On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics
Abstract
:1. Introduction
2. The Generally Accepted Relationship between Obesity, Diabetes, and OSA and Their Cure
- Prehistoric humans evolved during a time of food scarcity.
- Ingestion of too much fat and sugar results in obesity.
- The sole cause of obesity is eating too much and exercising too little.
- Obesity is a disease state with no benefit to the individual.
- Industrialization made fat, sugar, and calories in general widely available while making life easier, so humans do not have to expend as much energy in work and survival.
- The abundance of calories coupled with the lack of physical labor creates a mismatch between caloric intake vs. expenditure and results in obesity, diabetes, and heart disease.
- Sedentary individuals who eat too many calories are the people who get these diseases.
- Obesity causes OSA, diabetes, and heart disease.
- To cure these diseases, one would have to change human nature such that people would choose to eat less and exercise more.
- Individuals who exert themselves to eat less and exercise more can cure themselves of these diseases, including of obesity.
2.1. Prehistoric Humans May Not Have Evolved during a Time of Food Scarcity
2.2. Ingestion of Too Much Fat and Sugar Is Not the Only Risk Factor for Obesity
2.3. The Sole Cause of Obesity Is Not Eating Too Much and Exercising Too Little
“The ability of healthy individuals to maintain body weight in the face of fluctuating energy intake and expenditure is due to an intricate physiological network that acts as the gatekeeper of energy balance. Indeed, under normal physiological conditions, any deviation in energy intake or expenditure is compensated for by physiological and behavioral responses that oppose these changes in order to return to a state of energy balance” [24].
2.4. Obesity May Be Beneficial When Concurrent with Type II Diabetes
2.5. Numerous Environmental Risk Factors Increase Cross-Species Risk for Obesity
2.6. Obesity May Be Protective against “Lifestyle Diseases”
2.7. Sedentary People Who Eat Too Many Calories Are Not the Only People Who Get These Diseases
2.8. Obesity May Not Be the Primary Cause of OSA, Diabetes, and Heart Disease
2.9. Curing These Diseases May Not Require a Fundamental Change to Human Nature
2.10. Eating Less and Exercising More May Not, of Itself, Effect a Cure—Even to Obesity
3. The Relationship between OSA and Diabetes
3.1. A Brief Overview of Epigenetics
3.2. If OSA and Diabetes Coevolved, We Should See Some Evidence
3.3. Commonality of Epigenetic Marks for OSA and Diabetes (T2D)
3.3.1. Genes Up- or Downregulated in Both OSA and T2D
3.3.2. The MicroRNAs Associated with OSA and T2D
4. Conclusions and Discussion
Some Possible Explanations for Coevolution of Lifestyle Diseases
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Diabetes Statistics Report. 2020. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 13 August 2021).
- Leading Causes of Death. Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm (accessed on 13 August 2021).
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA-J. Am. Med. Assoc. 2021, 325, 1829–1830. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Mokhlesi, B. Obstructive Sleep Apnea and Diabetes A State of the Art Review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Papanas, N.; Steiropoulos, P.; Nena, E.; Tzouvelekis, A.; Maltezos, E.; Trakada, G.; Bouros, D. HbA1c is associated with severity of obstructive sleep apnea hypopnea syndrome in nondiabetic men. Vasc. Health Risk Manag. 2009, 5, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronsohn, R.S.; Whitmore, H.; Van Cauter, E.; Tasali, E. Impact of Untreated Obstructive Sleep Apnea on Glucose Control in Type 2 Diabetes. Am. J. Respir. Crit. Care Med. 2010, 181, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ip, M.S.M.; Lam, B.; Ng, M.M.T.; Lam, W.K.; Tsang, K.W.T.; Lam, K.S.L. Obstructive sleep apnea is independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 2002, 165, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.D.S.; Fernandes, J.F.R.; Klein, M.R.S.T.; Sanjuliani, A.F. Obstructive sleep apnea is independently associated with inflammation and insulin resistance, but not with blood pressure, plasma catecholamines, and endothelial function in obese subjects. Nutrition 2015, 31, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Facco, F.L.; Ouyang, D.W.; Zee, P.C.; Strohl, A.E.; Gonzalez, A.B.; Lim, C.; Grobman, W.A. Implications of sleep-disordered breathing in pregnancy. Am. J. Obs. Gynecol. 2014, 210, 559.e1–559.e6. [Google Scholar] [CrossRef] [Green Version]
- Evo-Devo (Despacito Biology Parody). 2017. Available online: https://www.youtube.com/watch?v=ydqReeTV_vk (accessed on 13 August 2021).
- Dobrota, V.D.; Lukinović-Škudar, V.; Dobrota, S.; Filipović-Grčić, L.; Prkačin, I.; Hrabač, P.; Kirhmajer, M.V.; Soldo, S.B. Obstructive sleep apnea and type 2 diabetes mellitus. RAD CASA-Med. Sci. 2021, 547, 76–84. [Google Scholar] [CrossRef]
- Kapur, V.K. Obstructive Sleep Apnea: Diagnosis, Epidemiology, and Economics. Resp. Care 2010, 55, 1155–1167. [Google Scholar]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.T.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive Sleep Apnea–Hypopnea and Incident Stroke. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive sleep apnea as a risk factor for stroke and death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [Green Version]
- Muraki, I.; Wada, H.; Tanigawa, T. Sleep apnea and type 2 diabetes. J. Diabetes Investig. 2018, 9, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Eckdahl, T.T.; ProQuest (Firm). Obesity: The Venus of Willendorf, 1st ed. Available online: https://ebookcentral.proquest.com/lib/byu/detail.action?docID=5613327 (accessed on 13 August 2021).
- Latham, K.J. Human Health and the Neolithic Revolution: An Overview of Impacts of the Agricultural Transition on Oral Health, Epidemiology, and the Human Body. 2013. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1186&context=nebanthro (accessed on 13 August 2021).
- Mummert, A.; Esche, E.; Robinson, J.; Armelagos, G.J. Stature and robusticity during the agricultural transition: Evidence from the bioarchaeological record. Econ. Hum. Biol. 2011, 9, 284–301. [Google Scholar] [CrossRef] [PubMed]
- Senaldi, L.; Smith-Raska, M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin. Epigenetics 2020, 12, 136. [Google Scholar] [CrossRef]
- Teicholz, N. The Big Fat Surprise: Why Butter, Meat, and Cheese Belong in a Healthy Diet, 1st ed.; Simon & Schuster hardcover edition; Simon & Schuster: New York, NY, USA, 2014; 479p. [Google Scholar]
- Monteiro, C.A. Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, B. How Ultra-Processed Food Took Over Your Shopping Basket. Available online: https://www.theguardian.com/food/2020/feb/13/how-ultra-processed-food-took-over-your-shopping-basket-brazil-carlos-monteiro (accessed on 13 August 2021).
- Shell, E.R. Obesity on the Brain. Sci. Am. 2019, 321, 38–45. [Google Scholar]
- St-Pierre, J.; Tremblay, M.L. Modulation of Leptin Resistance by Protein Tyrosine Phosphatases. Cell Metab. 2012, 15, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Roseboom, T.J.; van der Meulen, J.H.P.; Ravelli, A.C.J.; Osmond, C.; Barker, D.J.P.; Bleker, O.P. Effects of prenatal exposure to the Dutch famine on adult disease in later life: An overview. Mol. Cell. Endocrinol. 2001, 185, 93–98. [Google Scholar] [CrossRef]
- Painter, R.C.; Osmond, C.; Gluckman, P.; Hanson, M.; Phillips, D.I.W.; Roseboom, T.J. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. Bjog-Int. J. Obs. Gy. 2008, 115, 1243–1249. [Google Scholar] [CrossRef]
- Klimentidis, Y.C.; Beasley, T.M.; Lin, H.Y.; Murati, G.; Glass, G.E.; Guyton, M.; Newton, W.; Jorgensen, M.; Heymsfield, S.B.; Kemnitz, J.; et al. Canaries in the coal mine: A cross-species analysis of the plurality of obesity epidemics. P. R. Soc. B-Biol. Sci. 2011, 278, 1626–1632. [Google Scholar] [CrossRef]
- Artham, S.M.; Lavie, C.J.; Milani, R.V.; Ventura, H.O. The Obesity Paradox: Impact of Obesity on the Prevalence and Prognosis of Cardiovascular Diseases. Postgrad. Med. 2015, 120, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Beddhu, S. The body mass index paradox and an obesity, inflammation, and atherosclerosis syndrome in chronic kidney disease. Semin. Dial. 2004, 17, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Ernsberger, P.; Haskew, P. Rethinking Obesity: An Alternative View of Its Health Implications; Human Sciences Press: New York, NY, USA, 1987. [Google Scholar]
- McConnell, R.; Gilliland, F.D.; Goran, M.; Allayee, H.; Hricko, A.; Mittelman, S. Does near-roadway air pollution contribute to childhood obesity? Pediatr. Obes. 2016, 11, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, C.M.S.; Jiang, H.H.; Chen, J.Y.; Lin, Y.H. Traffic-Related Particulate Matter and Cardiometabolic Syndrome: A Review. Atmosphere 2018, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Bjorntorp, P. Metabolic Implications of Body-Fat Distribution. Diabetes Care 1991, 14, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Berreby, D. The Obesity Era. Available online: https://aeon.co/essays/blaming-individuals-for-obesity-may-be-altogether-wrong (accessed on 13 August 2021).
- Krol, E.; Speakman, J.R. Regulation of body mass and adiposity in the field vole, Microtus agrestis: A model of leptin resistance. J. Endocrinol. 2007, 192, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronneberg, T. Internal Time: Chronotypes, Social Jet Lag, and Why You’re So Tired; Harvard University Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Mantzoros, C.S.; Flier, J.S. Insulin resistance: The clinical spectrum. Adv. Endocrinol. Metab. 1995, 6, 193–232. [Google Scholar]
- Brown, L.K. A waist is a terrible thing to mind-Central obesity, the metabolic syndrome, and sleep apnea hypopnea syndrome. Chest 2002, 122, 774–778. [Google Scholar] [CrossRef] [Green Version]
- Mansor, L.S.; Mehta, K.; Aksentijevic, D.; Carr, C.A.; Lund, T.; Cole, M.A.; Page, L.L.; Fialho, M.D.S.; Shattock, M.J.; Aasum, E.; et al. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J. Physiol. 2016, 594, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Blasi, D.E.; Moran, S.; Moisik, S.R.; Widmer, P.; Dediu, D.; Bickel, B. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science 2019, 363, eaav3218. [Google Scholar] [CrossRef]
- Wrangham, R. Control of Fire in the Paleolithic: Evaluating the Cooking Hypothesis. Curr. Anthr. 2017, 58, S303–S313. [Google Scholar] [CrossRef] [Green Version]
- Davidson, T.M.; Sedgh, J.; Tran, D.; Stepnowsky, C.J. The anatomic basis for the acquisition of speech and obstructive sleep apnea: Evidence from cephalometric analysis supports The Great Leap Forward Hypothesis. Sleep Med. 2005, 6, 497–505. [Google Scholar] [CrossRef]
- Kheniser, K.; Saxon, D.R.; Kashyap, S.R. Long-Term Weight Loss Strategies for Obesity. J. Clin. Endocr. Metab. 2021, 106, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- Fodor, A.; Cozma, A.; Karnieli, E. TBC update: Personalized epigenetic management of diabetes. Pers. Med. 2017, 14, 531–549. [Google Scholar] [CrossRef]
- Mishra, M.; Zhong, Q.; Kowluru, R.A. Epigenetic Modifications of Keap1 Regulate Its Interaction With the Protective Factor Nrf2 in the Development of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7256–7265. [Google Scholar] [CrossRef] [PubMed]
- Marumo, T.; Yagi, S.; Kawarazaki, W.; Nishimoto, M.; Ayuzawa, N.; Watanabe, A.; Ueda, K.; Hirahashi, J.; Hishikawa, K.; Sakurai, H.; et al. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J. Am. Soc. Nephrol. 2015, 26, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.; Gozal, D.; Cortese, R.; Wang, Y. Cardiovascular dysfunction in adult mice following postnatal intermittent hypoxia. Pediatr. Res. 2015, 77, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Masuyama, H.; Hiramatsu, Y. Effects of a High-Fat Diet Exposure in Utero on the Metabolic Syndrome-Like Phenomenon in Mouse Offspring through Epigenetic Changes in Adipocytokine Gene Expression. Endocrinology 2012, 153, 2823–2830. [Google Scholar] [CrossRef] [Green Version]
- Masuyama, H.; Mitsui, T.; Nobumoto, E.; Hiramatsu, Y. The Effects of High-Fat Diet Exposure In Utero on the Obesogenic and Diabetogenic Traits Through Epigenetic Changes in Adiponectin and Leptin Gene Expression for Multiple Generations in Female Mice. Endocrinology 2015, 156, 2482–2491. [Google Scholar] [CrossRef] [Green Version]
- Khalyfa, A.; Carreras, A.; Hakim, F.; Cunningham, J.M.; Wang, Y.; Gozal, D. Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int. J. Obes. 2013, 37, 1481–1489. [Google Scholar] [CrossRef] [Green Version]
- Gur, M.; Toukan, Y.; Bentur, L.; Hakim, F. Biomarkers for Sleep Apnea. J. Pediatr. Biochem. 2016, 6, 199–207. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Shan, Y.; Mishra, M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Lab. Investig. 2016, 96, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Q.; Kowluru, R.A. Regulation of Matrix Metalloproteinase-9 by Epigenetic Modifications and the Development of Diabetic Retinopathy. Diabetes 2013, 62, 2559–2568. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Ma, Z.W.; Wang, W.D.; Liu, R.M.; Zhang, Y.; Yuan, M.; Li, G.P. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats. Cardiovasc. Ther. 2018, 36, e12466. [Google Scholar] [CrossRef]
- Volna, J.; Kemlink, D.; Kalousova, M.; Vavrova, J.; Majerova, V.; Mestek, O.; Svarcova, J.; Sonka, K.; Zima, T. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med. Sci. Monit. 2011, 17, Cr491–Cr497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortuza, R.; Feng, B.; Chakrabarti, S. miR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 2014, 57, 1037–1046. [Google Scholar] [CrossRef]
- Chuang, P.Y.; Dai, Y.; Liu, R.J.; He, H.L.; Kretzler, M.; Jim, B.; Cohen, C.D.; He, J.C. Alteration of Forkhead Box O (Foxo4) Acetylation Mediates Apoptosis of Podocytes in Diabetes Mellitus. PLoS ONE 2011, 6, e23566. [Google Scholar] [CrossRef]
- Lin, C.C.; Wang, H.Y.; Liaw, S.F.; Chiu, C.H.; Lin, M.W. Effect of oral appliance on circulating leukocyte telomere length and SIRT1 in obstructive sleep apnea. Clin. Oral Investig. 2019, 23, 1397–1405. [Google Scholar] [CrossRef]
- Chen, W.J.; Liaw, S.F.; Lin, C.C.; Chiu, C.H.; Lin, M.W.; Chang, F.T. Effect of Nasal CPAP on SIRT1 and Endothelial Function in Obstructive Sleep Apnea Syndrome. Lung 2015, 193, 1037–1045. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000135744-AGT (accessed on 13 August 2021).
- Echeverria-Rodriguez, O.; Del Valle-Mondragon, L.; Hong, E. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides 2014, 51, 26–30. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Blacklock, A.; Svojanovsky, S.; Smith, P.G. Estrogen elicits dorsal root ganglion axon sprouting via a renin-angiotensin system. Endocrinology 2008, 149, 3452–3460. [Google Scholar] [CrossRef]
- Lu, Y.; Sareddy, G.R.; Wang, J.; Zhang, Q.; Tang, F.L.; Pratap, U.P.; Tekmal, R.R.; Vadlamudi, R.K.; Brann, D.W. Neuron-Derived Estrogen Is Critical for Astrocyte Activation and Neuroprotection of the Ischemic Brain. J. Neurosci. 2020, 40, 7355–7374. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.T.; Guo, J.; Su, Z.Q. Advances in understanding the interrelations between leptin resistance and obesity. Physiol. Behav. 2014, 130, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Purdham, D.M.; Zou, M.X.; Rajapurohitam, V.; Karmazyn, M. Rat heart is a site of leptin production and action. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2877–H2884. [Google Scholar] [CrossRef] [Green Version]
- Leury, B.J.; Baumgard, L.H.; Block, S.S.; Segoale, N.; Ehrhardt, R.A.; Rhoads, R.P.; Bauman, D.E.; Bell, A.W.; Boisclair, Y.R. Effect of insulin and growth hormone on plasma leptin in periparturient dairy cows. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1107–R1115. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem. 2001, 276, 29596–29602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilkauskaite, G.; Miliauskas, S.; Sakalauskas, R. Reactive oxygen species production in peripheral blood neutrophils of obstructive sleep apnea patients. Sci. World J. 2013, 2013, 421763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.H.; Lee, Y.M.; Chun, Y.S.; Chen, J.; Kim, J.E.; Park, J.W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 2010, 38, 864–878. [Google Scholar] [CrossRef]
- Zhang, J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 2007, 282, 34356–34364. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Liu, W.; Li, G.C.; Jin, M.; You, Z.X.; Liu, H.G.; Hu, Y. Atorvastatin Attenuates Myocardial Hypertrophy Induced by Chronic Intermittent Hypoxia In Vitro Partly through miR-31/PKC epsilon Pathway. Curr. Med. Sci. 2018, 38, 405–412. [Google Scholar] [CrossRef]
- Kovacs, B.; Lumayag, S.; Cowan, C.; Xu, S.B. microRNAs in Early Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats. Investig. Ophth. Vis. Sci. 2011, 52, 4402–4409. [Google Scholar] [CrossRef]
- NCBI. MIR31 microRNA 31 [Homo Sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/407035 (accessed on 13 August 2021).
- Wu, X.; Chang, S.C.; Jin, J.F.; Gu, W.Y.; Li, S.Q. NLRP3 inFLammasome mediates chronic intermittent hypoxia-induced renal injury implication of the microRNA-155/FOXO3a signaling pathway. J. Cell Physiol. 2018, 233, 9404–9415. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Predictors of elevated nuclear factor-kappa B-dependent genes in obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 2006, 174, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Long, J.Y.; Wang, Y.; Wang, W.J.; Chang, B.H.J.; Danesh, F.R. MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy. J. Biol. Chem. 2011, 286, 11837–11848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, G.; Biswas, R. MicroRNA-155: A Master Regulator of Inflammation. J. Interf. Cytok. Res. 2019, 39, 321–330. [Google Scholar] [CrossRef]
- Sompayrac, L. How the Immune System Works, 5th ed.; Wiley Blackwell: Oxford, UK, 2016; 151p. [Google Scholar]
- Tobi, E.; Goeman, J.; Monajemi, R.; Gu, H.; Putter, H.; Zhang, Y.; Slieker, R.; Stok, A.P.; Thijssen, P.E.; Müller, F.; et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 2014, 5, 5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-H.; Kim, S.-H.; Lee, M.S.; Kim, M.-S. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol. Asp. Med. 2017, 54, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Hsu, P.-Y.; Hsiao, C.-C.; Lin, M.-C. Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int. J. Mol. Sci. 2019, 20, 2937. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C. Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype. Sleep 2016, 39, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Cooney, C.A.; Dave, A.A.; Wolff, G.L. Maternal Methyl Supplements in Mice Affect Epigenetic Variation and DNA Methylation of Offspring. J. Nutr. 2002, 132, 2393S–2400S. [Google Scholar] [CrossRef] [Green Version]
- Nanduri, J.; Peng, Y.-J.; Wang, N.; Khan, S.A.; Semenza, G.L.; Kumar, G.K.; Prabhakar, N.R. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J. Physiol. 2016, 595, 63–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perikleous, E.; Steiropoulos, P.; Tzouvelekis, A.; Nena, E.; Koffa, M.; Paraskakis, E. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings. Front. Pediatr. 2018, 6, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.J.; Heo, W.; Kim, J.Y.; Kim, H.; Kang, M.J.; Kim, B.R.; Kim, J.H.; Park, D.Y.; Kim, C.-H.; Yoon, J.-H.; et al. Alteration of Inflammatory Mediators in the Upper and Lower Airways under Chronic Intermittent Hypoxia: Preliminary Animal Study. Mediat. Inflamm. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Milagro, F.I.; Gómez-Abellán, P.; Campión, J.; Martínez, J.A.; Ordovás, J.M.; Garaulet, M. CLOCK, PER2 and BMAL1 DNA Methylation: Association with Obesity and Metabolic Syndrome Characteristics and Monounsaturated Fat Intake. Chronobiol. Int. 2012, 29, 1180–1194. [Google Scholar] [CrossRef]
- Kato, M.; Arce, L.; Wang, M.; Putta, S.; Lanting, L.; Natarajan, R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011, 80, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Kato, M. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 2007, 104, 3432–3437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.-A.; Mohtat, D.; Suzuki, M.; Park, A.S.D.; Izquierdo, M.C.; Han, S.Y.; Kang, H.M.; Si, H.; Hostetter, T.; Pullman, J.M.; et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 2013, 14, R108. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Reddy, M.A.; Yuan, H.; Lanting, L.; Kato, M.; Natarajan, R. Epigenetic Histone Methylation Modulates Fibrotic Gene Expression. J. Am. Soc. Nephrol. 2010, 21, 2069–2080. [Google Scholar] [CrossRef]
- Perrone, L.; Devi, T.S.; Hosoya, K.-I.; Terasaki, T.; Singh, L.P. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J. Cell. Physiol. 2009, 221, 262–272. [Google Scholar] [CrossRef]
- Khurana, S.; Sharda, S.; Saha, B.; Kumar, S.; Guleria, R.; Bose, S. Canvassing the aetiology, prognosis and molecular signatures of obstructive sleep apnoea. Biomarkers 2018, 24, 1–16. [Google Scholar] [CrossRef]
- Li, F.; Huang, H.; Song, L.; Hao, H.; Ying, M. Effects of Obstructive Sleep Apnea Hypopnea Syndrome on Blood Pressure and C-Reactive Protein in Male Hypertension Patients. J. Clin. Med. Res. 2016, 8, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Montesinos, E. Changes in c-reactive protein and biochemical profile in preschool children with obesity. Nutr. Hosp. 2015, 32, 1548–1553. [Google Scholar] [PubMed]
- Thunström, E.; Glantz, H.; Fu, M.; Yucel-Lindberg, T.; Petzold, M.; Lindberg, K.; Peker, Y. Increased Inflammatory Activity in Nonobese Patients with Coronary Artery Disease and Obstructive Sleep Apnea. Sleep 2015, 38, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Arismendi, E.; Rivas, E.; Agustí, A.; Ríos, J.; Barreiro, E.; Vidal, J.; Rodriguez-Roisin, R. The Systemic Inflammome of Severe Obesity before and after Bariatric Surgery. PLoS ONE 2014, 9, e107859. [Google Scholar] [CrossRef]
- Bouloukaki, I.; Papadimitriou, V.; Sofras, F.; Mermigkis, C.; Moniaki, V.; Siafakas, N.M.; Schiza, S.E. Abnormal Cytokine Profile in Patients with Obstructive Sleep Apnea-Hypopnea Syndrome and Erectile Dysfunction. Mediat. Inflamm. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnardottir, E.S.; Maislin, G.; Schwab, R.J.; Staley, B.; Benediktsdottir, B.; Ólafsson, Í.; Juliusson, S.; Romer, M.; Gislason, T.; Pack, A.I. The Interaction of Obstructive Sleep Apnea and Obesity on the Inflammatory Markers C-Reactive Protein and Interleukin-6: The Icelandic Sleep Apnea Cohort. Sleep 2012, 35, 921–932. [Google Scholar] [CrossRef]
- Qian, X.; Yin, T.; Li, T.; Kang, C.; Guo, R.; Sun, B.; Liu, C. High Levels of Inflammation and Insulin Resistance in Obstructive Sleep Apnea Patients with Hypertension. Inflammation 2012, 35, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A. Are inflammatory and coagulation biomarkers related to sleep characteristics in mid-life women?: Study of Women’s Health across the Nation sleep study. Sleep 2010, 33, 1649–1655. [Google Scholar] [CrossRef]
- Bhushan, B.; Guleria, R.; Misra, A.; Pandey, R.M.; Luthra, K.; Vikram, N.K. Obstructive Sleep Apnoea correlates with C-reactive protein in obese Asian Indians. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 184–189. [Google Scholar] [CrossRef]
- Gozal, D.; Crabtree, V.M.; Capdevila, O.S.; Witcher, L.A.; Kheirandish-Gozal, L. C-reactive Protein, Obstructive Sleep Apnea, and Cognitive Dysfunction in School-aged Children. Am. J. Respir. Crit. Care Med. 2007, 176, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, C.; Kirisoglu, C.; Ohayon, M.M. C-Reactive Protein and Sleep-Disordered Breathing. Sleep 2004, 27, 1507–1517. [Google Scholar] [CrossRef]
- Shamsuzzaman, A.S.; Winnicki, M.; Lanfranchi, P.; Wolk, R.; Kara, T.; Accurso, V.; Somers, V.K. Elevated C-Reactive Protein in Patients With Obstructive Sleep Apnea. Circulation 2002, 105, 2462–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohi, G.; Marchand, K.; Revesz, A.; Arany, E.; Hardy, D.B. Maternal Protein Restriction Elevates Cholesterol in Adult Rat Offspring Due to Repressive Changes in Histone Modifications at the Cholesterol 7α-Hydroxylase Promoter. Mol. Endocrinol. 2011, 25, 785–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupa, A.; Jenkins, R.; Luo, D.D.; Lewis, A.; Phillips, A.; Fraser, D. Loss of MicroRNA-192 Promotes Fibrogenesis in Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Hoile, S.P.; Clarke-Harris, R.; Huang, R.-C.; Calder, P.; Mori, T.; Beilin, L.J.; Lillycrop, K.; Burdge, G.C. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells. PLoS ONE 2014, 9, e109896. [Google Scholar] [CrossRef]
- Gozal, L.; Khalyfa, A.; Gozal, D.; Bhattacharjee, R.; Wang, Y. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Epigenetic Changes in the eNOS Gene. Chest 2013, 143, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, K.; Li, X.; Ma, Z.; Zhang, Y.; Yuan, M.; Suo, Y.; Liang, X.; Tse, G.; Goudis, C.A.; et al. Doxycycline attenuates chronic intermittent hypoxia-induced atrial fibrosis in rats. Cardiovasc. Ther. 2018, 36, e12321. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Feng, B.; George, B.; Chakrabarti, R.; Chen, M.; Chakrabarti, S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am. J. Physiol. Metab. 2010, 298, E127–E137. [Google Scholar] [CrossRef] [Green Version]
- Hoile, S.P.; Irvine, N.A.; Kelsall, C.J.; Sibbons, C.; Feunteun, A.; Collister, A.; Torrens, C.; Calder, P.C.; Hanson, M.A.; Lillycrop, K.A.; et al. Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J. Nutr. Biochem. 2013, 24, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-B. Perspectives of International Human Epigenome Consortium. Genom. Informatics 2013, 11, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Bhattacharjee, R.; Khalyfa, A.; Gozal, L.; Capdevila, O.S.; Wang, Y.; Gozal, D. DNA Methylation in Inflammatory Genes among Children with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2012, 185, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telikani, Z.; Sheikh, V.; Zamani, A.; Borzouei, S.; Salehi, I.; Amirzargar, M.A.; Alahgholi-Hajibehzad, M. Effects of sitagliptin and vitamin D3 on T helper cell transcription factors and cytokine production in clinical subgroups of type 2 diabetes mellitus: Highlights upregulation of FOXP3 and IL-37. Immunopharmacol. Immunotoxicol. 2019, 41, 299–311. [Google Scholar] [CrossRef]
- Jia, Y.; Cong, R.; Li, R.; Yang, X.; Sun, Q.; Parvizi, N.; Zhao, R. Maternal Low-Protein Diet Induces Gender-Dependent Changes in Epigenetic Regulation of the Glucose-6-Phosphatase Gene in Newborn Piglet Liver. J. Nutr. 2012, 142, 1659–1665. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Wang, D.; Yang, G.; Zhang, W.-Q.; Ren, J.; Fu, J.-L. Role of microRNA-130a in the pathogeneses of obstructive sleep apnea hypopnea syndrome-associated pulmonary hypertension by targeting the GAX gene. Medicine 2017, 96, e6746. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-L.; Dong, S.; Gao, L.-F.; Li, L.; Xi, Y.-D.; Ma, W.-W.; Yuan, L.-H.; Xiao, R. Global DNA methylation was changed by a maternal high-lipid, high-energy diet during gestation and lactation in male adult mice liver. Br. J. Nutr. 2015, 113, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Rollet, M.; Pan, Y.-X. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring. J. Nutr. Biochem. 2012, 23, 1064–1071. [Google Scholar] [CrossRef]
- Uchiyama, T. Intermittent Hypoxia Up-Regulates CCL2, RETN, and TNFα mRNAs in Adipocytes via Down-regulation of miR-452. Int. J. Mol. Sci. 2019, 20, 1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.; Garg, M.L.; Smith, D.W. Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab. Brain Dis. 2013, 28, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Zhong, Q.; Kowluru, R.A. Epigenetic modifications of Nrf2-mediated glutamate–cysteine ligase: Implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radic. Biol. Med. 2014, 75, 129–139. [Google Scholar] [CrossRef]
- Yang, K.-F.; Cai, W.; Xu, J.-L.; Shi, W. Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J. Mol. Endocrinol. 2012, 49, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Hardikar, A.A.; Satoor, S.N.; Karandikar, M.S.; Joglekar, M.V.; Puranik, A.S.; Wong, W.; Kumar, S.; Limaye, A.; Bhat, D.S.; Januszewski, A.S.; et al. Multigenerational Undernutrition Increases Susceptibility to Obesity and Diabetes that Is Not Reversed after Dietary Recuperation. Cell Metab. 2015, 22, 312–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begum, G.; Davies, A.; Stevens, A.; Oliver, M.; Jaquiery, A.; Challis, J.; Harding, J.; Bloomfield, F.; White, A. Maternal Undernutrition Programs Tissue-Specific Epigenetic Changes in the Glucocorticoid Receptor in Adult Offspring. Endocrinology 2013, 154, 4560–4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortese, R.; Gileles-Hillel, A.; Khalyfa, A.; Almendros, I.; Akbarpour, M.; Khalyfa, A.A.; Qiao, Z.; Garcia, T.; Andrade, J.; Gozal, D. Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: Potential role of CD36. Sci. Rep. 2017, 7, 43648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.H.; Yang, R.; Wang, Y.P.; Zhang, W. Expression data analysis to identify key target genes in visceral fat tissue associated with obstructive sleep apnea. Sci. Rep. 2015, 19, 114. [Google Scholar]
- Shan, Z.-X. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010, 584, 3592–3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodspeed, D.; Seferovic, M.D.; Holland, W.; Mcknight, R.A.; Summers, S.A.; Branch, D.W.; Lane, R.H.; Aagaard, K.M. Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. FASEB J. 2014, 29, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Tosh, D.N.; Fu, Q.; Callaway, C.W.; McKnight, R.A.; McMillen, I.C.; Ross, M.G.; Lane, R.H.; Desai, M. Epigenetics of programmed obesity: Alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am. J. Physiol. Liver Physiol. 2010, 299, G1023–G1029. [Google Scholar] [CrossRef] [Green Version]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, E.; Wu, W.; Mark, C.; Yang, A.; Digiacomo, E.; Carlton-Smith, C.; Salloum, S.; Brisac, C.; Lin, W.; Corey, K.E.; et al. Intermittent hypoxia is a proinflammatory stimulus resulting in IL-6 expression and M1 macrophage polarization. Hepatol. Commun. 2017, 1, 326–337. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Brunn, M.; Harder, A.; Roepke, K.; Wittrock-Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: An epigenetic model of obesity and the metabolic syndrome. J. Physiol. 2009, 587, 4963–4976. [Google Scholar] [CrossRef]
- Plagemann, A.; Roepke, K.; Harder, T.; Brunn, M.; Harder, A.; Wittrock-Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; et al. Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J. Périnat. Med. 2010, 38, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Jousse, C.; Parry, L.; Lambert-Langlais, S.; Maurin, A.; Averous, J.; Bruhat, A.; Carraro, V.; Tost, J.; Letteron, P.; Chen, P.; et al. Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: Implication for the understanding of metabolic syndrome. FASEB J. 2011, 25, 3271–3278. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rodriguez, P. Alterations in expression of imprinted genes from the H19/IGF2 loci in a multigenerational model of intrauterine growth restriction (IUGR). Am. J. Obstet. Gynecol. 2016, 214, 625.e1–625.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Zeng, W.; Huang, L.; Pang, Q.; Nie, L.; Mu, J.; Yuan, F.; Feng, B. ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. Am. J. Physiol.-Ren. Physiol. 2014, 306, F916–F925. [Google Scholar]
- McCullough, L.E.; Miller, E.E.; Mendez, M.A.; Murtha, A.P.; Murphy, S.K.; Hoyo, C. Maternal B vitamins: Effects on offspring weight and DNA methylation at genomically imprinted domains. Clin. Epigenetics 2016, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro Barbosa, T. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol. Metab. 2016, 5, 184–197. [Google Scholar] [CrossRef]
- Sanchez-De-La-Torre, M.; Khalyfa, A.; Sánchez-De-La-Torre, A.; Martinez-Alonso, M.; Martinez-García, M.; Barceló, A.; Lloberes, P.; Campos-Rodriguez, F.; Capote, F.; Diaz-De-Atauri, M.J.; et al. Precision Medicine in Patients With Resistant Hypertension and Obstructive Sleep Apnea. J. Am. Coll. Cardiol. 2015, 66, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Khalyfa, A. Circulating Plasma Extracellular Microvesicle MicroRNA Cargo and Endothelial Dysfunction in Children with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2016, 194, 1116–1126. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Bompada, P.; Atac, D.; Laakso, M.; Groop, L.; De Marinis, Y. Epigenetic regulation of glucose-stimulated osteopontin (OPN) expression in diabetic kidney. Biochem. Biophys. Res. Commun. 2015, 469, 108–113. [Google Scholar] [CrossRef]
- Murray, A.; Chen, Q.; Takahashi, Y.; Zhou, K.; Park, K.; Ma, J.-X. MicroRNA-200b Downregulates Oxidation Resistance 1 (Oxr1) Expression in the Retina of Type 1 Diabetes Model. Investig. Opthalmology Vis. Sci. 2013, 54, 1689–1697. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.A.O.; Polesskaya, A.; Sousa, T.A.; Corrêa, V.M.A.; André, N.D.; Reis, R.I.; Kettelhut, I.C.; Harel-Bellan, A.; De Lucca, F.L. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol. Vis. 2011, 17, 2228–2240. [Google Scholar] [PubMed]
- Reddy, M.A.; Sumanth, P.; Lanting, L.; Yuan, H.; Wang, M.; Mar, D.; Alpers, C.E.; Bomsztyk, K.; Natarajan, R. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014, 85, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Pooya, S. Methyl donor deficiency impairs fatty acid oxidation through PGC-1α hypomethylation and decreased ER-α, ERR-α, and HNF-4α in the rat liver. J. Hepatol. 2012, 57, 344–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewari, S.; Zhong, Q.; Santos, J.M.; Kowluru, R. Mitochondria DNA Replication and DNA Methylation in the Metabolic Memory Associated with Continued Progression of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4881–4888. [Google Scholar] [CrossRef] [PubMed]
- Marco, A. Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not "reprogrammed" by regular chow diet in rats. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014, 28, 4148–4157. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, K. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Nanduri, J.; Makarenko, V.; Reddy, V.D.; Yuan, G.; Pawar, A.; Wang, N.; Khan, S.A.; Zhang, X.; Kinsman, B.; Peng, Y.-J.; et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc. Natl. Acad. Sci. USA 2012, 109, 2515–2520. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Kowluru, R.A. Epigenetic Changes in Mitochondrial Superoxide Dismutase in the Retina and the Development of Diabetic Retinopathy. Diabetes 2011, 60, 1304–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 2013, 19, 1496–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Xia, L.; Masson, E.; Gui, C.; Momen, A.; Shikatani, E.A.; Husain, M.; Quaggin, S.; John, R.; Fantus, I. Thioredoxin-Interacting Protein Deficiency Protects against Diabetic Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 2963–2977. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, F.; Paterson, A.D.; Lachin, J.M.; Zhang, L.; Schones, D.E.; Wu, X.; Wang, J.; Tompkins, J.D.; Genuth, S.; et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc. Natl. Acad. Sci. USA 2016, 113, E3002–E3011. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wei, P.; Qin, Y.; Wei, Y. MicroRNA expression profiling and bioinformatics analysis of dysregulated microRNAs in obstructive sleep apnea patients. Medicine 2017, 96, e7917. [Google Scholar] [CrossRef]
- Gao, H.; Han, Z.; Huang, S.; Bai, R.; Ge, X.; Chen, F.; Lei, P. Intermittent hypoxia caused cognitive dysfunction relate to miRNAs dysregulation in hippocampus. Behav. Brain Res. 2017, 335, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Can, U.; Buyukinan, M.; Yerlikaya, F.H. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr. Obes. 2015, 11, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, Z.; Qin, Y.; Wei, Y. MiR-664a-3p expression in patients with obstructive sleep apnea. Medicine 2018, 97, e9813. [Google Scholar] [CrossRef] [PubMed]
- Cortese, R.; Almendros, I.; Wang, Y.; Gozal, D. Tumor circulating DNA profiling in xenografted mice exposed to intermittent hypoxia. Oncotarget 2014, 6, 556–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Li, T.; Li, J.; Lu, Q.; Han, C.; Wang, N.; Qiu, Q.; Cao, H.; Xu, X.; Chen, H.; et al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2015, 59, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Yonamine, C.Y.; Alves-Wagner, A.B.; Esteves, J.V.; Okamoto, M.M.; Correa-Giannella, M.L.; Giannella-Neto, D.; Machado, U.F. Diabetes induces tri-methylation at lysine 9 of histone 3 at Slc2a4 gene in skeletal muscle: A new target to improve glycemic control. Mol. Cell. Endocrinol. 2018, 481, 26–34. [Google Scholar] [CrossRef]
- Yu, C. Chronic obstructive sleep apnea promotes aortic remodeling in canines through miR-145/Smad3 signaling pathway. Oncotarget 2017, 8, 37705–37716. [Google Scholar] [CrossRef] [Green Version]
- Hao, S. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223. J. Cell. Physiol. 2019, 234, 6324–6335. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Qiao, P.; Wang, L. Circulating microRNA-223 as a potential biomarker for obesity. Obes. Res. Clin. Pr. 2015, 9, 398–404. [Google Scholar] [CrossRef]
- Xu, X.; Su, S.; Barnes, V.A.; De Miguel, C.; Pollock, J.; Ownby, D.; Shi, H.; Zhu, H.; Snieder, H.; Wang, X. A genome-wide methylation study on obesity. Epigenetics 2013, 8, 522–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.-X.; Chen, Q.; Chen, G.-P.; Huang, J.-C.; Huang, J.-F.; He, X.-R.; Lin, T.; Lin, Q.-C. Inhibition of microRNA-218 reduces HIF-1α by targeting on Robo1 in mice aortic endothelial cells under intermittent hypoxia. Oncotarget 2017, 8, 104359–104366. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, T.; Ota, H.; Itaya-Hironaka, A.; Shobatake, R.; Yamauchi, A.; Sakuramoto-Tsuchida, S.; Makino, M.; Kimura, H.; Takeda, M.; Ohbayashi, C.; et al. Up-regulation of selenoprotein P and HIP/PAP mRNAs in hepatocytes by intermittent hypoxia via down-regulation of miR-203. Biochem. Biophys. Rep. 2017, 11, 130–137. [Google Scholar] [CrossRef] [PubMed]
Gene | Associated Biological Process (Gene Ontology-Defined) | Associated Condition | Epigenetic Factors/Expression Differences |
---|---|---|---|
AGT | Response to oxygen-containing compound, response to insulin | Diabetic nephropathy | ↓methylation in kidney of diabetic mice [46] |
OSA severity | ↓methylation of enhancer, ↑gene expression in neonatal mice exposed to intermittent hypoxia [47] | ||
LEP | Response to insulin, response to oxygen levels | Exposure to diet in utero | ↑methylation and ↓acetylation of H4K20, ↓methylation of gene, ↑gene expression in mice exposed to high fat diet [48,49,50] |
OSA | ↑protein levels in blood of OSA patients [51] | ||
MMP9 | Response to oxygen-containing compound | Diabetes/Diabetic retinopathy | ↓methylation of promoter, ↑protein levels [52] ↑acetyl H3K9, ↓H3K9me2 in retinas of diabetic rats and humans [53] |
OSA severity | ↑mRNA/protein in chronic intermittent hypoxia rats [54] ↑protein levels ≈ ↑ODI, ↑SpO2 < 90% in humans [55] | ||
SIRT1 | Response to insulin, response to oxygen levels | Diabetic retinopathy | ↑miR-195, ↑miR-23b-3p, ↓gene expression in human and rat retinal cells exposed to high glucose [56,57] |
OSA | ↓protein in humans with OSA [58,59] |
MicroRNA | Relevant Condition | Functional Evidence |
---|---|---|
miR-31 | Diabetic retinopathy | Upregulated in diabetic rat retinal epithelial cells [72] |
OSA severity | Upregulation of miR-31 in response to chronic intermittent hypoxia [71] | |
miR-155 | Diabetic retinopathy | Upregulated in diabetic rat retinal epithelial cells [72] |
OSA severity | Induced by hypoxia in mice [74] | |
miR-146 | Diabetic retinopathy | Downregulates NF-κB which is overexpressed in diabetic rat retina [72] |
OSA | Downregulates NF-κB and TNF-α which are overexpressed in humans with OSA [75] | |
miR-29c and miR-21 | Diabetic nephropathy | Upregulated in kidneys of diabetic mice [76] |
OSA severity | Upregulated in response to chronic intermittent hypoxia [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, N.R.C.; Veatch, O.J.; Johnson, S.M. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines 2022, 10, 668. https://doi.org/10.3390/biomedicines10030668
Wilson NRC, Veatch OJ, Johnson SM. On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines. 2022; 10(3):668. https://doi.org/10.3390/biomedicines10030668
Chicago/Turabian StyleWilson, N. R. C., Olivia J. Veatch, and Steven M. Johnson. 2022. "On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics" Biomedicines 10, no. 3: 668. https://doi.org/10.3390/biomedicines10030668
APA StyleWilson, N. R. C., Veatch, O. J., & Johnson, S. M. (2022). On the Relationship between Diabetes and Obstructive Sleep Apnea: Evolution and Epigenetics. Biomedicines, 10(3), 668. https://doi.org/10.3390/biomedicines10030668