this step.
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Figure 5. Venn diagram showing (A) the set of AD-related proteins obtained from DisGeNET, (B)
the set of proteins identified in the proteome of calcified femoral arteries samples, and (C) the set
of proteins belonging to the secondary protein–protein interaction (PPI) network derived from the
initial AD-related module 2. APP: amyloid precursor protein; TREM2: triggering receptor expressed
on myeloid cells 2; MAPT: microtubule-associated protein tau; BIN1: bridging integrator 1; APOC1:
apolipoprotein C1; SORL1: sortilin-related receptor 1; TOMM40: translocase of outer mitochondrial
membrane 40; IL6: interleukin 6; RELN: reelin; LRP1: LDL receptor-related protein 1; APOE:
apolipoprotein E; A2M: alpha 2-macroglobulin; CLU: clusterin; APOL1: apolipoprotein L1; APOM:
apolipoprotein M; APOA1: apolipoprotein A1; CRP: C-reactive protein; APOH: apolipoprotein H;
APOA4: apolipoprotein A4; PON1: paraoxonase; SAA4: serum amyloid A4; PLTP: phospholipid
transfer protein; HBA2: hemoglobin subunit alpha 2; HP: haptoglobin; APOB: apolipoprotein B; HBB:
hemoglobin; PCYOX1: penylcysteine oxidase 1.

On the other hand, proteomic analysis provided a total of 751 proteins, which were
added to the Venn diagram. After cleaning the data by removing duplicate, empty or
unmatched entries from the Uniprot database, 737 total proteins resulted (Figure 5B).

Both previous sets were confronted with the proteins constituting the AD-related
secondary PPI network derived from the initial module 2 containing a total of 55 proteins
(Figure 5C).

4. Discussion

The links between neurodegenerative disorders such as AD and CVD have not cur-
rently been elucidated. However, studies supporting this connection are gradually appear-
ing [22]. Frequently, vascular changes accompany or even precede the development of
AD, raising the possibility that they may have a pathogenic role. The fact that aging is the
most important risk factor for the development of CVD and AD [16], and that common
brain structural alterations have been detected in both pathologies, suggest that there is an
overlap in the molecular mechanisms shared by CVD and AD [22].

The results of this study show, through PPI network analysis and enrichment analysis,
a set of genes associated with the presence of both CVD and AD. Specifically, we found
three targets (APOE, CLU and A2M) closely related to both pathologies. In addition, other
proteins such as haptoglobin (HP) should be considered in this context since, although we
found controversial evidence, considering the consulted databases in our bioinformatics
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study we found strong evidence in the scientific literature that could link this target to the
CVD/AD axis.

It does not seem to be a coincidence that there is a relationship between CVD and
AD, since the role of lipids in the development of atherosclerosis is well known [40], and
several studies have shown the key involvement of proinflammatory lipids in the formation
of amyloid plaque and the aggravation of AD. Accordingly, our GO and KEGG results
strongly suggest that lipid metabolism and inflammation are key factors in CVD and
AD. In this context, large LDL particles have been found to correlate significantly with
increased brain amyloidosis and decreased hippocampal volume [41]. Likewise, the study
by Chatterjee et al. (2016) shows impaired phospholipid and sphingolipid metabolism in
patients with familial forms of AD, linking the presence of these lipids with cerebrospinal
fluid amyloid and tau protein [42]. On the other hand, apolipoprotein A-1 deficiency has
been observed to be associated with excessive cholesterol accumulation and increased
cortical exposure to amyloids, whereas apolipoprotein A-I decreases Aβ aggregation and
toxicity [43]. Ceramides are other lipidic molecules that have revealed their involvement in
the pathogenesis of AD, showing a clear association between plasma ceramide levels and
neuropsychiatric symptoms in AD patients [44]. The study by Kim et al. (2018) revealed an
impaired lipid profile in AD patients [45] and identified lipid signatures able to predict AD
progression and brain atrophy [46]. Although all these findings point to a direct relationship
between lipid profile with CVD and AD, clear efficacy of statins for the treatment of AD
could not be established [47].

On the other hand, apolipoprotein E (APOE) is a well-known factor associated with
both the development of CVD [48–50] and the development of AD [51–56]. However, there
is little evidence of the involvement of this protein in the CVD/AD axis jointly [57].

In our study, we identified APOE as a key protein in the development of CVD and AD.
Our results showed a strong involvement of APOE in the connection of both pathologies.
GEO2R statistical analysis of previously published differential expression data between
calcified femoral artery and non-calcified femoral artery data published by Steenman et al.
(2018) showed that APOE is upregulated (two-fold) in calcified tissue. Likewise, at the
qualitative level, we identified this protein in the proteome of calcified femoral arteries in
patients with lower limb amputation. At the AD level, our analyses in DisGeNET and PPI
network studies indicate a central role of APOE in the development of this pathology. The
score obtained in the centrality algorithms places it as one of the most important hubs in
the CVD/AD axis, supporting the important dual role of this protein.

In addition to APOE, we have been able to identify other targets that, although they
show a somewhat lower score, can be classified as essential proteins in the development of
CVD and AD. In this block, we can include alpha-2-macroglobulin (A2M), clusterin (CLU)
or apolipoprotein J, and haptoglobin (HP).

A2M acts as an antiprotease and is able to inactivate an enormous variety of pro-
teinases. It acts by inhibiting plasmin and thrombin, and is therefore an inhibitor of
fibrinolysis and coagulation, respectively. A2M binds numerous growth factors and cy-
tokines, and thus acts as a transporter protein [58]. In addition, A2M seems to participate in
inflammatory reactions and appears to be involved in AD. The study by Varma et al. (2017)
showed a significant association of A2M in blood with markers of neuronal injury, tau and
phosphorylated tau in cerebrospinal fluid, and a higher serum A2M concentration was
associated with an almost three-fold increased risk of AD progression in men [59]. These
data suggest that A2M could be considered a biomarker of preclinical AD, reflecting early
neuronal injury [59]. At the cardiovascular level, this protein seems to be involved in the
development of atherosclerosis and cardiac hypertrophy, increasing the risk of developing
CVD [60]. In this context, the study by Nezu et al. (2013), revealed that an increase in serum
A2M levels could be involved in the pathophysiology of acute ischemic stroke [61], which
would support the role of this protein in the development of CVD.

In our results, we identified A2M in the enrichment of the initial PPI network as an
essential protein with several interactions with important components in the CVD/AD
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axis. Furthermore, at the qualitative level, we identified A2M in the proteome of calcified
vascular tissue samples, so these data support the dual role of this protein in CVD and AD.

CLU, also known as apolipoprotein J, is a molecular chaperone associated with cellular
debris removal and apoptosis [62]. Through this function, CLU is implicated in many
oxidative stress-related diseases, including neurodegenerative diseases [63], cancer [64],
inflammatory diseases [65] and aging [66,67].

In the case of neurodegenerative diseases, we can highlight the role of CLU in the
development of AD [68,69]. Together with APOE, CLU is the most expressed apolipoprotein
in the central nervous system [70,71], presenting important analogies with APOE such
as its presence in amyloid plaques [72,73] and its capacity to bind Aβ [74,75]. Another
analogy between APOE and CLU is at the functional level, such that several studies have
proposed the participation of both in the elimination of Aβ from the brain [76,77]. In this
context, it has been proposed that CLU could be considered as a therapeutic strategy to
slow the progression of AD [78]. The study by Schrijvers et al. published in JAMA in 2011
showed a significant association of plasma CLU levels with AD prevalence and severity,
but not with AD incidence [79]. The meta-analysis by Yang et al. (2018) agreed with this
evidence, showing that a high concentration of CLU in the plasma and brain is associated
with dementia, especially in AD [80], proposing this protein as a biomarker of cognitive
impairment severity [81].

Although the role of CLU in cancer or neurological diseases has been intensively stud-
ied for three decades, the physiological functions of CLU in the context of the cardiovascular
system are not as well studied. In this regard, there is some scientific evidence addressing
these aspects. The study by Bradley et al. (Diabetes Care, 2019), showed increased expres-
sion of CLU at the extracellular matrix (ECM) of adipose tissue in obese versus lean women
through microarray studies [82]. Recently, an important role of different adipose tissue
ECM components in the development of obesity-related cardiomatabolic diseases has been
observed [83,84]. In this regard, the authors of this work proposed adipocyte-derived CLU
as a novel ECM-related protein linking cardiometabolic diseases and obesity through its
actions in the liver. Along these lines, the study by Won et al. (2014) proposed circulating
CLU as a surrogate marker of obesity-associated systemic inflammation [85]. Since CLU
is induced in vascular smooth muscle cells (VSMCs) during atherosclerosis and injury-
induced neointimal hyperplasia, the study by Kim et al. (2009), proposed the role of this
protein as a protective strategy against the development of neointimal hyperplasia, rather
than a causal response [86]. CLU is a ubiquitous protein, synthesized by numerous tissues
and organs and with varied receptors including the HDL-cholesterol receptor, the low-
density lipoprotein-related protein 2 (LRP/megalin), ApoER2, and the very low-density
lipoprotein receptor (VLDLR), many of which are critical for cardiovascular health, and
thus have recently been linked to cardiovascular and cerebrovascular effects [87–89].

Our results show the presence of CLU in the proteome of calcified vascular tissue at the
qualitative level, as well as the involvement of this protein in the secondary AD-related PPI
network. Our enrichment studies place it as an essential hub due to its involvement in CVD
and AD. However, the controversy generated around the role of CLU makes it necessary
to perform functional studies to understand the real role of CLU, and determine whether
it plays a beneficial or detrimental role in the development of CVD and AD, in order to
consider this protein as a potential biomarker of CVD/AD or as a therapeutic target.

Another target identified in the present study was HP, a plasma protein synthesized in
the liver whose function is to bind to free hemoglobin, forming hemoglobin–haptoglobin
complexes. Increased levels of HP have been observed in inflammatory processes, and
it is considered an acute phase protein. In addition, HP is involved in the innate and
acquired immune systems, playing a regulatory role in various stages of cellular and
humoral immunity and in the release of cytokines [90]. This protein has recently been
linked to neurodegenerative disorders such as AD and mild cognitive impairment. In this
line, there are only two studies relating HP levels to AD severity by showing significantly
higher serum levels of HP in AD, and mild cognitive impairment compared to healthy
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subjects [91,92]. To the best of our knowledge, there is no link between HP and CVD.
However, our results using GEO2R suggest a two-fold downward regulation of HP in the
calcified femoral artery compared to the non-calcified femoral artery. Furthermore, our PPI
network and proteomic analyses suggest HD protein as a target in atherosclerosis and AD.
These findings place HP as an important hub within the CVD/AD axis.

The scarce scientific evidence of HP in relation to AD, together with the non-existence
of studies that functionally link it to the presence of CVD, makes HP an attractive candidate
for the development of studies to elucidate the involvement of this protein in the CVD/AD
axis. In this context, it is necessary to deepen our knowledge of these potential targets in
order to broaden the range of potential biomarkers of AD and CVD for therapeutic or early
diagnostic purposes.

Our study has some limitations, including the exclusion of potential targets involved
in the CVD/AD axis in the bioinformatics analysis, due to establishment of a specific cut-off
point. However, to overcome this limitation, an enrichment analysis was performed to
avoid the loss of potential candidates. Including biological samples from patients with
AD in future experimental work will corroborate the role of the identified proteins at the
neurological level, confirming the dual participation of these proteins in the CVD/AD axis.
The strength of our study lies in the generation of a strategy capable of combining and
jointly exploiting the information available through different methodological approaches,
generating very valuable and scientifically supported leads for the identification of new
potential targets, some of which have been little explored to date, opening the door to
perform further translational studies assessing the role of these proteins as biomarkers
and/or therapeutic targets.

In summary, our findings suggest that the atherosclerotic processes leading to CVD
could also be involved in the development of neurological disorders such as AD. The high
incidence of CVD and its link with AD makes it necessary to search for new diagnostic
strategies to identify high-risk patients in subclinical stages. Our study identified some
potential novel targets in the CVD/AD axis, including APOE, HP, CLU and A2M, being the
two first proteins up- and downregulated, respectively, in atherosclerotic vascular tissue
compared with healthy vascular tissue. Although future studies are needed to confirm
the dual functions of these proteins in the CVD/AD axis, this study provides valuable
information for the study of the usefulness of these proteins as potential early biomarkers.
This would affect future predictions of predisposition to AD in patients with CVD and
vice versa, and facilitate the implementation of preventive and therapeutic strategies that
alleviate the most aggressive effects of these disorders, and improve the quality of life of
affected patients.

5. Conclusions

The evidence suggests that vascular pathology is a likely pathogenic contributor
to age-related dementia, including AD, and is inextricably linked to disease onset and
progression. In this context, our results indicated four main targets with strong scientific
evidence of involvement in the CVD/AD axis: APOE, CLU, A2M and HP. Consequently, the
contribution of CVD factors highly related to neurological disorders should be considered
in preventive, diagnostic, and therapeutic approaches to address one of the major health
challenges of our time.
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