Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases
Abstract
:1. Introduction
2. Drosophila Innate Behaviors
2.1. Gut Microbiota and Mating Behavior
2.2. Gut Microbiota and Aggressive Behavior
2.3. Gut Microbiota and Sleep and Locomotor Activity
2.4. Gut Microbiota and Temperature Related Behaviors
3. Drosophila Learned Behaviors
3.1. Olfactory Memory-Aversive and Reward Conditionings
3.2. Courtship Memory
3.3. Impact of the Gut Microbiota on Memory
4. Aging and Longevity
Gut Microbiota and Drosophila Aging
5. Alzheimer’s Diseases
5.1. Gut Microbiota and AD in Drosophila
5.2. elav-Gal4; UAS-BACE/UAS-APP Fly Model
5.3. GMR-Aβ42 Fly Model
5.4. elav-Gal4; UAS-Aβ42 Fly Model
6. Parkinson’s Disease
6.1. Gut Microbiota and PD in Drosophila
6.2. elav-Gal4; UAS-Synuclein Fly Model
6.3. PINK1 Mutant Fly Model
7. Autism Spectrum Disorder
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Konopka, R.J.; Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1971, 68, 2112–2116. [Google Scholar] [CrossRef] [Green Version]
- Dow, M.A.; Schilcher, F.V. Aggression and mating success in Drosophila melanogaster. Nature 1975, 254, 511–512. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.C. The mating of a fly. Science 1994, 264, 1702–1714. [Google Scholar] [CrossRef] [PubMed]
- Tempel, B.L.; Bonini, N.; Dawson, D.R.; Quinn, W.G. Reward learning in normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 1983, 80, 1482–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tully, T.; Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 1985, 157, 263–277. [Google Scholar] [CrossRef]
- Siegel, R.W.; Hall, J.C. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 1979, 76, 3430–3434. [Google Scholar] [CrossRef] [Green Version]
- Feany, M.B.; Bender, W.W. A Drosophila model of Parkinson’s disease. Nature 2000, 404, 394–398. [Google Scholar] [CrossRef]
- Cowan, C.M.; Shepherd, D.; Mudher, A. Insights from Drosophila models of Alzheimer’s disease. Biochem. Soc. Trans. 2010, 38, 988–992. [Google Scholar] [CrossRef]
- Tue, N.T.; Dat, T.Q.; Ly, L.L.; Anh, V.D.; Yoshida, H. Insights from Drosophila melanogaster model of Alzheimer’s disease. Front. Biosci. 2020, 25, 134–146. [Google Scholar] [CrossRef]
- O’Hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017, 20, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, C.C.; Chiang, H.L.; Liou, J.M.; Chang, C.M.; Lu, T.P.; Chuang, E.Y.; Tai, Y.C.; Cheng, C.; Lin, H.Y.; et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 2019, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Lynch, M.D.; Lu, J.; Dang, V.T.; Deng, Y.; Jury, J.; Umeh, G.; Miranda, P.M.; Pigrau Pastor, M.; Sidani, S.; et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 2017, 9, eaaf6397. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155, 1451–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, A.F.; Erickson, M.A.; Rhea, E.M.; Salameh, T.S.; Banks, W.A. Gut reactions: How the blood-brain barrier connects the microbiome and the brain. Exp. Biol. Med. 2018, 243, 159–165. [Google Scholar] [CrossRef]
- Kaelberer, M.M.; Buchanan, K.L.; Klein, M.E.; Barth, B.B.; Montoya, M.M.; Shen, X.; Bohorquez, D.V. A gut-brain neural circuit for nutrient sensory transduction. Science 2018, 361, eaat5236. [Google Scholar] [CrossRef] [Green Version]
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 2016, 167, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Harach, T.; Jammes, F.; Muller, C.; Duthilleul, N.; Cheatham, V.; Zufferey, V.; Cheatham, D.; Lukasheva, Y.A.; Lasser, T.; Bolmont, T. Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2017, 51, 83–96. [Google Scholar] [CrossRef]
- Mayer, E.A.; Tillisch, K.; Gupta, A. Gut/brain axis and the microbiota. J. Clin. Investig. 2015, 125, 926–938. [Google Scholar] [CrossRef]
- Kitani-Morii, F.; Friedland, R.P.; Yoshida, H.; Mizuno, T. Drosophila as a Model for Microbiota Studies of Neurodegeneration. J. Alzheimers Dis. 2021, 84, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Banu, A.; Alwa, A.; Gowda, S.B.M.; Mohammad, F. The gut-microbiota-brain axis in autism: What Drosophila models can offer? J. Neurodev. Disord. 2021, 13, 37. [Google Scholar] [CrossRef]
- Kim, S.M.; Su, C.Y.; Wang, J.W. Neuromodulation of Innate Behaviors in Drosophila. Annu. Rev. Neurosci. 2017, 40, 327–348. [Google Scholar] [CrossRef]
- Strauss, R.; Hanesch, U.; Kinkelin, M.; Wolf, R.; Heisenberg, M. No-bridge of Drosophila melanogaster: Portrait of a structural brain mutant of the central complex. J. Neurogenet. 1992, 8, 125–155. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lee, A.Y.; Bowens, N.M.; Huber, R.; Kravitz, E.A. Fighting fruit flies: A model system for the study of aggression. Proc. Natl. Acad. Sci. USA 2002, 99, 5664–5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, J.D.; Funes, P.; Dowse, H.B.; Hall, J.C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 2002, 298, 2010–2012. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Finn, S.M.; Panckeri, K.A.; Chavkin, J.; Williams, J.A.; Sehgal, A.; Pack, A.I. Rest in Drosophila is a sleep-like state. Neuron 2000, 25, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Waddington, C.H.; Woolf, B.; Perry, M.M. Environment Selection by Drosophila Mutants. Evolution 1954, 8, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Ugur, B.; Chen, K.; Bellen, H.J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 2016, 9, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Kume, K.; Kume, S.; Park, S.K.; Hirsh, J.; Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 2005, 25, 7377–7384. [Google Scholar] [CrossRef] [Green Version]
- Heys, C.; Lize, A.; Colinet, H.; Price, T.A.R.; Prescott, M.; Ingleby, F.; Lewis, Z. Evidence That the Microbiota Counteracts Male Outbreeding Strategy by Inhibiting Sexual Signaling in Females. Front. Ecol. Evol. 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Delbare, S.Y.N.; Ahmed-Braimah, Y.H.; Wolfner, M.F.; Clark, A.G. Interactions between the microbiome and mating influence the female’s transcriptional profile in Drosophila melanogaster. Sci. Rep. 2020, 10, 18168. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.C.; Jin, S.; Hu, K.K.; Geng, L.; Han, C.H.; Kang, R.X.; Pang, Y.X.; Ling, E.J.; Tan, E.K.; Pan, Y.F.; et al. Gut microbiome modulates Drosophila aggression through octopamine signaling. Nat. Commun. 2021, 12, 2698. [Google Scholar] [CrossRef]
- Silva, V.; Palacios-Munoz, A.; Okray, Z.; Adair, K.L.; Waddell, S.; Douglas, A.E.; Ewer, J. The impact of the gut microbiome on memory and sleep in Drosophila. J. Exp. Biol. 2021, 224, jeb233619. [Google Scholar] [CrossRef]
- Selkrig, J.; Mohammad, F.; Ng, S.H.; Chua, J.Y.; Tumkaya, T.; Ho, J.; Chiang, Y.N.; Rieger, D.; Pettersson, S.; Helfrich-Forster, C.; et al. The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors. Sci. Rep. 2018, 8, 10646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schretter, C.E.; Vielmetter, J.; Bartos, I.; Marka, Z.; Marka, S.; Argade, S.; Mazmanian, S.K. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018, 563, 402. [Google Scholar] [CrossRef] [PubMed]
- Henry, Y.; Colinet, H. Microbiota disruption leads to reduced cold tolerance in Drosophila flies. Sci. Nat. 2018, 105, 59. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, A.; Castaneda, L.E. Gut Microbiota of Drosophila subobscura Contributes to Its Heat Tolerance and Is Sensitive to Transient Thermal Stress. Front. Microbiol. 2021, 12, 886. [Google Scholar] [CrossRef]
- Brummel, T.; Ching, A.; Seroude, L.; Simon, A.F.; Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proc. Natl. Acad. Sci. USA 2004, 101, 12974–12979. [Google Scholar] [CrossRef] [Green Version]
- Catterson, J.H.; Khericha, M.; Dyson, M.C.; Vincent, A.J.; Callard, R.; Haveron, S.M.; Rajasingam, A.; Ahmad, M.; Partridge, L. Short-Term, Intermittent Fasting Induces Long-Lasting Gut Health and TOR-Independent Lifespan Extension. Curr. Biol. 2018, 28, 1714. [Google Scholar] [CrossRef] [Green Version]
- Batista, L.L.; Malta, S.M.; Silva, H.C.G.; Borges, L.D.F.; Rocha, L.O.; da Silva, J.R.; Rodrigues, T.S.; Venturini, G.; Padilha, K.; Pereira, A.D.; et al. Kefir metabolites in a fly model for Alzheimer’s disease. Sci. Rep. 2021, 11, 11262. [Google Scholar] [CrossRef] [PubMed]
- Westfall, S.; Lomis, N.; Prakash, S. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS ONE 2019, 14, e0214985. [Google Scholar]
- Liu, G.; Tan, F.H.; Lau, S.A.; Jaafar, M.H.; Chung, F.Y.; Azzam, G.; Liong, M.T.; Li, Y. Lactic acid bacteria feeding reversed the malformed eye structures and ameliorated gut microbiota profiles of Drosophila melanogaster Alzheimer’s Disease model. J. Appl. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.H.P.; Liu, G.; Lau, S.A.; Jaafar, M.H.; Park, Y.H.; Azzam, G.; Li, Y.; Liong, M.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef. Microbes 2020, 11, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Jiang, B.; Luo, X. Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol. 2018, 13, 1117–1128. [Google Scholar] [CrossRef]
- Wu, S.C.; Cao, Z.S.; Chang, K.M.; Juang, J.L. Intestinal microbial dysbiosis aggravates the progression of Alzheimer’s disease in Drosophila. Nat. Commun. 2017, 8, 24. [Google Scholar] [CrossRef]
- Ho, L.; Zhao, D.; Ono, K.; Ruan, K.; Mogno, I.; Tsuji, M.; Carry, E.; Brathwaite, J.; Sims, S.; Frolinger, T.; et al. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. J. Nutr. Biochem. 2019, 64, 170–181. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, M.M.; Xue, J.S.; Xiang, L.; Li, Y.L.; Xiao, J.; Xiao, G.R.; Wang, H.L. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB J. 2020, 34, 5931–5950. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Luan, X.T.; Liu, Q.S.; Wang, J.W.; Chang, X.X.; Snijders, A.M.; Mao, J.H.; Secombe, J.; Dan, Z.; Chen, J.H.; et al. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host Microb. 2019, 25, 537. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, D.; Koganezawa, M. Genes and circuits of courtship behaviour in Drosophila males. Nat. Rev. Neurosci. 2013, 14, 681–692. [Google Scholar] [CrossRef]
- Leftwich, P.T.; Clarke, N.V.E.; Hutchings, M.I.; Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. USA 2017, 114, 12767–12772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Houte, S.; Ekroth, A.K.E.; Broniewski, J.M.; Chabas, H.; Ashby, B.; Bondy-Denomy, J.; Gandon, S.; Boots, M.; Paterson, S.; Buckling, A.; et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 2016, 532, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, N.R.; Ray, S.; Dalton, J.E.; Fortier, J.C.; Kao, J.C.Y.; Chang, P.T.L.; Nuzhdin, S.V.; Arbeitman, M.N. The Drosophila Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions. G3-Genes Genom. Genet. 2020, 10, 967–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwarts, L.; Versteven, M.; Callaerts, P. Genetics and neurobiology of aggression in Drosophila. Fly 2012, 6, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffenberger, C.; Lear, B.C.; Keegan, K.P.; Allada, R. Locomotor activity level monitoring using the Drosophila Activity Monitoring (DAM) System. Cold Spring Harb Protoc. 2010, 2010, pdb-prot5518. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.J.; Tononi, G.; Greenspan, R.J.; Robinson, D.F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 2002, 417, 287–291. [Google Scholar] [CrossRef]
- Donlea, J.M.; Pimentel, D.; Miesenbock, G. Neuronal Machinery of Sleep Homeostasis in Drosophila. Neuron 2014, 81, 860–872. [Google Scholar] [CrossRef] [Green Version]
- Cichewicz, K.; Hirsh, J. ShinyR-DAM: A program analyzing Drosophila activity, sleep and circadian rhythms. Commun. Biol. 2018, 1, 25. [Google Scholar] [CrossRef]
- Harbison, S.T.; Mackay, T.F.C.; Anholt, R.R.H. Understanding the neurogenetics of sleep: Progress from Drosophila. Trends Genet. 2009, 25, 262–269. [Google Scholar] [CrossRef] [Green Version]
- King, A.N.; Barber, A.F.; Smith, A.E.; Dreyer, A.P.; Sitaraman, D.; Nitabach, M.N.; Cavanaugh, D.J.; Sehgal, A. A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Curr. Biol. 2017, 27, 1915–1927. [Google Scholar] [CrossRef] [Green Version]
- Koyle, M.L.; Veloz, M.; Judd, A.M.; Wong, A.C.N.; Newell, P.D.; Douglas, A.E.; Chaston, J.M. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions. J. Vis. Exp. 2016, 113, e54219. [Google Scholar] [CrossRef] [PubMed]
- Goda, T.; Leslie, J.R.; Hamada, F.N. Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila. J. Vis. Exp. 2014, 83, e51097. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.W.; Wu, C.L.; Chang, S.W.; Liu, T.H.; Lai, J.S.Y.; Fu, T.F.; Fu, C.C.; Chiang, A.S. Parallel circuits control temperature preference in Drosophila during ageing. Nat. Commun. 2015, 6, 7775. [Google Scholar] [CrossRef] [Green Version]
- Gallio, M.; Ofstad, T.A.; Macpherson, L.J.; Wang, J.W.; Zuker, C.S. The coding of temperature in the Drosophila brain. Cell 2011, 144, 614–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, S.S.; Rako, L.; Batterham, P.; Hoffmann, A.A. Dissecting chill coma recovery as a measure of cold resistance: Evidence for a biphasic response in Drosophila melanogaster. J. Insect Physiol. 2004, 50, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Kahsai, L.; Zars, T. Learning and Memory in Drosophila: Behavior, Genetics, and Neural Systems. Int. Rev. Neurobiol. 2011, 99, 139–167. [Google Scholar] [PubMed]
- Schwaerzel, M.; Monastirioti, M.; Scholz, H.; Friggi-Grelin, F.; Birman, S.; Heisenberg, M. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 2003, 23, 10495–10502. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Owald, D.; Chandra, V.; Talbot, C.; Huetteroth, W.; Waddell, S. Neural correlates of water reward in thirsty Drosophila. Nat. Neurosci 2014, 17, 1536–1542. [Google Scholar] [CrossRef] [Green Version]
- Shyu, W.H.; Chiu, T.H.; Chiang, M.H.; Cheng, Y.C.; Tsai, Y.L.; Fu, T.F.; Wu, T.; Wu, C.L. Neural circuits for long-term water-reward memory processing in thirsty Drosophila. Nat. Commun. 2017, 8, 15230. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.P.; Chiang, M.H.; Chang, L.Y.; Lee, J.Y.; Tsai, Y.L.; Chiu, T.H.; Chiang, H.C.; Fu, T.F.; Wu, T.; Wu, C.L. Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila. PLoS Genet. 2020, 16, e1008963. [Google Scholar] [CrossRef]
- Krashes, M.J.; Waddell, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J. Neurosci. 2008, 28, 3103–3113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejima, A.; Griffith, L.C. Assay for courtship suppression in Drosophila. Cold Spring Harb Protoc. 2011, 2011, pdb.prot5575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, W.G.; Harris, W.A.; Benzer, S. Conditioned Behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1974, 71, 708. [Google Scholar] [CrossRef] [Green Version]
- Turner, G.C.; Bazhenov, M.; Laurent, G. Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiol. 2008, 99, 734–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, G.; Davis, R.L. Molecular biology and anatomy of Drosophila olfactory associative learning. Bioessays 2001, 23, 571–581. [Google Scholar] [CrossRef]
- Davis, R.L. Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annu. Rev. Neurosci. 2005, 28, 275–302. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Lee, A.; Luo, L. Development of the Drosophila mushroom bodies: Sequential generation of three distinct types of neurons from a neuroblast. Development 1999, 126, 4065–4076. [Google Scholar] [CrossRef]
- Blum, A.L.; Li, W.; Cressy, M.; Dubnau, J. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr. Biol. 2009, 19, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- McBride, S.M.; Giuliani, G.; Choi, C.; Krause, P.; Correale, D.; Watson, K.; Baker, G.; Siwicki, K.K. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 1999, 24, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Montague, S.A.; Baker, B.S. Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory. PLoS ONE 2016, 11, e0164516. [Google Scholar] [CrossRef]
- Vuong, H.E.; Yano, J.M.; Fung, T.C.; Hsiao, E.Y. The Microbiome and Host Behavior. Annu. Rev. Neurosci. 2017, 40, 21–49. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.H.; Schreiber, H.L.T.; Mazmanian, S.K. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Carlson, A.L.; Xia, K.; Azcarate-Peril, M.A.; Goldman, B.D.; Ahn, M.; Styner, M.A.; Thompson, A.L.; Geng, X.; Gilmore, J.H.; Knickmeyer, R.C. Infant Gut Microbiome Associated With Cognitive Development. Biol. Psychiatry 2018, 83, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dowd, S.E.; Scurlock, B.; Acosta-Martinez, V.; Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 2009, 96, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.M.; Jenks, S.M. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav. Processes 2013, 96, 27–35. [Google Scholar] [CrossRef]
- Smith, C.J.; Emge, J.R.; Berzins, K.; Lung, L.; Khamishon, R.; Shah, P.; Rodrigues, D.M.; Sousa, A.J.; Reardon, C.; Sherman, P.M.; et al. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G793–G802. [Google Scholar] [CrossRef]
- Wong, C.N.; Ng, P.; Douglas, A.E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 2011, 13, 1889–1900. [Google Scholar] [CrossRef] [Green Version]
- Melzer, D.; Pilling, L.C.; Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 2020, 21, 88–101. [Google Scholar] [CrossRef]
- Kim, S.; Jazwinski, S.M. The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 2018, 64, 513–520. [Google Scholar] [CrossRef]
- Ragonnaud, E.; Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing 2021, 18, 2. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zeng, B.; Chen, Y.F.; Yang, M.Y.; Kong, F.L.; Wei, L.M.; Li, F.; Zhao, J.C.; Li, Y. Gut microbiota in healthy and unhealthy long-living people. Gene 2021, 779, 145510. [Google Scholar] [CrossRef] [PubMed]
- Ziehm, M.; Piper, M.D.; Thornton, J.M. Analysing variation in Drosophila aging across independent experimental studies: A meta-analysis of survival data. Aging Cell 2013, 12, 917–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliadi, K.G.; Boulianne, G.L. Age-related behavioral changes in Drosophila. Ann. N. Y. Acad. Sci. 2010, 1197, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.A.; Grotewiel, M. Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp. Gerontol. 2011, 46, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Koh, K.; Evans, J.M.; Hendricks, J.C.; Sehgal, A. A Drosophila model for age-associated changes in sleep: Wake cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 13843–13847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pletcher, S.D.; Macdonald, S.J.; Marguerie, R.; Certa, U.; Stearns, S.C.; Goldstein, D.B.; Partridge, L. Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr. Biol. 2002, 12, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qi, Y.; Jasper, H. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host Microbe 2016, 19, 240–253. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-Y.; Lee, S.-H.; Lee, J.-H.; Lee, W.-J.; Min, K.-J. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging 2019, 11, 4611–4640. [Google Scholar] [CrossRef]
- De-Paula, V.J.; Radanovic, M.; Diniz, B.S.; Forlenza, O.V. Alzheimer’s Disease. In Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease; Harris, J.R., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 329–352. [Google Scholar]
- Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry 1999, 66, 137–147. [Google Scholar] [CrossRef]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Ricciarelli, R.; Fedele, E. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Curr. Neuropharmacol. 2017, 15, 926–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paroni, G.; Bisceglia, P.; Seripa, D. Understanding the Amyloid Hypothesis in Alzheimer’s Disease. J. Alzheimers Dis. 2019, 68, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Szablewski, L. Human Gut Microbiota in Health and Alzheimer’s Disease. J. Alzheimers Dis. 2018, 62, 549–560. [Google Scholar] [CrossRef]
- Stasi, C.; Sadalla, S.; Milani, S. The Relationship Between the Serotonin Metabolism, Gut-microbiota and the Gut-brain Axis. Curr. Drug Metab. 2019, 20, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, S.; Caro, M.; Hadzimichalis, N. NMDA Receptor Activity in Neuropsychiatric Disorders. Front. Psychiatry 2013, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Song, H.J.; Gangi, T.; Kelkar, A.; Antani, I.; Garza, D.; Konsolaki, M. Identification of novel genes that modify phenotypes induced by Alzheimer’s beta-amyloid overexpression in Drosophila. Genetics 2008, 178, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Ann Dipika Binosha Fernando, W.M.; Rainey-Smith, S.R.; Martins, I.J.; Martins, R.N. In vitro study to assess the potential of short chain fatty acids (scfa) as therapeutic agents for alzheimer’s disease. Alzheimer’s Dement. 2014, 10, P626-P626. [Google Scholar] [CrossRef]
- Lei, E.; Vacy, K.; Boon, W.C. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural. Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, L.Y.; Jiang, B.C. The Role of Gut Microbiota in Aging and Aging Related Neurodegenerative Disorders: Insights from Drosophila Model. Life 2021, 11, 855. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Morimoto, R.; Kitagawa, K. Investigation of the consultation status and clinical symptoms of patients with Parkinson’s disease after the spread of COVID-19. Mov. Disord. 2021, 36, S278-S278. [Google Scholar]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Wang, Y. Gut microbiota are related to Parkinson’s disease. J. Neurol. Sci. 2017, 381, 1047. [Google Scholar] [CrossRef]
- Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 2015, 30, 1351–1360. [Google Scholar] [CrossRef]
- Gerhardt, S.; Mohajeri, M.H. Changes of Colonic Bacterial Composition in Parkinson’s Disease and Other Neurodegenerative Diseases. Nutrients 2018, 10, 708. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, C.B.; Shannon, K.M.; Kordower, J.H.; Voigt, R.M.; Shaikh, M.; Jaglin, J.A.; Estes, J.D.; Dodiya, H.B.; Keshavarzian, A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 2011, 6, e28032. [Google Scholar] [CrossRef] [Green Version]
- Pickrell, A.M.; Youle, R.J. The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.E.; LeBlanc, L.A. Autism spectrum disorders in early childhood: An overview for practicing physicians. Prim. Care 2007, 34, 343–359, abstract viii. [Google Scholar] [CrossRef]
- Fakhoury, M. Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int. J. Dev. Neurosci. 2015, 43, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Kamali, E.; Mousavi, S.M.; Karahmadi, M. Environmental factors influencing the risk of autism. J. Res. Med. Sci. 2017, 22, 27. [Google Scholar] [PubMed]
- Tian, Y.; Zhang, Z.C.; Han, J.H. Drosophila Studies on Autism Spectrum Disorders. Neurosci. Bull. 2017, 33, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Stessman, H.A.F.; Willemsen, M.H.; Fenckova, M.; Penn, O.; Hoischen, A.; Xiong, B.; Wang, T.Y.; Hoekzema, K.; Vives, L.; Voge, I.; et al. Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. Am. J. Hum. Genet. 2016, 98, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Ishiguro, K.; Gaubatz, S.; Livingston, D.M.; Nakatani, Y. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in G(0) cells. Science 2002, 296, 1132–1136. [Google Scholar] [CrossRef]
- Tachibana, M.; Sugimoto, K.; Nozaki, M.; Ueda, J.; Ohta, T.; Ohki, M.; Fukuda, M.; Takeda, N.; Niida, H.; Kato, H.; et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002, 16, 1779–1791. [Google Scholar] [CrossRef] [Green Version]
- Mis, J.; Ner, S.S.; Grigliatti, T.A. Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol. Genet. Genomics. 2006, 275, 513–526. [Google Scholar] [CrossRef]
- Kramer, J.M.; Kochinke, K.; Oortveld, M.A.W.; Marks, H.; Kramer, D.; de Jong, E.K.; Asztalos, Z.; Westwood, J.T.; Stunnenberg, H.G.; Sokolowski, M.B.; et al. Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a. PLoS Biol. 2011, 9, e1000569. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.B.; Staller, P. The KDM5 family of histone demethylases as targets in oncology drug discovery. Epigenomics 2014, 6, 277–286. [Google Scholar] [CrossRef]
- Liu, X.; Secombe, J. The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif. Cell Rep. 2015, 13, 2219–2231. [Google Scholar] [CrossRef] [Green Version]
- Fieremans, N.; Van Esch, H.; de Ravel, T.; Van Driessche, J.; Belet, S.; Bauters, M.; Froyen, G. Microdeletion of the escape genes KDM5C and IQSEC2 in a girl with severe intellectual disability and autistic features. Eur. J. Med. Genet. 2015, 58, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.C.; Jones, W.D.; McIntyre, R.; Sanchez-Andrade, G.; Sanderson, M.; Stephenson, J.D.; Jones, C.P.; Handsaker, J.; Gallone, G.; Bruntraeger, M.; et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science 2018, 362, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwase, S.; Brookes, E.; Agarwal, S.; Badeaux, A.I.; Ito, H.; Vallianatos, C.N.; Tomassy, G.S.; Kasza, T.; Lin, G.; Thompson, A.; et al. A Mouse Model of X-linked Intellectual Disability Associated with Impaired Removal of Histone Methylation. Cell Rep. 2016, 14, 1000–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scandaglia, M.; Lopez-Atalaya, J.P.; Medrano-Fernandez, A.; Lopez-Cascales, M.T.; del Blanco, B.; Lipinski, M.; Benito, E.; Olivares, R.; Iwase, S.; Shi, Y.; et al. Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Rep. 2017, 21, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Zamurrad, S.; Hatch, H.A.M.; Drelon, C.; Belalcazar, H.M.; Secombe, J. A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep. 2018, 22, 2359–2369. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.F.; Chou, M.T.; Salazar, E.D.; Nicholson, T.; Saini, N.; Metchev, S.; Krantz, D.E. A simple assay to study social behavior in Drosophila: Measurement of social space within a group. Genes Brain Behav. 2012, 11, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Ueoka, I.; Kawashima, H.; Konishi, A.; Aoki, M.; Tanaka, R.; Yoshida, H.; Maeda, T.; Ozaki, M.; Yamaguchi, M. Novel Drosophila model for psychiatric disorders including autism spectrum disorder by targeting of ATP-binding cassette protein A. Exp. Neurol. 2018, 300, 51–59. [Google Scholar] [CrossRef]
- Ramdya, P.; Schneider, J.; Levine, J.D. The neurogenetics of group behavior in Drosophila melanogaster. J. Exp. Biol. 2017, 220, 35–41. [Google Scholar] [CrossRef] [Green Version]
Category | Related Microbiota | References | |
---|---|---|---|
Innate Behavior | |||
Mating behavior | |||
Sperm transfer | N.D. | [31] | |
Fecundity | N.D. | [32] | |
Aggressive behavior | Acetobacter, Lactobacillus, Enterococcus | [33] | |
Sleep behavior | N.D. | [34] | |
Locomotion behavior | Lactobacillus brevis | [34,35,36] | |
Temperature tolerance | N.D. | [37,38] | |
Learned Behavior | |||
Olfactory memory | |||
Long-term memory | N.D. | [34] | |
Courtship memory | |||
Learning | N.D. | [34] | |
Long-term memory | N.D. | [34] | |
Aging | |||
Longevity | Lactobacillus plantarum | [39,40] | |
Alzheimer’s disease | |||
elav-Gal4; UAS-BACE/UAS-APP model | Kefir related bacteria Lactobacillus plantarum NCIMB 8826 (Lp8826), Lactobacillus fermentum NCIMB 5221 (Lf5221), Bifidobacteria longum spp. infantis NCIMB 702255 (Bi702255) | [41,42] | |
GMR-Aβ42 model | Lactobacillus sakei Probio65, Lactobacillus paracasei 0291 Lactobacillus plantarum DR7, Stenotrophomonas, Acetobacter, Wolbachia | [43,44] | |
elav-Gal4; UAS-Aβ42 model | Acetobacteraceae, Lactobacillacea, enterobacteria | [45,46] | |
Parkinson disease | |||
elav-Gal4; UAS-Synuclein model | Bacteroides ovatu, Eggerthella lenta, Escherichia coli | [47] | |
PINK1 mutant model | Proteobacteria, Firmicutes, Bacteroidetes, Acetobacter, Lactobacillus | [48] | |
Autism spectrum disorder | |||
kdm5-deficient model | Lactobacillus plantarum | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, M.-H.; Ho, S.-M.; Wu, H.-Y.; Lin, Y.-C.; Tsai, W.-H.; Wu, T.; Lai, C.-H.; Wu, C.-L. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines 2022, 10, 596. https://doi.org/10.3390/biomedicines10030596
Chiang M-H, Ho S-M, Wu H-Y, Lin Y-C, Tsai W-H, Wu T, Lai C-H, Wu C-L. Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines. 2022; 10(3):596. https://doi.org/10.3390/biomedicines10030596
Chicago/Turabian StyleChiang, Meng-Hsuan, Shuk-Man Ho, Hui-Yu Wu, Yu-Chun Lin, Wan-Hua Tsai, Tony Wu, Chih-Ho Lai, and Chia-Lin Wu. 2022. "Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases" Biomedicines 10, no. 3: 596. https://doi.org/10.3390/biomedicines10030596
APA StyleChiang, M. -H., Ho, S. -M., Wu, H. -Y., Lin, Y. -C., Tsai, W. -H., Wu, T., Lai, C. -H., & Wu, C. -L. (2022). Drosophila Model for Studying Gut Microbiota in Behaviors and Neurodegenerative Diseases. Biomedicines, 10(3), 596. https://doi.org/10.3390/biomedicines10030596