Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Placental Tissue Sampling and DNA Extraction
2.4. Bisulfite Pyrosequencing Quantification of HTR2A Promoter Methylation
2.5. Genotyping of HTR2A Promoter Polymorphisms
2.6. Statistical Analyses
3. Results
3.1. Maternal and Neonatal Characteristics
3.2. Placental HTR2A Methylation in Relation to Fetal/Neonatal Sex and Genotype
3.3. Placental HTR2A Methylation in Relation to Maternal Pre-Gestational Body Weight Status
3.4. Placental HTR2A Methylation in Relation to Maternal Glucose Tolerance Status
3.5. Multiple Regression Analyses on L1 and L3/L4 Methylation in Male and Female Placentas
3.6. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characteristics | NGT (n = 119) | GDM (n = 80) | p-Value |
---|---|---|---|
MOTHERS | |||
Age at delivery, years | 32.5 [29.5–36.7] | 33.4 [30.7–37.9] | 0.072 5 |
Primipara/multipara, n (%) | 51 (42.9)/68 (57.1) | 24 (30.0)/56 (70.0) | 0.075 6 |
Diabetes in family (yes/no) 1 | 89 (77.4)/26 (22.6) | 40 (51.9)/37 (48.1) | 0.00036 |
BMI before pregnancy, kg m−2 | 22.3 [20.8–25.5] | 26.3 [22.6–26.3] | <0.00017 |
Gestational weight gain, kg | 14.0 [11.0–18.0] | 12.0 [7.3–15.0] | 0.00017 |
Tobacco in pregnancy (yes/no) 2 | 30 (27.3)/80 (72.7) | 22 (28.6)/55 (71.4) | 0.870 6 |
Alcohol in pregnancy (yes/no) 3 | 18 (17.1)/87 (82.9) | 10 (13.9)/62 (86.1) | 0.676 6 |
NEWBORNS | |||
Females/males, n (%) | 51 (42.9)/68 (57.1) | 41 (51.2)/39 (48.8) | 0.251 6 |
Gestational age at birth, weeks | 39.1 [38.6–39.7] | 39.1 [38.6–39.7] | 0.481 7 |
Birth weight, g | 3380 [3130–3730] | 3450 [3153–3830] | 0.306 5 |
Birth length, cm | 49.0 [48.0–51.0] | 49.5 [48.0–51.0] | 0.514 5 |
Ponderal index, g cm−3 | 2.80 [2.64–2.97] | 2.84 [2.61–2.02] | 0.464 5 |
rs6311 polymorphism, n (%) | |||
genotypes: GG/GA/AA | 46 (38.7)/50 (42.0)/23 (19.3) | 30 (37.5)/36 (45.0)/14 (17.5) | 0.904 8 |
alleles: G/A | 142 (59.7)/96 (40.3) | 96 (60.0)/64 (40.0) | >0.999 6 |
rs6306 polymorphism, n (%) | |||
genotypes: CC/CT/TT | 101 (84.9)/18 (15.1)/0 (0.0) | 64 (80.0)/15 (18.8)/1 (1.2) | 0.367 6,9 |
alleles: C/T | 220 (92.4)/18 (7.6) | 143 (89.4)/17 (10.6) | |
HTR2A methylation, % 4 | |||
L1 (−1665 bp) site | 84.9 [83.4–86.2] | 83.6 [81.4–85.6] | 0.0027 |
L2 (−1439 bp) site | 33.5 [24.1–49.9] | 33.3 [25.6–50.6] | 0.822 7 |
L3 (−1421 bp) site | 37.2 [32.2–43.3] | 34.6 [28.7–39.3] | 0.0265 |
L4 (−1224 bp) site | 43.1 [38.9–47.6] | 41.0 [37.6–44.5] | 0.0235 |
Mean of L3 and L4 (L3/L4) | 39.9 [35.7–45.1] | 37.2 [33.3–41.0] | 0.0115 |
Predictors | β | B | SE(B) |
---|---|---|---|
Step 1 Independent variable (pBMI) predicts dependent variable (methylation level on L1) | |||
pBMI | −0.38 ** | −0.20 | 0.05 |
R2 = 0.141; F(1, 88) = 14.26; p < 0.01 | |||
Step 2 Independent variable (pBMI) predicts mediator variable (GDM). | |||
pBMI | - | 0.12 ** | 0.04 |
Nagelkerke R2 = 0.122; χ2 (1) = 8.79; p < 0.01 | |||
Step 3 Mediator variable (GDM) predicts dependent variable (methylation level on L1). | |||
GDM | −0.38 ** | −2.34 | 0.61 |
R2 = 0.147; F(1, 88) = 14.98; p < 0.01 | |||
Step 4 | |||
pBMI | −0.29 ** | −0.15 | 0.05 |
GDM | −0.30 ** | −1.82 | 0.61 |
R2 = 0.221; F(2, 88) = 12.19; p < 0.01 | |||
ΔR2 = 0.08 F = 8.84; p < 0.01 |
Predictor | Female Placentas (n = 72) | Male Placentas (n = 81) | ||||
---|---|---|---|---|---|---|
B | SE | p-Value | B | SE | p-Value | |
BMI before pregnancy (kg/m2) | −0.30 | 0.13 | 0.020 | −0.06 | 0.09 | 0.501 |
Glucose tolerance status | 0.710 | 0.557 | ||||
NGT | ref. | ref. | ||||
GDM | 0.57 | 1.52 | 0.68 | 1.16 | ||
Weight gain in pregnancy (kg) | −0.07 | 0.14 | 0.608 | 0.03 | 0.10 | 0.788 |
Tobacco use in pregnancy | 0.238 | 0.012 | ||||
No | ref. | ref. | ||||
Yes | −2.01 | 1.69 | −3.15 | 1.22 | ||
rs6311 polymorphism | <0.0001 | <0.0001 | ||||
GG genotype | ref. | ref. | ||||
GA genotype | −21.3 | 1.4 | −23.7 | 1.09 | ||
Birth weight (g) | −0.002 | 0.002 | 0.156 | −0.001 | 0.001 | 0.364 |
R2 (adjusted R2) | 0.810 (0.793) | 0.871 (0.860) | ||||
p | <0.0001 | <0.0001 |
References
- Di Cesare, M.; Bentham, J.; Stevens, G.A.; Zhou, B.; Danaei, G.; Lu, Y.; Bixby, H.; Cowan, M.J.; Riley, L.M.; Hajifathalian, K.; et al. Trends in Adult Body-Mass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Population-Based Measurement Studies with 19.2 Million Participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.A.B.; Adnan, M.M.; Hassan, M.Z. Trends, Prevalence and Risk Factors of Overweight and Obesity among Women of Reproductive Age in Bangladesh: A Pooled Analysis of Five National Cross-Sectional Surveys. BMJ Open 2018, 8, e018468. [Google Scholar] [CrossRef] [PubMed]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Schmidt, L.; Damm, P. Overweight and the Metabolic Syndrome in Adult Offspring of Women with Diet-Treated Gestational Diabetes Mellitus or Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 2464–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crume, T.L.; Ogden, L.; Daniels, S.; Hamman, R.F.; Norris, J.M.; Dabelea, D. The Impact of In Utero Exposure to Diabetes on Childhood Body Mass Index Growth Trajectories: The EPOCH Study. J. Pediatr. 2011, 158, 941–946. [Google Scholar] [CrossRef] [Green Version]
- Lawlor, D.A.; Lichtenstein, P.; Långström, N. Association of Maternal Diabetes Mellitus in Pregnancy with Offspring Adiposity into Early Adulthood: Sibling Study in a Prospective Cohort of 280 866 Men from 248 293 Families. Circulation 2011, 123, 258–265. [Google Scholar] [CrossRef]
- Gaillard, R. Maternal Obesity during Pregnancy and Cardiovascular Development and Disease in the Offspring. Eur. J. Epidemiol. 2015, 30, 1141–1152. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fallin, M.D.; Riley, A.; Landa, R.; Walker, S.O.; Silverstein, M.; Caruso, D.; Pearson, C.; Kiang, S.; Dahm, J.L.; et al. The Association of Maternal Obesity and Diabetes with Autism and Other Developmental Disabilities. Pediatrics 2016, 137, e20152206. [Google Scholar] [CrossRef] [Green Version]
- Xiang, A.H.; Wang, X.; Martinez, M.P.; Walthall, J.C.; Curry, E.S.; Page, K.; Buchanan, T.A.; Coleman, K.J.; Getahun, D. Association of Maternal Diabetes with Autism in Offspring. J. Am. Med. Assoc. 2015, 313, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tang, S.; Xu, S.; Weng, S.; Liu, Z. Maternal Body Mass Index and Risk of Autism Spectrum Disorders in Offspring: A Meta-Analysis. Sci. Rep. 2016, 6, 34248. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.E.; Barry, C.; Sabhlok, A.; Russell, K.; Majors, A.; Kollins, S.H.; Fuemmeler, B.F. Maternal Pre-Pregnancy Obesity and Child Neurodevelopmental Outcomes: A Meta-Analysis. J. Perinatol. 2018, 19, 464–484. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Kalish, B.T. The Impact of Maternal Obesity on Childhood Neurodevelopment. J. Perinatol. 2020, 41, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Lesseur, C.; Chen, J. Adverse Maternal Metabolic Intrauterine Environment and Placental Epigenetics: Implications for Fetal Metabolic Programming. Curr. Environ. Health Rep. 2018, 5, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Dłuski, D.F.; Wolińska, E.; Skrzypczak, M. Epigenetic Changes in Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 7649. [Google Scholar] [CrossRef] [PubMed]
- Bianco-Miotto, T.; Craig, J.M.; Gasser, Y.P.; Van Dijk, S.J.; Ozanne, S.E. Epigenetics and DOHaD: From Basics to Birth and Beyond. J. Dev. Orig. Health Dis. 2017, 8, 513–519. [Google Scholar] [CrossRef]
- Desoye, G.; Wells, J.C.K. Pregnancies in Diabetes and Obesity: The Capacity-Load Model of Placental Adaptation. Diabetes 2021, 70, 823–830. [Google Scholar] [CrossRef]
- Bonnin, A.; Levitt, P. Fetal, Maternal, and Placental Sources of Serotonin and New Implications for Developmental Programming of the Brain. Neuroscience 2011, 197, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Brummelte, S.; Glanaghy, E.M.; Bonnin, A.; Oberlander, T. Developmental Changes in Serotonin Signaling: Implications for Early Brain Function, Behavior and Adaptation. Physiol. Behav. 2016, 176, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.S. Placental Serotonin Signaling, Pregnancy Outcomes, and Regulation of Fetal Brain Development. Biol. Reprod. 2020, 102, 532–538. [Google Scholar] [CrossRef]
- Hanswijk, S.I.; Spoelder, M.; Shan, L.; Verheij, M.M.M.; Muilwijk, O.G.; Li, W.; Liu, C.; Kolk, S.M.; Homberg, J.R. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int. J. Mol. Sci. 2020, 21, 5850. [Google Scholar] [CrossRef]
- Hranilovic, D.; Stefulj, J.; Zill, P. Editorial: Developmental Abnormalities of Serotonin Homeostasis in Behavioral and Metabolic Disorders: From Epigenetic Mechanisms to Protein Function. Front. Neurosci. 2021, 15, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gronert, M.S.; Stocker, C.J.; Wargent, E.T.; Cripps, R.L.; Garfield, A.S.; Jovanovic, Z.; D’Agostino, G.; Yeo, G.S.H.; Cawthorne, M.A.; Arch, J.R.S.; et al. 5-HT2A and 5-HT2C Receptors as Hypothalamic Targets of Developmental Programming in Male Rats. DMM Dis. Model. Mech. 2016, 9, 401–412. [Google Scholar] [PubMed] [Green Version]
- Pytliak, M.; Vargová, V.; Mechírová, V.; Felšöci, M. Serotonin Receptors—From Molecular Biology to Clinical Applications. Physiol. Res. 2011, 60, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Stackman, R.W. The Role of Serotonin 5-HT2A Receptors in Memory and Cognition. Front. Pharmacol. 2015, 6, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aznar, S.; Hervig, M.E.S. The 5-HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases. Neurosci. Biobehav. Rev. 2016, 64, 63–82. [Google Scholar] [CrossRef]
- Kantrowitz, J.T. Targeting Serotonin 5-HT2A Receptors to Better Treat Schizophrenia: Rationale and Current Approaches. CNS Drugs 2020, 34, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Mestre, T.A.; Zurowski, M.; Fox, S.H. 5-Hydroxytryptamine 2A Receptor Antagonists as Potential Treatment for Psychiatric Disorders. Expert Opin. Investig. Drugs 2013, 22, 411–421. [Google Scholar] [CrossRef]
- Choi, J.R.; Jeon, M.; Koh, S.B. Association between Serotonin 2A Receptor (HTR2A) Genetic Variations and Risk of Hypertension in a Community-Based Cohort Study. BMC Med. Genet. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Gao, W.; Guo, N.; Zhao, S.; Chen, Z.; Zhang, W.; Yan, F.; Liao, H.; Chi, K. HTR2A Promotes the Development of Cardiac Hypertrophy by Activating PI3K-PDK1-AKT-MTOR Signaling. Cell Stress Chaperones 2020, 25, 899–908. [Google Scholar] [CrossRef]
- Bennet, H.; Balhuizen, A.; Medina, A.; Dekker Nitert, M.; Ottosson Laakso, E.; Essén, S.; Spégel, P.; Storm, P.; Krus, U.; Wierup, N.; et al. Altered Serotonin (5-HT) 1D and 2A Receptor Expression May Contribute to Defective Insulin and Glucagon Secretion in Human Type 2 Diabetes. Peptides 2015, 71, 113–120. [Google Scholar] [CrossRef]
- Shong, K.E.; Oh, C.M.; Namkung, J.; Park, S.; Kim, H. Serotonin Regulates de Novo Lipogenesis in Adipose Tissues through Serotonin Receptor 2A. Endocrinol. Metab. 2020, 35, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Ruble, C.L.; Smith, R.M.; Calley, J.; Munsie, L.; Airey, D.C.; Gao, Y.; Shin, J.H.; Hyde, T.M.; Straub, R.E.; Weinberger, D.R.; et al. Genomic Structure and Expression of the Human Serotonin 2A Receptor Gene (HTR2A) Locus: Identification of Novel HTR2A and Antisense (HTR2A-AS1) Exons. BMC Genet. 2016, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turecki, G.; Brière, R.; Dewar, K.; Antonetti, T.; Lesage, A.D.; Séguin, M.; Chawky, N.; Vanier, C.; Aida, M.; Joober, R.; et al. Prediction of Level of Serotonin 2A Receptor Binding by Serotonin Receptor 2A Genetic Variation in Postmortem Brain Samples from Subjects Who Did or Did Not Commit Suicide. Am. J. Psychiatry 1999, 156, 1456–1458. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Yaqubi, S.; Papageorgis, P.; Lambert, A.W.; Ozturk, S.; Sivaraman, V.; Thiagalingam, S. Epigenetic Dysregulation of HTR2A in the Brain of Patients with Schizophrenia and Bipolar Disorder. Schizophr. Res. 2011, 129, 183–190. [Google Scholar] [CrossRef]
- Smith, R.M.; Papp, A.C.; Webb, A.; Ruble, C.L.; Munsie, L.M.; Nisenbaum, L.K.; Kleinman, J.E.; Lipska, B.K.; Sadee, W. Multiple Regulatory Variants Modulate Expression of 5-Hydroxytryptamine 2A Receptors in Human Cortex. Biol. Psychiatry 2013, 73, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Bray, N.J.; Buckland, P.R.; Hall, H.; Owen, M.J.; O’Donovan, M.C. The Serotonin-2A Receptor Gene Locus Does Not Contain Common Polymorphism Affecting mRNA Levels in Adult Brain. Mol. Psychiatry 2004, 9, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Spies, M.; Nasser, A.; Ozenne, B.; Jensen, P.S.; Knudsen, G.M.; Fisher, P.M. Common HTR2A Variants and 5-HTTLPR Are Not Associated with Human in Vivo Serotonin 2A Receptor Levels. Hum. Brain Mapp. 2020, 41, 4518–4528. [Google Scholar] [CrossRef]
- Polesskaya, O.O.; Aston, C.; Sokolov, B.P. Allele C-Specific Methylation of the 5-HT2A Receptor Gene: Evidence for Correlation With Its Expression and Expression of DNA Methylase DNMT1. J. Neurosci. Res. 2006, 83, 362–373. [Google Scholar] [CrossRef]
- Cheah, S.Y.; Lawford, B.R.; Young, R.M.; Morris, C.P.; Voisey, J. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain. Genes 2017, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, V.R.; Gurbaxani, B.M.; Unger, E.R.; Rajeevan, M.S. Functional Genomics of Serotonin Receptor 2A (HTR2A): Interaction of Polymorphism, Methylation, Expression and Disease Association. NeuroMolecular Med. 2011, 13, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Ghadirivasfi, M.; Nohesara, S.; Ahmadkhaniha, H.R.; Eskandari, M.R.; Mostafavi, S.; Thiagalingam, S.; Abdolmaleky, H.M. Hypomethylation of the Serotonin Receptor Type-2A Gene (HTR2A) at T102C Polymorphic Site in DNA Derived from the Saliva of Patients with Schizophrenia and Bipolar Disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Mansego, M.L.; Zulet, M.A.; Martinez, J.A. DNA Hypermethylation of the Serotonin Receptor Type-2A Gene Is Associated with a Worse Response to a Weight Loss Intervention in Subjects with Metabolic Syndrome. Nutrients 2014, 6, 2387–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hranilovic, D.; Blazevic, S.; Stefulj, J.; Zill, P. DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects. Autism Res. 2016, 9, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Land, M.A.; Ramesh, D.; Miller, A.L.; Pyles, R.B.; Cunningham, K.A.; Moeller, F.G.; Anastasio, N.C. Methylation Patterns of the HTR2A Associate With Relapse-Related Behaviors in Cocaine-Dependent Participants. Front. Psychiatry 2020, 11, 532. [Google Scholar] [CrossRef] [PubMed]
- Maltby, V.E.; Lea, R.A.; Burnard, S.; Xavier, A.; Van Cao, T.; White, N.; Kennedy, D.; Groen, K.; Sanders, K.A.; Seeto, R.; et al. Epigenetic Differences at the HTR2A Locus in Progressive Multiple Sclerosis Patients. Sci. Rep. 2020, 10, 22217. [Google Scholar] [CrossRef]
- Sonier, B.; Lavigne, C.; Arseneault, M.; Ouellette, R.; Vaillancourt, C. Expression of the 5-HT2A Serotoninergic Receptor in Human Placenta and Choriocarcinoma Cells: Mitogenic Implications of Serotonin. Placenta 2005, 26, 484–490. [Google Scholar] [CrossRef]
- Oufkir, T.; Arseneault, M.; Sanderson, J.T.; Vaillancourt, C. The 5-HT2A Serotonin Receptor Enhances Cell Viability, Affects Cell Cycle Progression and Activates MEK-ERK1/2 and JAK2-STAT3 Signalling Pathways in Human Choriocarcinoma Cell Lines. Placenta 2010, 31, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Oufkir, T.; Vaillancourt, C. Phosphorylation of JAK2 by Serotonin 5-HT2A Receptor Activates Both STAT3 and ERK1/2 Pathways and Increases Growth of JEG-3 Human Placental Choriocarcinoma Cell. Placenta 2011, 32, 1033–1040. [Google Scholar] [CrossRef]
- Klempan, T.; Hudon-Thibeault, A.A.; Oufkir, T.; Vaillancourt, C.; Sanderson, J.T. Stimulation of Serotonergic 5-HT2A Receptor Signaling Increases Placental Aromatase (CYP19) Activity and Expression in BeWo and JEG-3 Human Choriocarcinoma Cells. Placenta 2011, 32, 651–656. [Google Scholar] [CrossRef]
- Paquette, A.G.; Lesseur, C.; Armstrong, D.A.; Koestler, D.C.; Appleton, A.A.; Lester, B.M.; Marsit, C.J. Placental HTR2A Methylation Is Associated with Infant Neurobehavioral Outcomes. Epigenetics 2013, 8, 796–801. [Google Scholar] [CrossRef] [Green Version]
- Paquette, A.G.; Marsit, C.J. The Developmental Basis of Epigenetic Regulation of HTR2A and Psychiatric Outcomes. J. Cell. Biochem. 2014, 115, 2065–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawlińska, K.; Gawliński, D.; Filip, M.; Przegaliński, E. Maternal Feeding Patterns Affect the Offspring’s Brain: Focus on Serotonin 5-HT2C and 5-HT2A Receptors. Pharmacol. Rep. 2021, 73, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Kigar, S.L.; Chang, L.; Guerrero, C.R.; Sehring, J.R.; Cuarenta, A.; Parker, L.L.; Bakshi, V.P.; Auger, A.P. N6-Methyladenine Is an Epigenetic Marker of Mammalian Early Life Stress. Sci. Rep. 2017, 7, 18078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parade, S.H.; Novick, A.M.; Parent, J.; Seifer, R.; Klaver, S.J.; Marsit, C.J.; Gobin, A.P.; Yang, B.Z.; Tyrka, A.R. Stress Exposure and Psychopathology Alter Methylation of the Serotonin Receptor 2A (HTR2A) Gene in Preschoolers. Dev. Psychopathol. 2017, 29, 1619–1626. [Google Scholar] [CrossRef]
- Dearden, L.; Bouret, S.G.; Ozanne, S.E. Sex and Gender Differences in Developmental Programming of Metabolism. Mol. Metab. 2018, 15, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.P.J.; Dolinsky, V.W. Sex Differences in the Developmental Origins of Cardiometabolic Disease Following Exposure to Maternal Obesity and Gestational Diabetes. Appl. Physiol. Nutr. Metab. 2019, 44, 687–695. [Google Scholar] [CrossRef]
- Metzger, B.E. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Lovrenčić, M.V.; Honović, L.; Kralik, S.; Matica, J.; Prašek, M.; Pape-Medvidović, E.; Ivanišević, M.; Delmiš, J. Redefinition of Gestational Diabetes Mellitus: Implications for Laboratory Practice in Croatia. Biochem. Med. 2013, 23, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.D.; El-sayed, Y.Y. Committee Opinion No 700: Methods for Estimating the Due Date. Obstet. Gynecol. 2017, 129, e150–e154. [Google Scholar] [CrossRef]
- Blazevic, S.; Horvaticek, M.; Kesic, M.; Zill, P.; Hranilovic, D.; Ivanisevic, M.; Desoye, G.; Stefulj, J. Epigenetic Adaptation of the Placental Serotonin Transporter Gene (SLC6A4) to Gestational Diabetes Mellitus. PLoS ONE 2017, 12, e0179934. [Google Scholar] [CrossRef] [Green Version]
- Motulsky, H.J.; Brown, R.E. Detecting Outliers When Fitting Data with Nonlinear Regression—A New Method Based on Robust Nonlinear Regression and the False Discovery Rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Azmitia, E.C. Modern Views on an Ancient Chemical: Serotonin Effects on Cell Proliferation, Maturation, and Apoptosis. Brain Res. Bull. 2001, 56, 413–424. [Google Scholar] [CrossRef]
- Inkster, A.M.; Yuan, V.; Konwar, C.; Matthews, A.M.; Brown, C.J.; Robinson, W.P. A Cross-Cohort Analysis of Autosomal DNA Methylation Sex Differences in the Term Placenta. Biol. Sex Differ. 2021, 12, 38. [Google Scholar] [CrossRef]
- Shrestha, D.; Ouidir, M.; Workalemahu, T.; Zeng, X.; Tekola-Ayele, F. Placental DNA Methylation Changes Associated with Maternal Prepregnancy BMI and Gestational Weight Gain. Int. J. Obes. 2020, 44, 1406–1416. [Google Scholar] [CrossRef]
- Slupecka-Ziemiłska, M.; Wychowański, P.; Puzianowska-Kuznicka, M. Gestational Diabetes Mellitus Affects Offspring’s Epigenome. Is There a Way to Reduce the Negative Consequences? Nucleic Acids Res. 2020, 12, 2792. [Google Scholar] [CrossRef]
- Reichetzeder, C. Overweight and Obesity in Pregnancy: Their Impact on Epigenetics. Eur. J. Clin. Nutr. 2021, 75, 1710–1722. [Google Scholar] [CrossRef]
- Everson, T.M.; Vives-Usano, M.; Seyve, E.; Cardenas, A.; Lacasaña, M.; Craig, J.M.; Lesseur, C.; Baker, E.R.; Fernandez-Jimenez, N.; Heude, B.; et al. Placental DNA Methylation Signatures of Maternal Smoking during Pregnancy and Potential Impacts on Fetal Growth. Nat. Commun. 2021, 12, 5095. [Google Scholar] [CrossRef]
- Zhao, W.; Ammous, F.; Ratliff, S.; Liu, J.; Yu, M.; Mosley, T.H.; Kardia, S.L.R.; Smith, J.A. Education and Lifestyle Factors Are Associated with DNA Methylation Clocks in Older African Americans. Int. J. Environ. Res. Public Health 2019, 16, 3141. [Google Scholar] [CrossRef] [Green Version]
- Meakin, A.S.; Cuffe, J.S.M.; Darby, J.R.T.; Morrison, J.L.; Clifton, V.L. Let’s Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female-and Male-Specific Fetal Growth and Developmental Outcomes. Int. J. Mol. Sci. 2021, 22, 6386. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Females (n = 92) | Males (n = 107) | p-Value |
---|---|---|---|
MOTHERS | |||
Age at delivery, years | 33.2 [30.1–36.9] | 33.4 [29.7–36.7] | 0.310 5 |
Primipara/multipara, n (%) | 40 (43.5)/52 (56.5) | 35 (32.7)/72 (67.3) | 0.143 6 |
BMI before pregnancy, kg/m2 | 23.2 [21.4–27.7] | 23.2 [21.0–28.4] | 0.930 7 |
BWS before pregnancy, n (%) | |||
normal weight | 58 (63.0) | 66 (61.7) | 0.981 8 |
overweight | 15 (16.3) | 18 (16.8) | |
obese | 19 (20.7) | 23 (21.5) | |
Diabetes in family (yes/no) 1 | 32 (35.2)/59 (64.8) | 31 (30.7)/70 (69.3) | 0.541 6 |
NGT/GDM, n (%) | 51 (55.4)/41 (44.6) | 68 (63.5)/39 (36.5) | 0.251 6 |
Gestational weight gain, kg | 12.5 [9.0–15.0] | 14.0 [10.0–17.0] | 0.102 7 |
Tobacco in pregnancy (yes/no) 2 | 19 (22.1)/67 (77.9) | 33 (32.7)/68 (67.3) | 0.140 6 |
Alcohol in pregnancy (yes/no) 3 | 16 (19.3)/67 (80.7) | 12 (12.8)/82 (87.2) | 0.303 6 |
Oral antidiabetics (yes/no) | 6 (6.5)/86 (93.5) | 6 (5.6)/101 (94.4) | >0.999 6 |
Insulin in pregnancy (yes/no) | 1 (1.1)/91 (98.9) | 4 (3.7)/103 (96.3) | 0.376 6 |
NEWBORNS | |||
Gestational age at birth, weeks | 39.1 [38.5–39.6] | 39.3 [38.7–39.7] | 0.084 7 |
Birth weight, g | 3240 [3000–3615] | 3520 [3290–3860] | <0.00015 |
Birth length, cm | 49 [48–50] | 50 [49–51] | <0.00015 |
Ponderal index, g/cm3 | 2.78 [2.62–2.99] | 2.83 [2.65–2.97] | 0.841 5 |
rs6311 polymorphism, n (%) | |||
genotypes: GG/GA/AA | 35 (38.0)/40 (43.5)/17 (18.5) | 41 (38.3)/46 (43.0)/20 (18.7) | 0.998 8 |
alleles: G/A | 110 (59.8)/74 (40.2) | 128 (59.8)/86 (40.2) | >0.999 6 |
rs6306 polymorphism, n (%) | |||
genotypes: CC/CT/TT | 75 (81.5)/17 (18.5)/0 (0.0) | 90 (84.1)/16 (15.0)/1 (0.9) | 0.530 8,9 |
alleles: C/T | 167 (90.8)/17 (9.2) | 196 (91.6)/18 (8.4) | 0.860 6 |
HTR2A methylation, % 4 | |||
L1 (−1665 bp) site | 83.8 [81.5–85.3] | 85.0 [83.3–86.4] | 0.00067 |
L2 (−1439 bp) site | 32.7 [23.6–46.6] | 33.9 [26.6–51.5] | 0.212 7 |
L3 (−1421 bp) site | 34.5 [27.1–39.1] | 37.9 [33.0–44.7] | 0.00055 |
L4 (−1224 bp) site | 40.3 [37.4–43.5] | 44.0 [40.1–47.8] | <0.00017 |
Mean of L3 and L4 (L3/L4) | 36.5 [32.2–40.8] | 40.8 [36.1–45.2] | <0.00017 |
Predictor | Female Placentas (n = 84) | Male Placentas (n = 99) | ||||
---|---|---|---|---|---|---|
B | SE | p-Value | B | SE | p-Value | |
BMI before pregnancy (kg/m2) | −0.15 | 0.06 | 0.010 | −0.06 | 0.04 | 0.181 |
Glucose tolerance status | 0.006 | 0.979 | ||||
NGT | ref. | ref. | ||||
GDM | −1.93 | 0.68 | −0.01 | 0.54 | ||
Weight gain in pregnancy (kg) | −0.02 | 0.06 | 0.777 | −0.01 | 0.04 | 0.765 |
Tobacco use in pregnancy | 0.772 | 0.024 | ||||
No | ref. | ref. | ||||
Yes | −0.24 | 0.81 | −1.24 | 0.54 | ||
Birth weight (g) | −0.0005 | 0.0007 | 0.547 | −0.0008 | 0.0006 | 0.248 |
R2 (adjusted R2) | 0.240 (0.192) | 0.084 (0.035) | ||||
p | 0.0006 | 0.141 |
Predictor | Female Placentas (n = 83) | Male Placentas (n = 100) | ||||
---|---|---|---|---|---|---|
B | SE | p-Value | B | SE | p-Value | |
BMI before pregnancy (kg/m2) | −0.35 | 0.10 | 0.001 | −0.03 | 0.09 | 0.725 |
Glucose tolerance status | 0.442 | 0.386 | ||||
NGT | ref. | ref. | ||||
GDM | −0.94 | 0.68 | −1.07 | 1.22 | ||
Weight gain in pregnancy (kg) | −0.19 | 0.12 | 0.110 | −0.05 | 0.09 | 0.591 |
Tobacco use in pregnancy | 0.394 | 0.023 | ||||
No | ref. | ref. | ||||
Yes | −1.25 | 1.46 | −2.79 | 1.21 | ||
rs6306 polymorphism | <0.0001 | <0.0001 | ||||
CC genotype | ref. | ref. | ||||
CT genotype | −9.65 | 1.44 | −8.70 | 1.59 | ||
Birth weight (g) | −0.002 | 0.001 | 0.261 | −0.0002 | 0.0014 | 0.911 |
R2 (adjusted R2) | 0.454 (0.411) | 0.303 (0.258) | ||||
p | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvatiček, M.; Perić, M.; Bečeheli, I.; Klasić, M.; Žutić, M.; Kesić, M.; Desoye, G.; Nakić Radoš, S.; Ivanišević, M.; Hranilovic, D.; et al. Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines 2022, 10, 467. https://doi.org/10.3390/biomedicines10020467
Horvatiček M, Perić M, Bečeheli I, Klasić M, Žutić M, Kesić M, Desoye G, Nakić Radoš S, Ivanišević M, Hranilovic D, et al. Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines. 2022; 10(2):467. https://doi.org/10.3390/biomedicines10020467
Chicago/Turabian StyleHorvatiček, Marina, Maja Perić, Ivona Bečeheli, Marija Klasić, Maja Žutić, Maja Kesić, Gernot Desoye, Sandra Nakić Radoš, Marina Ivanišević, Dubravka Hranilovic, and et al. 2022. "Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta" Biomedicines 10, no. 2: 467. https://doi.org/10.3390/biomedicines10020467
APA StyleHorvatiček, M., Perić, M., Bečeheli, I., Klasić, M., Žutić, M., Kesić, M., Desoye, G., Nakić Radoš, S., Ivanišević, M., Hranilovic, D., & Štefulj, J. (2022). Maternal Metabolic State and Fetal Sex and Genotype Modulate Methylation of the Serotonin Receptor Type 2A Gene (HTR2A) in the Human Placenta. Biomedicines, 10(2), 467. https://doi.org/10.3390/biomedicines10020467