Heterogeneity of Multiple System Atrophy: An Update
Abstract
:1. Introduction
2. ”Typical” MSA
3. Atypical MSA or Variants
4. Young-Onset MSA
5. Later-Onset MSA (LOMSA)
6. MSA with Prolonged Survival
7. ”Minimal Change” MSA
8. Familial MSA
9. MSA with Lewy Body Disease
10. MSA with Severe Hippocampal Atrophy
11. MSA with Cognitive Impairment/Dementia
12. MSA with Unusual Tau Pathology
13. MSA with Dystonia
14. MSA with Spinal Myoclonus
15. Conjugal MSA
16. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
αSyn | α-synuclein |
CNS | central nervous system |
DLB | dementia with Lewy bodies |
FTLD | frontotemporal lobar degeneration |
GCI | glial cytoplasmic inclusion |
LBD | Lewy body disease |
LBs | Lewy bodies |
LC | locus ceruleus |
LOMSA | late-onset MSA |
LPI | laryngeal-pharyngeal involvement |
MSA | multiple system atrophy |
MSA-C | cerebellar variant MSA |
MSA-P | MSA with predominant parkinsonism |
NCI | neuronal cytoplasmic inclusions |
NFT | neurofibrillary tangle |
OPCA | olivopontocerebellar atrophy |
PDD | Parkinson disease with dementia |
PSP | progressive supranuclear palsy |
RBD | REM sleep behavior disorder |
SN | substantia nigra |
SND | striatonigral degeneration |
UOMSA | usual onset MSA |
YOMSA | young-onset MSA |
References
- Jellinger, K.A. Multiple system atrophy: An oligodendroglioneural synucleinopathy. J. Alzheimers Dis. 2018, 62, 1141–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Durr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Tison, F.; Ben Shlomo, Y.; Daniel, S.E.; Quinn, N.P. Multiple system atrophy: A review of 203 pathologically proven cases. Mov. Disord. 1997, 12, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Trojanowski, J.Q.; Revesz, T. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol. Appl. Neurobiol. 2007, 33, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Cykowski, M.D.; Coon, E.A.; Powell, S.Z.; Jenkins, S.M.; Benarroch, E.E.; Low, P.A.; Schmeichel, A.M.; Parisi, J.E. Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 2015, 138, 2293–2309. [Google Scholar] [CrossRef]
- Palma, J.A.; Vernetti, P.M.; Perez, M.A.; Krismer, F.; Seppi, K.; Fanciulli, A.; Singer, W.; Low, P.; Biaggioni, I.; Norcliffe-Kaufmann, L.; et al. Limitations of the Unified Multiple System Atrophy Rating Scale as outcome measure for clinical trials and a roadmap for improvement. Clin. Auton. Res. 2021, 31, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Shimohata, T. Diagnosis of multiple system atrophy for establishing disease-modifying therapies. Brain Nerve 2020, 72, 131–136. (In Japanese) [Google Scholar]
- Koga, S.; Parks, A.; Uitti, R.J.; van Gerpen, J.A.; Cheshire, W.P.; Wszolek, Z.K.; Dickson, D.W. Profile of cognitive impairment and underlying pathology in multiple system atrophy. Mov. Disord. 2017, 32, 405–413. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Wenning, G.K.; Stefanova, N. Is multiple system atrophy a prion-like disorder? Int. J. Mol. Sci. 2021, 22, 10093. [Google Scholar] [CrossRef]
- Lau, A.; So, R.W.L.; Lau, H.H.C.; Sang, J.C.; Ruiz-Riquelme, A.; Fleck, S.C.; Stuart, E.; Menon, S.; Visanji, N.P.; Meisl, G.; et al. alpha-Synuclein strains target distinct brain regions and cell types. Nat. Neurosci. 2020, 23, 21–31. [Google Scholar] [CrossRef]
- Goedert, M.; Jakes, R.; Spillantini, M.G. The synucleinopathies: Twenty years on. J. Parkinsons Dis. 2017, 7, S53–S71. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, J.S.; Trejo-Lopez, J.A.; Riffe, C.; McFarland, N.R.; Hiser, W.M.; Giasson, B.I.; Yachnis, A.T. Dissecting alpha-synuclein inclusion pathology diversity in multiple system atrophy: Implications for the prion-like transmission hypothesis. Lab. Investig. 2019, 99, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Monzio Compagnoni, G.; Di Fonzo, A. Understanding the pathogenesis of multiple system atrophy: State of the art and future perspectives. Acta Neuropathol. Commun. 2019, 7, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaji, S.; Maki, T.; Ishimoto, T.; Yamakado, H.; Takahashi, R. Insights into the pathogenesis of multiple system atrophy: Focus on glial cytoplasmic inclusions. Transl. Neurodegener. 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woerman, A.L.; Watts, J.C.; Aoyagi, A.; Giles, K.; Middleton, L.T.; Prusiner, S.B. alpha-Synuclein: Multiple system atrophy prions. Cold Spring Harb. Perspect. Med. 2018, 8, a024588. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Marmion, D.J.; Schonhoff, A.M.; Jurkuvenaite, A.; Won, W.J.; Standaert, D.G.; Kordower, J.H.; Harms, A.S. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020, 139, 855–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Rocca, W.A. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 1997, 49, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N. Multiple system atrophy—The nature of the beast. J. Neurol. Neurosurg. Psychiatry 1989, 52, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Jecmenica-Lukic, M.; Poewe, W.; Tolosa, E.; Wenning, G.K. Premotor signs and symptoms of multiple system atrophy. Lancet Neurol. 2012, 11, 361–368. [Google Scholar] [CrossRef]
- Ralls, F.; Cutchen, L. Respiratory and sleep-related complications of multiple system atrophy. Curr. Opin. Pulm. Med. 2020, 26, 615–622. [Google Scholar] [CrossRef]
- Fanciulli, A.; Wenning, G.K. Multiple-system atrophy. N. Engl. J. Med. 2015, 372, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Krismer, F.; Wenning, G.K. Multiple system atrophy: Insights into a rare and debilitating movement disorder. Nat. Rev. Neurol. 2017, 13, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Köllensperger, M.; Geser, F.; Seppi, K.; Stampfer-Kountchev, M.; Sawires, M.; Scherfler, C.; Boesch, S.; Mueller, J.; Koukouni, V.; Quinn, N.; et al. Red flags for multiple system atrophy. Mov. Disord. 2008, 23, 1093–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanciulli, A.; Stankovic, I.; Krismer, F.; Seppi, K.; Levin, J.; Wenning, G.K. Multiple system atrophy. Int. Rev. Neurobiol. 2019, 149, 137–192. [Google Scholar] [PubMed]
- Vernetti, P.M.; Palma, J.-A.; Fanciulli, A.; Krismer, F.; Singer, W.; Low, P.A.; Pellecchia, M.T.; Kim, H.-J.; Shibao, C.A.; Peltier, A.; et al. Cerebellar and parkinsonian phenotypes of multiple system atrophy: Differences and similarities at baseline from the Natural History Study of the Synucleinopathies. Neurology 2020, 94, 5054. [Google Scholar]
- Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Kollensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef]
- Jellinger, K.A. Neuropathological findings in multiple system atrophy with cognitive impairment. J. Neural. Transm. 2020, 127, 1031–1039. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeon, B.S.; Kim, Y.E.; Kim, J.Y.; Kim, Y.K.; Sohn, C.H.; Yun, J.Y.; Jeon, S.; Lee, J.M.; Lee, J.Y. Clinical and imaging characteristics of dementia in multiple system atrophy. Parkinsonism Relat. Disord. 2013, 19, 617–621. [Google Scholar] [CrossRef]
- Grimaldi, S.; Boucekine, M.; Witjas, T.; Fluchere, F.; Renaud, M.; Azulay, J.P.; Guedj, E.; Eusebio, A. Multiple system atrophy: Phenotypic spectrum approach coupled with brain 18-FDG PET. Parkinsonism Relat. Disord. 2019, 67, 3–9. [Google Scholar] [CrossRef]
- Del Campo, N.; Phillips, O.; Ory-Magne, F.; Brefel-Courbon, C.; Galitzky, M.; Thalamas, C.; Narr, K.L.; Joshi, S.; Singh, M.K.; Péran, P.; et al. Broad white matter impairment in multiple system atrophy. Hum. Brain Mapp. 2021, 42, 357–366. [Google Scholar] [CrossRef]
- Ishida, C.; Takahashi, K.; Kato-Motozaki, Y.; Tagami, A.; Komai, K. Effectiveness of levodopa in patients with multiple system atrophy and associated clinicopathological features. Intern. Med. 2021, 60, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Campabadal, A.; Abos, A.; Segura, B.; Monte-Rubio, G.; Perez-Soriano, A.; Giraldo, D.M.; Muñoz, E.; Compta, Y.; Junque, C.; Marti, M.J. Differentiation of multiple system atrophy subtypes by gray matter atrophy. J. Neuroimaging 2022, 32, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Jellinger, K.A. The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol. 2005, 109, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Ettle, B.; Battis, K.; Reiprich, S.; Schlachetzki, J.C.M.; Masliah, E.; Wegner, M.; Kuhlmann, T.; Riemenschneider, M.J.; Winkler, J. Oligodendroglial a-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol. 2019, 29, 380–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiely, A.P.; Murray, C.E.; Foti, S.C.; Benson, B.C.; Courtney, R.; Strand, C.; Lashley, T.; Holton, J.L. Immunohistochemical and molecular investigations show alteration in the inflammatory profile of multiple system atrophy brain. J. Neuropathol. Exp. Neurol. 2018, 77, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, K.; Mori, F.; Tanji, K.; Orimo, S.; Takahashi, H. Involvement of the peripheral nervous system in synucleinopathies, tauopathies and other neurodegenerative proteinopathies of the brain. Acta Neuropathol. 2010, 120, 1–12. [Google Scholar] [CrossRef]
- Kuzdas-Wood, D.; Irschick, R.; Theurl, M.; Malsch, P.; Mair, N.; Mantinger, C.; Wanschitz, J.; Klimaschewski, L.; Poewe, W.; Stefanova, N.; et al. Involvement of peripheral nerves in the transgenic plp-alpha-syn model of multiple system atrophy: Extending the phenotype. PLoS ONE 2015, 10, e0136575. [Google Scholar] [CrossRef]
- Jellinger, K.A. Multiple system atrophy—A clinicopathological update. Free Neuropathol. 2020, 1, 17. [Google Scholar] [CrossRef]
- Ozawa, T.; Onodera, O. Multiple system atrophy: Clinicopathological characteristics in Japanese patients. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Jellinger, K.A.; Seppi, K.; Wenning, G.K. Grading of neuropathology in multiple system atrophy: Proposal for a novel scale. Mov. Disord. 2005, 20, S29–S36. [Google Scholar] [CrossRef]
- Kim, H.J.; Jeon, B.S.; Jellinger, K.A. Diagnosis and differential diagnosis of MSA: Boundary issues. J. Neurol. 2015, 262, 1801–1813. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Riku, Y.; Nakamura, T.; Hara, K.; Ito, M.; Hirayama, M.; Yoshida, M.; Katsuno, M.; Sobue, G. Expanding concept of clinical conditions and symptoms in multiple system atrophy. Rinsho Shinkeigaku 2016, 56, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Poggiolini, I.; Erskine, D.; Vaikath, N.N.; Ponraj, J.; Mansour, S.; Morris, C.M.; El-Agnaf, O.M.A. RT-QuIC using C-terminally truncated alpha-synuclein forms detects differences in seeding propensity of different brain regions from synucleinopathies. Biomolecules 2021, 11, 820. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T.R.; Holmes, B.B.; Furman, J.L.; Dhavale, D.D.; Su, B.W.; Song, E.S.; Cairns, N.J.; Kotzbauer, P.T.; Diamond, M.I. Parkinson’s disease and multiple system atrophy have distinct alpha-synuclein seed characteristics. J. Biol. Chem. 2019, 294, 1045–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laferrière, F.; Claverol, S.; Bezard, E.; De Giorgi, F.; Ichas, F. Similar neuronal imprint and no cross-seeded fibrils in alpha-synuclein aggregates from MSA and Parkinson’s disease. NPJ Parkinsons Dis. 2022, 8, 10. [Google Scholar] [CrossRef]
- Uemura, N.; Uemura, M.T.; Lo, A.; Bassil, F.; Zhang, B.; Luk, K.C.; Lee, V.M.; Takahashi, R.; Trojanowski, J.Q. Slow progressive accumulation of oligodendroglial alpha-synuclein (alpha-syn) pathology in synthetic alpha-syn fibril-induced mouse models of synucleinopathy. J. Neuropathol. Exp. Neurol. 2019, 78, 877–890. [Google Scholar] [CrossRef]
- Martinez-Valbuena, I.; Visanji, N.P.; Kim, A.; Lau, H.H.C.; So, R.W.L.; Alshimemeri, S.; Gao, A.; Seidman, M.A.; Luquin, M.R.; Watts, J.C.; et al. Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Transl. Neurodegener. 2022, 11, 7. [Google Scholar] [CrossRef]
- Holec, S.A.M.; Woerman, A.L. Evidence of distinct alpha-synuclein strains underlying disease heterogeneity. Acta Neuropathol. 2020, 142, 73–86. [Google Scholar] [CrossRef]
- Peng, C.; Gathagan, R.J.; Covell, D.J.; Medellin, C.; Stieber, A.; Robinson, J.L.; Zhang, B.; Pitkin, R.M.; Olufemi, M.F.; Luk, K.C.; et al. Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies. Nature 2018, 557, 558–563. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. Structures of alpha-synuclein filaments from multiple system atrophy. Nature 2020, 585, 464–469. [Google Scholar] [CrossRef]
- Ferreira, N.; Gram, H.; Sorrentino, Z.A.; Gregersen, E.; Schmidt, S.I.; Reimer, L.; Betzer, C.; Perez-Gozalbo, C.; Beltoja, M.; Nagaraj, M.; et al. Multiple system atrophy-associated oligodendroglial protein p25alpha stimulates formation of novel alpha-synuclein strain with enhanced neurodegenerative potential. Acta Neuropathol. 2021, 142, 87–115. [Google Scholar] [CrossRef] [PubMed]
- Laferrière, F.; He, X.; Zinghirino, F.; Doudnikoff, E.; Faggiani, E.; Meissner, W.G.; Bezard, E.; De Giorgi, F.; Ichas, F. Overexpression of alpha-synuclein by oligodendrocytes in transgenic mice does not recapitulate the fibrillar aggregation seen in multiple system atrophy. Cells 2020, 9, 2371. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jeon, B.S.; Lee, J.Y.; Yun, J.Y.; Kim, Y.E.; Paek, S.H. Young-onset multiple system atrophy. J. Neurol. Sci. 2012, 319, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Batla, A.; De Pablo-Fernandez, E.; Erro, R.; Reich, M.; Calandra-Buonaura, G.; Barbosa, P.; Balint, B.; Ling, H.; Islam, S.; Cortelli, P.; et al. Young-onset multiple system atrophy: Clinical and pathological features. Mov. Disord. 2018, 33, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Quinn, N.; Magalhaes, M.; Mathias, C.; Daniel, S.E. “Minimal change” multiple system atrophy. Mov. Disord. 1994, 9, 161–166. [Google Scholar] [CrossRef]
- Jellinger, K. Unusual tau in MSA. Neuropathology 2012, 32, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Ando, T.; Lee, J.J.; Baek, M.S.; Lyoo, C.H.; Kim, S.J.; Kim, M.; Cho, J.W.; Sohn, Y.H.; Katsuno, M.; et al. Later-onset multiple system atrophy: A multicenter Asian study. Mov. Disord. 2020, 35, 1692–1693. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Cheshire, W.P.; Tipton, P.W.; Driver-Dunckley, E.D.; Wszolek, Z.K.; Uitti, R.J.; Graff-Radford, N.R.; van Gerpen, J.A.; Dickson, D.W. Clinical features of autopsy-confirmed multiple system atrophy in the Mayo Clinic Florida brain bank. Parkinsonism Relat. Disord. 2021, 89, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, H.; Koga, S.; Otsuka, Y.; Chihara, N.; Ueda, T.; Sekiguchi, K.; Yoneda, Y.; Kageyama, Y.; Matsumoto, R.; Dickson, D.W. Clinical and pathological characteristics of later onset multiple system atrophy. J. Neurol. 2022, 1–12. [Google Scholar] [CrossRef]
- Jellinger, K.A. Late onset MSA differs from younger onset MSA (Letter). J. Neurol. Neurosurg. Psychiatry, 2022; in press. [Google Scholar]
- Watanabe, H.; Saito, Y.; Terao, S.; Ando, T.; Kachi, T.; Mukai, E.; Aiba, I.; Abe, Y.; Tamakoshi, A.; Doyu, M.; et al. Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese patients. Brain 2002, 125, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, I.N.; Ling, H.; Asi, Y.; Ahmed, Z.; Kukkle, P.L.; Hazrati, L.N.; Lang, A.E.; Revesz, T.; Holton, J.L.; Lees, A.J. Multiple system atrophy-parkinsonism with slow progression and prolonged survival: A diagnostic catch. Mov. Disord. 2012, 27, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Masui, K.; Nakata, Y.; Fujii, N.; Iwaki, T. Extensive distribution of glial cytoplasmic inclusions in an autopsied case of multiple system atrophy with a prolonged 18-year clinical course. Neuropathology 2012, 32, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Asi, Y.; Petrovic, I.N.; Ling, H.; Ahmed, Z.; Prashanth, L.K.; Hazrati, L.N.; Lang, A.E.; Lees, A.J.; Revesz, T.; Holton, J.L. Long duration multiple system atrophy: A clinico-pathologic study (abs.). Neuropathol. Appl. Neurobiol. 2012, 38, 36. [Google Scholar]
- Coughlin, D.G.; Dryden, I.; Goodwill, V.S.; Pizzo, D.P.; Wright, B.; Lessig, S.; Galasko, D.; MacKenzie, I.R.; Hiniker, A. Long-standing multiple system atrophy-Parkinsonism with limbic and FTLD-type alpha-synuclein pathology. Neuropathol. Appl. Neurobiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Boyer, P.J.; Lund, C.; Lin, W.L.; Koga, S.; Ross, O.A.; Weiner, M.; Lipton, A.; Powers, J.M.; White, C.L.; et al. Atypical multiple system atrophy is a new subtype of frontotemporal lobar degeneration: Frontotemporal lobar degeneration associated with alpha-synuclein. Acta Neuropathol. 2015, 130, 93–105. [Google Scholar] [CrossRef]
- Sousa, A.L.; Taipa, R.; Quinn, N.; Revesz, T.; Melo Pires, M.; Magalhaes, M. Frontotemporal lobar degeneration-TDP with ‘multiple system atrophy phenocopy syndrome’. Neuropathol. Appl. Neurobiol. 2017, 43, 533–536. [Google Scholar] [CrossRef]
- Berciano, J.; Valldeoriola, F.; Ferrer, I.; Rumia, J.; Pascual, J.; Marin, C.; Rey, M.J.; Tolosa, E. Presynaptic parkinsonism in multiple system atrophy mimicking Parkinson’s disease: A clinicopathological case study. Mov. Disord. 2002, 17, 812–816. [Google Scholar] [CrossRef]
- Kon, T.; Mori, F.; Tanji, K.; Miki, Y.; Wakabayashi, K. An autopsy case of preclinical multiple system atrophy (MSA-C). Neuropathology 2013, 33, 667–672. [Google Scholar] [CrossRef]
- Wenning, G.K.; Ben Shlomo, Y.; Magalhaes, M.; Daniel, S.E.; Quinn, N.P. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994, 117, 835–845. [Google Scholar] [CrossRef]
- Ling, H.; Asi, Y.T.; Petrovic, I.N.; Ahmed, Z.; Prashanth, L.K.; Hazrati, L.N.; Nishizawa, M.; Ozawa, T.; Lang, A.; Lees, A.J.; et al. Minimal change multiple system atrophy: An aggressive variant? Mov. Disord. 2015, 30, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Parkkinen, L.; Hartikainen, P.; Alafuzoff, I. Abundant glial alpha-synuclein pathology in a case without overt clinical symptoms. Clin. Neuropathol. 2007, 26, 276–283. [Google Scholar] [CrossRef]
- Fujishiro, H.; Ahn, T.B.; Frigerio, R.; DelleDonne, A.; Josephs, K.A.; Parisi, J.E.; Eric Ahlskog, J.; Dickson, D.W. Glial cytoplasmic inclusions in neurologically normal elderly: Prodromal multiple system atrophy? Acta Neuropathol. 2008, 116, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, K.; Mori, F.; Nishie, M.; Oyama, Y.; Kurihara, A.; Yoshimoto, M.; Kuroda, N. An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol. 2005, 110, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Asi, Y.T.; Sailer, A.; Lees, A.J.; Houlden, H.; Revesz, T.; Holton, J.L. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol. Appl. Neurobiol. 2012, 38, 4–24. [Google Scholar] [CrossRef]
- Kübler, D.; Wachter, T.; Cabanel, N.; Su, Z.; Turkheimer, F.E.; Dodel, R.; Brooks, D.J.; Oertel, W.H.; Gerhard, A. Widespread microglial activation in multiple system atrophy. Mov. Disord. 2019, 34, 564–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nykjaer, C.; Brudek, T.; Salvesen, L.; Pakkenberg, B. Changes in the cell population in brain white matter in multiple system atrophy. Mov. Disord. 2017, 32, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Gaig, C.; Iranzo, A.; Tolosa, E.; Vilaseca, I.; Rey, M.J.; Santamaria, J. Pathological description of a non-motor variant of multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1399–1400. [Google Scholar] [CrossRef]
- Rodriguez-Diehl, R.; Rey, M.J.; Gironell, A.; Martinez-Saez, E.; Ferrer, I.; Sanchez-Valle, R.; Jague, J.; Nos, C.; Gelpi, E. “Preclinical” MSA in definite Creutzfeldt-Jakob disease. Neuropathology 2012, 32, 158–163. [Google Scholar] [CrossRef]
- Koga, S.; Dickson, D.W. “Minimal change” multiple system atrophy with limbic-predominant α-synuclein pathology. Acta Neuropathol. 2019, 137, 167–169. [Google Scholar] [CrossRef]
- Dash, S.K.; Stezin, A.; Takalkar, T.; George, L.; Kamble, N.L.; Netravathi, M.; Yadav, R.; Kumar, K.J.; Ingalhalikar, M.; Saini, J.; et al. Abnormalities of white and grey matter in early multiple system atrophy: Comparison of parkinsonian and cerebellar variants. Eur. Radiol. 2019, 29, 716–724. [Google Scholar] [CrossRef] [PubMed]
- DelleDonne, A.; Klos, K.J.; Fujishiro, H.; Ahmed, Z.; Parisi, J.E.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Wszolek, Z.K.; Uitti, R.J.; et al. Incidental Lewy body disease and preclinical Parkinson disease. Arch. Neurol. 2008, 65, 1074–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.J.; Kim, H.J.; Jung, Y.J.; Yoo, D.; Choi, J.H.; Im, J.H.; Jeon, B. Data-driven subtype classification of patients with early-stage multiple system atrophy. Parkinsonism Relat. Disord. 2022, 95, 92–97. [Google Scholar] [CrossRef]
- Itoh, K.; Kasai, T.; Tsuji, Y.; Saito, K.; Mizuta, I.; Harada, Y.; Sudoh, S.; Mizuno, T.; Nakagawa, M.; Fushiki, S. Definite familial multiple system atrophy with unknown genetics. Neuropathology 2014, 34, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Momose, Y.; Tokiguchi, S.; Shimohata, M.; Terajima, K.; Onodera, O.; Kakita, A.; Yamada, M.; Takahashi, H.; Hirasawa, M.; et al. Multiplex families with multiple system atrophy. Arch. Neurol. 2007, 64, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohler, A.D.; Singh, V.J. Probable hereditary multiple system atrophy-autonomic (MSA-A) in a family in the United States. J. Clin. Neurosci. 2012, 19, 479–480. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.S.; Vidailhet, M.; Derkinderen, P.; Tzourio, C.; Alperovitch, A. Familial aggregation in atypical Parkinson’s disease: A case control study in multiple system atrophy and progressive supranuclear palsy. J. Neurol. 2010, 257, 1388–1393. [Google Scholar] [CrossRef]
- Fujioka, S.; Ogaki, K.; Tacik, P.M.; Uitti, R.J.; Ross, O.A.; Wszolek, Z.K. Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat. Disord. 2014, 20, S29–S34. [Google Scholar] [CrossRef] [Green Version]
- Wullner, U.; Abele, M.; Schmitz-Huebsch, T.; Wilhelm, K.; Benecke, R.; Deuschl, G.; Klockgether, T. Probable multiple system atrophy in a German family. J. Neurol. Neurosurg. Psychiatry 2004, 75, 924–925. [Google Scholar] [CrossRef]
- Sailer, A.; Scholz, S.W.; Nalls, M.A.; Schulte, C.; Federoff, M.; Price, T.R.; Lees, A.; Ross, O.A.; Dickson, D.W.; Mok, K.; et al. A genome-wide association study in multiple system atrophy. Neurology 2016, 87, 1591–1598. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chen, Y.; Wei, Q.; Ou, R.; Cao, B.; Zhao, B.; Shang, H.F. C9ORF72 repeat expansions in Chinese patients with Parkinson’s disease and multiple system atrophy. J. Neural Transm. 2016, 123, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Tan, E.K.; Yang, C.C.; Yi, Z.; Wu, R.M. COQ2 gene variants associate with cerebellar subtype of multiple system atrophy in Chinese. Mov. Disord. 2015, 30, 436–437. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, X.; Tian, S.; An, R.; Zheng, J.; Xu, Y. Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: A case-control study and meta-analysis of the literature. Neurol. Sci. 2016, 37, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 2013, 369, 233–244. [Google Scholar] [CrossRef]
- Quinzii, C.M.; Hirano, A.; DiMauro, S. Mutant COQ2 in multiple-system atrophy (Comment). N. Engl. J. Med. 2014, 371, 81–82. [Google Scholar]
- Ogaki, K.; Koga, S.; Aoki, N.; Lin, W.; Suzuki, K.; Ross, O.A.; Dickson, D.W. Adult-onset cerebello-brainstem dominant form of X-linked adrenoleukodystrophy presenting as multiple system atrophy: Case report and literature review. Neuropathology 2016, 36, 64–76. [Google Scholar] [CrossRef]
- Sharma, M.; Wenning, G.; Krüger, R. Mutant COQ2 in multiple-system atrophy (Comment). N. Engl. J. Med. 2014, 371, 80–81. [Google Scholar] [PubMed]
- Ronchi, D.; Di Biase, E.; Franco, G.; Melzi, V.; Del Sorbo, F.; Elia, A.; Barzaghi, C.; Garavaglia, B.; Bergamini, C.; Fato, R.; et al. Mutational analysis of COQ2 in patients with MSA in Italy. Neurobiol. Aging 2016, 45, 213.e1. [Google Scholar] [CrossRef]
- Ferguson, M.C.; Garland, E.M.; Hedges, L.; Womack-Nunley, B.; Hamid, R.; Phillips, J.A., III; Shibao, C.A.; Raj, S.R.; Biaggioni, I.; Robertson, D. SHC2 gene copy number in multiple system atrophy (MSA). Clin. Auton. Res. 2014, 24, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Porto, K.J.; Hirano, M.; Mitsui, J.; Chikada, A.; Matsukawa, T.; Ishiura, H.; Toda, T.; Kusunoki, S.; Tsuji, S. COQ2 V393A confers high risk susceptibility for multiple system atrophy in East Asian population. J. Neurol. Sci. 2021, 429, 117623. [Google Scholar] [CrossRef]
- Wernick, A.I.; Walton, R.L.; Soto-Beasley, A.I.; Koga, S.; Heckman, M.G.; Valentino, R.R.; Milanowski, L.M.; Hoffman-Zacharska, D.; Koziorowski, D.; Hassan, A.; et al. Frequency of spinocerebellar ataxia mutations in patients with multiple system atrophy. Clin. Auton Res. 2021, 31, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, Q.; Zhao, X.; Wang, C.; Wu, H.; Li, J.; Yang, W. Dilemma of multiple system atrophy and spinocerebellar ataxias. J. Neurol. 2018, 265, 2764–2772. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.S.; Quinzii, C.; Dunning-Broadbent, J.; Waters, C.; Mitsumoto, H.; Brannagan, T.H., 3rd; Cosentino, S.; Huey, E.D.; Nagy, P.; Kuo, S.H. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol. 2014, 71, 771–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonapace, G.; Gagliardi, M.; Procopio, R.; Morelli, M.; Quattrone, A.; Brighina, L.; Annesi, G. Multiple system atrophy and C9orf72 hexanucleotide repeat expansions in a cohort of Italian patients. Neurobiol. Aging 2021, 112, 12–15. [Google Scholar] [CrossRef]
- Koga, S.; Aoki, N.; Uitti, R.J.; van Gerpen, J.A.; Cheshire, W.P.; Josephs, K.A.; Wszolek, Z.K.; Langston, J.W.; Dickson, D.W. When DLB, PD, and PSP masquerade as MSA: An autopsy study of 134 patients. Neurology 2015, 85, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Miki, Y.; Foti, S.C.; Asi, Y.T.; Tsushima, E.; Quinn, N.; Ling, H.; Holton, J.L. Improving diagnostic accuracy of multiple system atrophy: A clinicopathological study. Brain 2019, 142, 2813–2827. [Google Scholar] [CrossRef]
- Jellinger, K.A. More frequent Lewy bodies but less frequent Alzheimer-type lesions in multiple system atrophy as compared to age-matched control brains. Acta Neuropathol. 2007, 114, 299–303. [Google Scholar] [CrossRef]
- Wenning, G.K.; Ben-Shlomo, Y.; Magalhaes, M.; Daniel, S.E.; Quinn, N.P. Clinicopathological study of 35 cases of multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 1995, 58, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Koga, S.; Li, F.; Zhao, N.; Roemer, S.F.; Ferman, T.J.; Wernick, A.I.; Walton, R.L.; Faroqi, A.H.; Graff-Radford, N.R.; Cheshire, W.P.; et al. Clinicopathologic and genetic features of multiple system atrophy with Lewy body disease. Brain Pathol. 2020, 30, 766–778. [Google Scholar] [CrossRef]
- Köllensperger, M.; Geser, F.; Ndayisaba, J.P.; Boesch, S.; Seppi, K.; Ostergaard, K.; Dupont, E.; Cardozo, A.; Tolosa, E.; Abele, M.; et al. Presentation, diagnosis, and management of multiple system atrophy in Europe: Final analysis of the European multiple system atrophy registry. Mov. Disord. 2010, 25, 2604–2612. [Google Scholar] [CrossRef]
- Kao, A.W.; Racine, C.A.; Quitania, L.C.; Kramer, J.H.; Christine, C.W.; Miller, B.L. Cognitive and neuropsychiatric profile of the synucleinopathies: Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. Alzheimer Dis. Assoc. Disord. 2009, 23, 365–370. [Google Scholar] [CrossRef] [Green Version]
- McKeith, I.G.; Dickson, D.W.; Lowe, J.; Emre, M.; O’Brien, J.T.; Feldman, H.; Cummings, J.; Duda, J.E.; Lippa, C.; Perry, E.K.; et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology 2005, 65, 1863–1872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankovic, I.; Krismer, F.; Jesic, A.; Antonini, A.; Benke, T.; Brown, R.G.; Burn, D.J.; Holton, J.L.; Kaufmann, H.; Kostic, V.S.; et al. Cognitive impairment in multiple system atrophy: A position statement by the neuropsychology task force of the MDS multiple system atrophy (MODIMSA) study group. Mov. Disord. 2014, 29, 857–867. [Google Scholar] [CrossRef] [Green Version]
- Koga, S.; Roemer, S.F.; Tipton, P.W.; Low, P.A.; Josephs, K.A.; Dickson, D.W. Cerebrovascular pathology and misdiagnosis of multiple system atrophy: An autopsy study. Parkinsonism Relat. Disord. 2020, 75, 34–40. [Google Scholar] [CrossRef]
- Homma, T.; Mochizuki, Y.; Komori, T.; Isozaki, E. Frequent globular neuronal cytoplasmic inclusions in the medial temporal region as a possible characteristic feature in multiple system atrophy with dementia. Neuropathology 2016, 36, 421–431. [Google Scholar] [CrossRef]
- Horoupian, D.S.; Dickson, D.W. Striatonigral degeneration, olivopontocerebellar atrophy and “atypical” Pick disease. Acta Neuropathol. 1991, 81, 287–295. [Google Scholar] [CrossRef]
- Piao, Y.S.; Hayashi, S.; Hasegawa, M.; Wakabayashi, K.; Yamada, M.; Yoshimoto, M.; Ishikawa, A.; Iwatsubo, T.; Takahashi, H. Co-localization of alpha-synuclein and phosphorylated tau in neuronal and glial cytoplasmic inclusions in a patient with multiple system atrophy of long duration. Acta Neuropathol. 2001, 101, 285–293. [Google Scholar] [CrossRef]
- Rohan, Z.; Rahimi, J.; Weis, S.; Kapas, I.; Auff, E.; Mitrovic, N.; Liberski, P.P.; Sikorska, B.; Matej, R.; Kovacs, G.G. Screening for alpha-synuclein immunoreactive neuronal inclusions in the hippocampus allows identification of atypical MSA (FTLD-synuclein). Acta Neuropathol. 2015, 130, 299–301. [Google Scholar] [CrossRef]
- Shibuya, K.; Nagatomo, H.; Iwabuchi, K.; Inoue, M.; Yagishita, S.; Itoh, Y. Asymmetrical temporal lobe atrophy with massive neuronal inclusions in multiple system atrophy. J. Neurol. Sci. 2000, 179, 50–58. [Google Scholar] [CrossRef]
- Ando, T.; Riku, Y.; Akagi, A.; Miyahara, H.; Hirano, M.; Ikeda, T.; Yabata, H.; Koizumi, R.; Oba, C.; Morozumi, S.; et al. Multiple system atrophy variant with severe hippocampal pathology. Brain Pathol. 2022, 32, e13002. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Honda, H.; Suzuki, S.O.; Fujii, N.; Kira, J.I.; Iwaki, T. Mitochondrial dysfunction and altered ribostasis in hippocampal neurons with cytoplasmic inclusions of multiple system atrophy. Neuropathology 2018, 38, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med. 2018, 16, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhang, Q.; Yang, Q.; Liu, P.; Sun, T.; Xu, Y.; Qian, X.; Qiu, W.; Ma, C. Contribution of Alzheimer’s disease neuropathologic change to the cognitive dysfunction in human brains with Lewy body-related pathology. Neurobiol. Aging 2020, 91, 56–65. [Google Scholar] [CrossRef]
- Homma, T.; Mochizuki, Y.; Tobisawa, S.; Komori, T.; Takahashi, K. Tufted astrocyte-like glia in two autopsy cases of multiple system atrophy: Is it a concomitant neurodegenerative disorder with multiple system atrophy and progressive supranuclear palsy? Neuropathology 2021, 42, 74–81. [Google Scholar] [CrossRef]
- Eschlböck, S.; Delazer, M.; Krismer, F.; Bodner, T.; Fanciulli, A.; Heim, B.; Heras Garvin, A.; Kaindlstorfer, C.; Karner, E.; Mair, K.; et al. Cognition in multiple system atrophy: A single-center cohort study. Ann. Clin. Transl. Neurol. 2020, 7, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Caso, F.; Canu, E.; Lukic, M.J.; Petrovic, I.N.; Fontana, A.; Nikolic, I.; Kostic, V.S.; Filippi, M.; Agosta, F. Cognitive impairment and structural brain damage in multiple system atrophy-parkinsonian variant. J. Neurol. 2020, 267, 87–94. [Google Scholar] [CrossRef]
- Gatto, E.; Demey, I.; Sanguinetti, A.; Parisi, V.; Etcheverry, J.L.; Rojas, G.; Wenning, G.K. Cognition in a multiple system atrophy series of cases from Argentina. Arq. Neuropsiquiatr. 2014, 72, 773–776. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Suenaga, M.; Takeda, A.; Ito, M.; Watanabe, H.; Tanaka, F.; Kato, K.; Fukatsu, H.; Naganawa, S.; Kato, T.; et al. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 2008, 70, 1390–1396. [Google Scholar] [CrossRef]
- Yang, H.; Luo, X.; Yu, H.; Guo, M.; Cao, C.; Li, Y.; Fan, G. Altered resting-state voxel-level whole-brain functional connectivity in multiple system atrophy patients with cognitive impairment. Clin. Neurophysiol. 2020, 131, 54–62. [Google Scholar] [CrossRef]
- Barcelos, L.B.; Saad, F.; Giacominelli, C.; Saba, R.A.; de Carvalho Aguiar, P.M.; Silva, S.M.A.; Borges, V.; Bertolucci, P.H.F.; Ferraz, H.B. Neuropsychological and clinical heterogeneity of cognitive impairment in patients with multiple system atrophy. Clin. Neurol. Neurosurg. 2018, 164, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Ling, H.; Foti, S.C.; Hansen, D.; Strand, K.M.; Asi, Y.T.; Jaunmuktane, Z.; Lees, A.J.; Warner, T.T.; Quinn, N.; et al. Hippocampal a-synuclein pathology correlates with memory impairment in multiple system atrophy (abstr.). Neuropathol. Appl. Neurobiol. 2020, 46, 22. [Google Scholar]
- Hata, Y.; Ma, N.; Yoneda, M.; Morimoto, S.; Okano, H.; Murayama, S.; Kawanishi, S.; Kuzuhara, S.; Kokubo, Y. Nitrative stress and tau accumulation in amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) in the Kii peninsula, Japan. Front. Neurosci. 2018, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Asi, Y.T.; Ling, H.; Ahmed, Z.; Lees, A.J.; Revesz, T.; Holton, J.L. Neuropathological features of multiple system atrophy with cognitive impairment. Mov. Disord. 2014, 29, 884–888. [Google Scholar] [CrossRef]
- Terni, B.; Rey, M.J.; Boluda, S.; Torrejon-Escribano, B.; Sabate, M.P.; Calopa, M.; van Leeuwen, F.W.; Ferrer, I. Mutant ubiquitin and p62 immunoreactivity in cases of combined multiple system atrophy and Alzheimer’s disease. Acta Neuropathol. 2007, 113, 403–416. [Google Scholar] [CrossRef]
- Lin, C.W.; Tseng, C.Y.; Lo, C.P.; Tu, M.C. A case of multiple system atrophy with preexisting Alzheimer’s disease and predating the hot cross bun sign. Acta Neurol. Taiwan 2016, 25, 152–159. [Google Scholar]
- Nagaishi, M.; Yokoo, H.; Nakazato, Y. Tau-positive glial cytoplasmic granules in multiple system atrophy. Neuropathology 2011, 31, 299–305. [Google Scholar] [CrossRef]
- Homma, T.; Mochizuki, Y.; Tobisawa, S.; Komori, T.; Isozaki, E. Cerebral white matter tau-positive granular glial pathology as a characteristic pathological feature in long survivors of multiple system atrophy. J. Neurol. Sci. 2020, 416, 117010. [Google Scholar] [CrossRef]
- Neddens, J.; Temmel, M.; Flunkert, S.; Kerschbaumer, B.; Hoeller, C.; Loeffler, T.; Niederkofler, V.; Daum, G.; Attems, J.; Hutter-Paier, B. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun. 2018, 6, 52. [Google Scholar] [CrossRef]
- Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Schöll, M.; Troakes, C.; Hye, A.; et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021, 141, 709–724. [Google Scholar] [CrossRef]
- Takanashi, M.; Ohta, S.; Matsuoka, S.; Mori, H.; Mizuno, Y. Mixed multiple system atrophy and progressive supranuclear palsy: A clinical and pathological report of one case. Acta Neuropathol. 2002, 103, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Uchikado, H.; DelleDonne, A.; Uitti, R.; Dickson, D.W. Coexistence of PSP and MSA: A case report and review of the literature. Acta Neuropathol. 2006, 111, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Yamazaki, M.; Mori, O.; Muramatsu, H.; Asano, G.; Katayama, Y. Alpha-synuclein-positive structures in cases with sporadic Alzheimer’s disease: Morphology and its relationship to tau aggregation. Brain Res. 2001, 888, 287–296. [Google Scholar] [CrossRef]
- Lei, P.; Ayton, S.; Finkelstein, D.I.; Adlard, P.A.; Masters, C.L.; Bush, A.I. Tau protein: Relevance to Parkinson’s disease. Int. J. Biochem. Cell Biol. 2010, 42, 1775–1778. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.Y.; Crary, J.F.; Rao, C.; Sacktor, T.C.; Mirra, S.S. Atypical protein kinase C in neurodegenerative disease II: PKCiota/lambda in tauopathies and alpha-synucleinopathies. J. Neuropathol. Exp. Neurol. 2006, 65, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Jellinger, K.A. Interaction between alpha-synuclein and other proteins in neurodegenerative disorders. ScientificWorldJournal 2011, 11, 1893–1907. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.L.; Covell, D.J.; Daniels, J.P.; Iba, M.; Stieber, A.; Zhang, B.; Riddle, D.M.; Kwong, L.K.; Xu, Y.; Trojanowski, J.Q.; et al. Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 2013, 154, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Boesch, S.M.; Wenning, G.K.; Ransmayr, G.; Poewe, W. Dystonia in multiple system atrophy. J. Neurol. Neurosurg. Psychiatry 2002, 72, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, J.S.; Stambuk, M.K.; Markham, J.; Black, K.J.; McGee-Minnich, L.; Jankovic, J.; Moerlein, S.M. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J. Neurosci. 1997, 17, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Levy, L.M.; Hallett, M. Impaired brain GABA in focal dystonia. Ann. Neurol. 2002, 51, 93–101. [Google Scholar] [CrossRef]
- Berardelli, A.; Rothwell, J.C.; Hallett, M.; Thompson, P.D.; Manfredi, M.; Marsden, C.D. The pathophysiology of primary dystonia. Brain 1998, 121, 1195–1212. [Google Scholar] [CrossRef]
- Jellinger, K.A. Neuropathological findings in multiple system atrophy with dystonia. J. Neurol. Neurosurg. Psychiatry 2002, 73, 460–461. [Google Scholar] [CrossRef]
- Kofler, M.; Wenning, G.K.; Poewe, W.; Jellinger, K.; Maier, H. Cortical and brain stem hyperexcitability in a pathologically confirmed case of multiple system atrophy. Mov. Disord. 2000, 15, 362–363. [Google Scholar] [CrossRef]
- Okuma, Y.; Fujishima, K.; Miwa, H.; Mori, H.; Mizuno, Y. Myoclonic tremulous movements in multiple system atrophy are a form of cortical myoclonus. Mov. Disord. 2005, 20, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Kaindlstorfer, C.; Granata, R.; Wenning, G.K. Tremor in multiple system atrophy—A review. Tremor Other Hyperkinet. Mov. 2013, 3, tre-03-165-4252-4251. [Google Scholar] [CrossRef]
- Hwang, J.; Bank, A.M.; Mortazavi, F.; Oakley, D.H.; Frosch, M.P.; Schmahmann, J.D. Spinal cord alpha-synuclein deposition associated with myoclonus in patients with MSA-C. Neurology 2019, 93, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Coon, E.A.; Rocca, W.; Melson, C.S.; Ahlskog, J.E.; Matsumoto, J.Y.; Low, P.A.; Singer, W. Conjugal multiple system atrophy: Chance, shared risk factors, or evidence of transmissibility? Parkinsonism Relat. Disord. 2019, 67, 10–13. [Google Scholar] [CrossRef]
- Nan, H.; Natori, T.; Ichinose, Y.; Koh, K.; Kobayashi, F.; Shindo, K.; Hashiyada, M.; Adachi, N.; Yamagata, Z.; Takiyama, Y. Conjugal cerebellar type of multiple system atrophy: Person-to-person transmission? Parkinsonism Relat. Disord. 2019, 69, 68–70. [Google Scholar] [CrossRef]
- Mitterer, W.; Lanser, L.; Fodor, M.; Weiss, J.; Scholz, S.W.; Wenning, G.K. Conjugal multiple system atrophy: Rethinking numbers of probability. Parkinsonism Relat. Disord. 2020, 77, 176–177. [Google Scholar] [CrossRef]
- Lemos, M.; Wenning, G.K.; Stefanova, N. Current experimental disease-modifying therapeutics for multiple system atrophy. J. Neural Transm. 2021, 128, 1529–1543. [Google Scholar] [CrossRef]
- Coon, E.A.; Ahlskog, J.E. My treatment approach to multiple system atrophy. Mayo Clin. Proc. 2021, 96, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Potential clinical utility of multiple system atrophy biomarkers. Expert Rev. Neurother. 2017, 17, 1189–1208. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.G.; Fernagut, P.O.; Dehay, B.; Peran, P.; Traon, A.P.; Foubert-Samier, A.; Lopez Cuina, M.; Bezard, E.; Tison, F.; Rascol, O. Multiple system atrophy: Recent developments and future perspectives. Mov. Disord. 2019, 34, 1629–1642. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Feng, L.; Huang, H.; Zhao, Q.; Ning, P.; Shen, Q.; Lu, H.; Xu, F.; Xu, Y. Cerebrospinal Fluid Biomarkers in Multiple System Atrophy Relative to Parkinson’s Disease: A Meta-Analysis. Behav. Neurol. 2021, 2021, 5559383. [Google Scholar] [CrossRef]
- Cong, S.; Xiang, C.; Wang, H. Diagnostic utility of fluid biomarkers in multiple system atrophy: A systematic review and meta-analysis. J. Neurol. 2021, 268, 2703–2712. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, J.J.; Lee, D.K.; Lee, J.M.; Youn, J.; Cho, J.W. Cognitive impairment and its structural correlates in the parkinsonian subtype of multiple system atrophy. Neurodegener. Dis. 2015, 15, 294–300. [Google Scholar] [CrossRef]
- Miki, Y.; Tsushima, E.; Foti, S.C.; Strand, K.M.; Asi, Y.T.; Yamamoto, A.K.; Bettencourt, C.; Oliveira, M.C.B.; De Pablo-Fernández, E.; Jaunmuktane, Z.; et al. Identification of multiple system atrophy mimicking Parkinson’s disease or progressive supranuclear palsy. Brain 2021, 144, 1138–1151. [Google Scholar] [CrossRef]
- Palma, J.A.; Norcliffe-Kaufmann, L.; Kaufmann, H. Diagnosis of multiple system atrophy. Auton. Neurosci. 2018, 211, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Marsili, L.; Giannini, G.; Cortelli, P.; Colosimo, C. Early recognition and diagnosis of multiple system atrophy: Best practice and emerging concepts. Expert Rev. Neurother. 2021, 21, 993–1004. [Google Scholar] [CrossRef]
- Xia, C.; Postuma, R.B. Diagnosing multiple system atrophy at the prodromal stage. Clin. Auton. Res. 2020, 30, 197–205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellinger, K.A. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022, 10, 599. https://doi.org/10.3390/biomedicines10030599
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines. 2022; 10(3):599. https://doi.org/10.3390/biomedicines10030599
Chicago/Turabian StyleJellinger, Kurt A. 2022. "Heterogeneity of Multiple System Atrophy: An Update" Biomedicines 10, no. 3: 599. https://doi.org/10.3390/biomedicines10030599
APA StyleJellinger, K. A. (2022). Heterogeneity of Multiple System Atrophy: An Update. Biomedicines, 10(3), 599. https://doi.org/10.3390/biomedicines10030599