Circular RNAs as Potential Biomarkers in Breast Cancer
Abstract
:1. Introduction
2. Biogenesis and Functions of Circular RNAs
3. Circular RNAs as Tissue Biomarkers in Breast Cancer
3.1. Oncogenic and Tumor-Suppressive Circular RNAs as Biomarkers of Breast Carcinogenesis
3.2. Circular RNAs as Biomarkers of Specific Breast Cancer Subtypes
4. Circular RNAs as Blood-Based Biomarkers in BC
4.1. Plasma Circular RNAs as Biomarkers in BC
4.2. Serum Circular RNAs as Biomarkers in BC
4.3. Exosomal Circular RNAs as Biomarkers in BC
5. Circular RNAs as Biomarkers of Resistance to BC Treatments
5.1. Circular RNAs as Biomarkers of Resistance to Hormone Therapy
5.2. Circular RNAs as Biomarkers of Resistance to Chemotherapy
5.3. Circular RNAs as Biomarkers of Resistance to Radiotherapy and Immunotherapy
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.A.; Cronin, K.A.; Plevritis, S.K.; Fryback, D.G.; Clarke, L.; Zelen, M.; Mandelblatt, J.S.; Yakovlev, A.Y.; Habbema, J.D.F.; Feuer, E.J.; et al. Effect of Screening and Adjuvant Therapy on Mortality from Breast Cancer. N. Engl. J. Med. 2005, 353, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, K.C.; Fontham, E.T.H.; Etzioni, R.; Herzig, A.; Michaelson, J.S.; Shih, Y.-C.T.; Walter, L.C.; Church, T.R.; Flowers, C.R.; LaMonte, S.J.; et al. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update from the American Cancer Society. JAMA 2015, 314, 1599–1614. [Google Scholar] [CrossRef] [PubMed]
- Lüönd, F.; Tiede, S.; Christofori, G. Breast Cancer as an Example of Tumour Heterogeneity and Tumour Cell Plasticity during Malignant Progression. Br. J. Cancer 2021, 125, 164–175. [Google Scholar] [CrossRef]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast Cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Wang, S.; Ali, N. Advanced Approaches to Breast Cancer Classification and Diagnosis. Front. Pharmacol. 2021, 11, 2487. [Google Scholar] [CrossRef]
- Volovat, S.R.; Volovat, C.; Hordila, I.; Hordila, D.-A.; Mirestean, C.C.; Miron, O.T.; Lungulescu, C.; Scripcariu, D.V.; Stolniceanu, C.R.; Konsoulova-Kirova, A.A.; et al. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front. Oncol. 2020, 10, 2423. [Google Scholar] [CrossRef]
- Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.C.; Ross, J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Frontiers in Genetics 2019, 10, 1150. [Google Scholar] [CrossRef]
- Lu, C.; Wei, D.; Zhang, Y.; Wang, P.; Zhang, W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front. Oncol. 2021, 11, 3348. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical Use of Biomarkers in Breast Cancer: Updated Guidelines from the European Group on Tumor Markers (EGTM). Eur. J. Cancer 2017, 75, 284–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, N.M.; Garber, J.E. BRCA1/2 Testing: Therapeutic Implications for Breast Cancer Management. Br. J. Cancer 2018, 119, 141–152. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Schneeweiss, A.; Loibl, S.; Salat, C.; Denkert, C.; Rezai, M.; Blohmer, J.U.; Jackisch, C.; Paepke, S.; Gerber, B.; et al. Neoadjuvant Carboplatin in Patients with Triple-Negative and HER2-Positive Early Breast Cancer (GeparSixto; GBG 66): A Randomised Phase 2 Trial. Lancet Oncol. 2014, 15, 747–756. [Google Scholar] [CrossRef]
- Tung, N.; Arun, B.; Hacker, M.R.; Hofstatter, E.; Toppmeyer, D.L.; Isakoff, S.J.; Borges, V.; Legare, R.D.; Isaacs, C.; Wolff, A.C.; et al. TBCRC 031: Randomized Phase II Study of Neoadjuvant Cisplatin Versus Doxorubicin-Cyclophosphamide in Germline BRCA Carriers With HER2-Negative Breast Cancer (the INFORM Trial). J. Clin. Oncol. 2020, 38, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.E.; Tung, N.; Conte, P.; Im, S.-A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD Final Overall Survival and Tolerability Results: Olaparib versus Chemotherapy Treatment of Physician’s Choice in Patients with a Germline BRCA Mutation and HER2-Negative Metastatic Breast Cancer. Ann. Oncol. 2019, 30, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef]
- Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.-H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus Chemotherapy in Patients with Germline BRCA1/2-Mutated HER2-Negative Advanced Breast Cancer: Final Overall Survival Results from the EMBRACA Trial. Ann. Oncol. 2020, 31, 1526–1535. [Google Scholar] [CrossRef]
- Diéras, V.; Han, H.S.; Kaufman, B.; Wildiers, H.; Friedlander, M.; Ayoub, J.-P.; Puhalla, S.L.; Bondarenko, I.; Campone, M.; Jakobsen, E.H.; et al. Veliparib with Carboplatin and Paclitaxel in BRCA-Mutated Advanced Breast Cancer (BROCADE3): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 1269–1282. [Google Scholar] [CrossRef]
- De Palma, F.D.E.; Del Monaco, V.; Pol, J.G.; Kremer, M.; D’Argenio, V.; Stoll, G.; Montanaro, D.; Uszczyńska-Ratajczak, B.; Klein, C.C.; Vlasova, A.; et al. The Abundance of the Long Intergenic Non-Coding RNA 01087 Differentiates between Luminal and Triple-Negative Breast Cancers and Predicts Patient Outcome. Pharmacol. Res. 2020, 161, 105249. [Google Scholar] [CrossRef]
- Sarkar, D.; Diermeier, S.D. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer. Noncoding RNA 2021, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Verduci, L.; Tarcitano, E.; Strano, S.; Yarden, Y.; Blandino, G. CircRNAs: Role in Human Diseases and Potential Use as Biomarkers. Cell Death Dis. 2021, 12, 468. [Google Scholar] [CrossRef]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids Are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-Paired Rod-like Structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, M.-S.; Ai, Y.; Wilusz, J.E. Biogenesis and Functions of Circular RNAs Come into Focus. Trends Cell Biol. 2020, 30, 226–240. [Google Scholar] [CrossRef]
- Harper, K.L.; Mottram, T.J.; Whitehouse, A. Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers 2021, 13, 4180. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Pervouchine, D.D. Circular Exonic RNAs: When RNA Structure Meets Topology. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 194384. [Google Scholar] [CrossRef]
- Chen, L.-L. The Expanding Regulatory Mechanisms and Cellular Functions of Circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21, 475–490. [Google Scholar] [CrossRef]
- Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Circular RNA-Protein Interactions: Functions, Mechanisms, and Identification. Theranostics 2020, 10, 3503–3517. [Google Scholar] [CrossRef]
- Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA Binding Protein Quaking Regulates Formation of CircRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Papatsirou, M.; Artemaki, P.I.; Karousi, P.; Scorilas, A.; Kontos, C.K. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers 2021, 13, 2744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, X.-O.; Chen, T.; Xiang, J.-F.; Yin, Q.-F.; Xing, Y.-H.; Zhu, S.; Yang, L.; Chen, L.-L. Circular Intronic Long Noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-X.; Li, X.; Nan, F.; Jiang, S.; Gao, X.; Guo, S.-K.; Xue, W.; Cui, Y.; Dong, K.; Ding, H.; et al. Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity. Cell 2019, 177, 865–880.e21. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, G.; Yan, X.; Lv, Z.; Yin, H.; Zhang, S.; Song, W.; Li, X.; Li, L.; Du, Z.; et al. A Novel FLI1 Exonic Circular RNA Promotes Metastasis in Breast Cancer by Coordinately Regulating TET1 and DNMT1. Genome Biol. 2018, 19, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Xu, K.; Fu, L.; Wang, Q.; Chang, Z.; Zou, H.; Zhang, Y.; Li, Y. Revealing Epigenetic Factors of CircRNA Expression by Machine Learning in Various Cellular Contexts. iScience 2020, 23, 101842. [Google Scholar] [CrossRef]
- Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; et al. Translation of CircRNAs. Mol. Cell 2017, 66, 9–21.e7. [Google Scholar] [CrossRef] [Green Version]
- Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; et al. Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis. Mol. Cell 2017, 66, 22–37.e9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; et al. A Novel Protein Encoded by the Circular Form of the SHPRH Gene Suppresses Glioma Tumorigenesis. Oncogene 2018, 37, 1805–1814. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J. Natl. Cancer Inst. 2018, 110, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Zhang, X.-O.; Zhang, Y.; Ma, X.-K.; Chen, L.-L.; Yang, L. CircRNA-Derived Pseudogenes. Cell Res. 2016, 26, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Zimta, A.-A.; Harangus, A.; Iurca, I.; Irimie, A.; Coza, O.; Berindan-Neagoe, I. The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.C. Circular RNAs Act as MiRNA Sponges. In Circular RNAs: Biogenesis and Functions; Advances in Experimental Medicine and Biology; Xiao, J., Ed.; Springer: Singapore, 2018; pp. 67–79. ISBN 9789811314261. [Google Scholar]
- Liu, J.; Zhang, X.; Yan, M.; Li, H. Emerging Role of Circular RNAs in Cancer. Front. Oncol. 2020, 10, 663. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xu, T.; Hu, W.; Tan, Y.; Wang, D.; Wang, Y.; Zhao, C.; Yi, Y.; Xiong, M.; Lv, W.; et al. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, W.; Yang, S.; Xu, Z.; Hu, J.; Zhang, H.; Zhong, S.; Tang, J. The Emerging Role of Circular RNAs in Breast Cancer. Biosci. Rep. 2019, 39, BSR20190621. [Google Scholar] [CrossRef]
- Pandey, P.R.; Munk, R.; Kundu, G.; De, S.; Abdelmohsen, K.; Gorospe, M. Methods for Analysis of Circular RNAs. Wiley Interdiscip Rev. RNA 2020, 11, e1566. [Google Scholar] [CrossRef] [PubMed]
- Jakobi, T.; Dieterich, C. Computational Approaches for Circular RNA Analysis. Wiley Interdiscip Rev. RNA 2019, 10, e1528. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Yang, J.; Zhao, F. Accurate Quantification of Circular RNAs Identifies Extensive Circular Isoform Switching Events. Nat. Commun. 2020, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Zhou, Y.; Jia, E.; Liu, Z.; Pan, M.; Bai, Y.; Zhao, X.; Ge, Q. Comparative Analysis of Circular RNA Enrichment Methods. RNA Biol. 2022, 19, 55–67. [Google Scholar] [CrossRef]
- Liang, H.-F.; Zhang, X.-Z.; Liu, B.-G.; Jia, G.-T.; Li, W.-L. Circular RNA Circ-ABCB10 Promotes Breast Cancer Proliferation and Progression through Sponging MiR-1271. Am. J. Cancer Res. 2017, 7, 1566–1576. [Google Scholar]
- Liang, G.; Liu, Z.; Tan, L.; Su, A.; Jiang, W.G.; Gong, C. HIF1α-Associated CircDENND4C Promotes Proliferation of Breast Cancer Cells in Hypoxic Environment. Anticancer Res. 2017, 37, 4337–4343. [Google Scholar] [PubMed] [Green Version]
- Ren, S.; Liu, J.; Feng, Y.; Li, Z.; He, L.; Li, L.; Cao, X.; Wang, Z.; Zhang, Y. Knockdown of CircDENND4C Inhibits Glycolysis, Migration and Invasion by up-Regulating MiR-200b/c in Breast Cancer under Hypoxia. J. Exp. Clin. Cancer Res. 2019, 38, 388. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; et al. Circular RNA Profiling Reveals an Abundant CircHIPK3 That Regulates Cell Growth by Sponging Multiple MiRNAs. Nat. Commun. 2016, 7, 11215. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhao, H.; Lin, L.; Liu, J.; Bai, J.; Wang, G. Circular RNA CirCHIPK3 Promotes Cell Proliferation and Invasion of Breast Cancer by Sponging MiR-193a/HMGB1/PI3K/AKT Axis. Thorac. Cancer 2020, 11, 2660–2671. [Google Scholar] [CrossRef]
- Luo, N.; Liu, S.; Li, X.; Hu, Y.; Zhang, K. Circular RNA CircHIPK3 Promotes Breast Cancer Progression via Sponging MiR-326. Cell Cycle 2021, 20, 1320–1333. [Google Scholar] [CrossRef]
- Song, X.; Liang, Y.; Sang, Y.; Li, Y.; Zhang, H.; Chen, B.; Du, L.; Liu, Y.; Wang, L.; Zhao, W.; et al. CircHMCU Promotes Proliferation and Metastasis of Breast Cancer by Sponging the Let-7 Family. Mol. Ther.-Nucleic Acids 2020, 20, 518–533. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, H.; Li, Q.; Yi, F.; Liu, Y. A Novel Circular RNA CircPTCD3 Promotes Breast Cancer Progression Through Sponging MiR-198. Cancer Manag. Res. 2021, 13, 8435–8443. [Google Scholar] [CrossRef]
- Cao, L.; Wang, M.; Dong, Y.; Xu, B.; Chen, J.; Ding, Y.; Qiu, S.; Li, L.; Karamfilova Zaharieva, E.; Zhou, X.; et al. Circular RNA CircRNF20 Promotes Breast Cancer Tumorigenesis and Warburg Effect through MiR-487a/HIF-1α/HK2. Cell Death Dis. 2020, 11, 145. [Google Scholar] [CrossRef]
- Zhao, C.; Li, L.; Li, Z.; Xu, J.; Yang, Q.; Shi, P.; Zhang, K.; Jiang, R. A Novel Circular RNA Hsa_circRPPH1_015 Exerts an Oncogenic Role in Breast Cancer by Impairing MiRNA-326-Mediated ELK1 Inhibition. Front. Oncol. 2020, 10, 906. [Google Scholar] [CrossRef]
- Ameli-Mojarad, M.; Ameli-Mojarad, M.; Nourbakhsh, M.; Nazemalhosseini-Mojarad, E. Circular RNA Hsa_circ_0005046 and Hsa_circ_0001791 May Become Diagnostic Biomarkers for Breast Cancer Early Detection. J. Oncol. 2021, 2021, 2303946. [Google Scholar] [CrossRef]
- Rao, A.K.D.M.; Arvinden, V.R.; Ramasamy, D.; Patel, K.; Meenakumari, B.; Ramanathan, P.; Sundersingh, S.; Sridevi, V.; Rajkumar, T.; Herceg, Z.; et al. Identification of Novel Dysregulated Circular RNAs in Early-Stage Breast Cancer. J. Cell Mol. Med. 2021, 25, 3912–3921. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yao, Y.; Leng, K.; Ji, D.; Qu, L.; Liu, Y.; Cui, Y. Increased Expression of Circular RNA Circ_0005230 Indicates Dismal Prognosis in Breast Cancer and Regulates Cell Proliferation and Invasion via MiR-618/ CBX8 Signal Pathway. CPB 2018, 51, 1710–1722. [Google Scholar] [CrossRef] [PubMed]
- Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of Circular RNAs as a Promising New Class of Diagnostic Biomarkers for Human Breast Cancer. Oncotarget 2017, 8, 44096–44107. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; He, Y.; Zhang, X.; Guo, L. Circular RNA Hsa_circ_0103552 Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells through Upregulating Cysteine-Rich Angiogenic Inducer 61 (CYR61) Expression via Sponging MicroRNA-515-5p. Tohoku J. Exp. Med. 2021, 255, 171–181. [Google Scholar] [CrossRef]
- Meng, L.; Chang, S.; Sang, Y.; Ding, P.; Wang, L.; Nan, X.; Xu, R.; Liu, F.; Gu, L.; Zheng, Y.; et al. Circular RNA CircCCDC85A Inhibits Breast Cancer Progression via Acting as a MiR-550a-5p Sponge to Enhance MOB1A Expression. Breast Cancer Res. 2022, 24, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Su, X.; Guo, Z.; Jiang, X.; Li, X. Circular RNA La-Related RNA-Binding Protein 4 Correlates with Reduced Tumor Stage, as Well as Better Prognosis, and Promotes Chemosensitivity to Doxorubicin in Breast Cancer. J. Clin. Lab. Anal. 2020, 34, e23272. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, H. Circular RNA VRK1 Correlates with Favourable Prognosis, Inhibits Cell Proliferation but Promotes Apoptosis in Breast Cancer. J. Clin. Lab. Anal. 2020, 34, e22980. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Zheng, M.; Wang, H. Circular RNA Hsa_circ_0072309 Inhibits Proliferation and Invasion of Breast Cancer Cells via Targeting MiR-492. Cancer Manag. Res. 2019, 11, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Xing, L.; Zheng, X.; Sun, Y.; Wang, X.; Chen, J. The CircRNA CircAGFG1 Acts as a Sponge of MiR-195-5p to Promote Triple-Negative Breast Cancer Progression through Regulating CCNE1 Expression. Mol. Cancer 2019, 18, 4. [Google Scholar] [CrossRef]
- Chen, B.; Wei, W.; Huang, X.; Xie, X.; Kong, Y.; Dai, D.; Yang, L.; Wang, J.; Tang, H.; Xie, X. CircEPSTI1 as a Prognostic Marker and Mediator of Triple-Negative Breast Cancer Progression. Theranostics 2018, 8, 4003–4015. [Google Scholar] [CrossRef]
- Ye, F.; Gao, G.; Zou, Y.; Zheng, S.; Zhang, L.; Ou, X.; Xie, X.; Tang, H. CircFBXW7 Inhibits Malignant Progression by Sponging MiR-197-3p and Encoding a 185-Aa Protein in Triple-Negative Breast Cancer. Mol. Ther. Nucleic Acids 2019, 18, 88–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Liu, P.; Xie, X.; Zhou, Y.; Liao, Q.; Xiong, W.; Li, X.; Li, G.; Zeng, Z.; Tang, H. CircGFRA1 and GFRA1 Act as CeRNAs in Triple Negative Breast Cancer by Regulating MiR-34a. J. Exp. Clin. Cancer Res. 2017, 36, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.-R.; Huang, Q.; Zheng, Z.-H.; Zhang, Z.-T.; Guo, G.-L. CircGFRA1 Affects the Sensitivity of Triple-Negative Breast Cancer Cells to Paclitaxel via the MiR-361-5p/TLR4 Pathway. J. Biochem. 2021, 169, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Huang, X.; Wang, J.; Yang, L.; Kong, Y.; Gao, G.; Zhang, L.; Chen, Z.-S.; Xie, X. CircKIF4A Acts as a Prognostic Factor and Mediator to Regulate the Progression of Triple-Negative Breast Cancer. Mol. Cancer 2019, 18, 23. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Wang, R.; Wang, X.; Liu, J.; Zhang, M.; Feng, K.; Wang, X. CircRNA Circ-PDCD11 Promotes Triple-Negative Breast Cancer Progression via Enhancing Aerobic Glycolysis. Cell Death Discov. 2021, 7, 218. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, M.; Xing, L.; Yang, R.; Wang, X.; Jiang, R.; Zhang, L.; Chen, J. The CircRNA CircSEPT9 Mediated by E2F1 and EIF4A3 Facilitates the Carcinogenesis and Development of Triple-Negative Breast Cancer. Mol. Cancer 2020, 19, 73. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, Q.; Wang, Y.; Li, X.; Wang, R.; Kang, Y.; Xue, X.; Meng, R.; Wei, Q.; Feng, X. Upregulation of Circ-UBAP2 Predicts Poor Prognosis and Promotes Triple-Negative Breast Cancer Progression through the MiR-661/MTA1 Pathway. Biochem. Biophys. Res. Commun. 2018, 505, 996–1002. [Google Scholar] [CrossRef]
- Dou, D.; Ren, X.; Han, M.; Xu, X.; Ge, X.; Gu, Y.; Wang, X.; Zhao, S. CircUBE2D2 (Hsa_circ_0005728) Promotes Cell Proliferation, Metastasis and Chemoresistance in Triple-Negative Breast Cancer by Regulating MiR-512-3p/CDCA3 Axis. Cancer Cell Int. 2020, 20, 454. [Google Scholar] [CrossRef]
- Xu, J.-Z.; Shao, C.-C.; Wang, X.-J.; Zhao, X.; Chen, J.-Q.; Ouyang, Y.-X.; Feng, J.; Zhang, F.; Huang, W.-H.; Ying, Q.; et al. CircTADA2As Suppress Breast Cancer Progression and Metastasis via Targeting MiR-203a-3p/SOCS3 Axis. Cell Death Dis. 2019, 10, 175. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhang, X.; Zai, H.-Y.; Jiang, W.; Zhang, K.-J.; He, Y.-Q.; Hu, Y. CircSLC8A1 Sponges MiR-671 to Regulate Breast Cancer Tumorigenesis via PTEN/PI3k/Akt Pathway. Genomics 2021, 113, 398–410. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Liang, G.; Ling, Y.; Tan, W.; Tan, L.; Andrews, R.; Zhong, W.; Zhang, X.; Song, E.; et al. Circular RNA Hsa_circ_001783 Regulates Breast Cancer Progression via Sponging MiR-200c-3p. Cell Death Dis. 2019, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.-C.; Xu, Z.; Zhong, S.-L.; Zhang, H.; Jiang, L.-H.; Chen, X.; Zhu, L.-P.; Li, J.; Zhou, S.-Y.; Yang, S.-J.; et al. Circular RNA CircASS1 Is Downregulated in Breast Cancer Cells MDA-MB-231 and Suppressed Invasion and Migration. Epigenomics 2019, 11, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, J.; Jin, W.; Sun, Y.; Xu, Y.; Wang, Y.; Liang, X.; Su, D. CircNR3C2 Promotes HRD1-Mediated Tumor-Suppressive Effect via Sponging MiR-513a-3p in Triple-Negative Breast Cancer. Mol. Cancer 2021, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Darbeheshti, F.; Zokaei, E.; Mansoori, Y.; Emadi Allahyari, S.; Kamaliyan, Z.; Kadkhoda, S.; Tavakkoly Bazzaz, J.; Rezaei, N.; Shakoori, A. Circular RNA Hsa_circ_0044234 as Distinct Molecular Signature of Triple Negative Breast Cancer: A Potential Regulator of GATA3. Cancer Cell Int. 2021, 21, 312. [Google Scholar] [CrossRef] [PubMed]
- Kurosaki, M.; Terao, M.; Liu, D.; Zanetti, A.; Guarrera, L.; Bolis, M.; Gianni’, M.; Paroni, G.; Goodall, G.J.; Garattini, E. A DOCK1 Gene-Derived Circular RNA Is Highly Expressed in Luminal Mammary Tumours and Is Involved in the Epithelial Differentiation, Growth, and Motility of Breast Cancer Cells. Cancers 2021, 13, 5325. [Google Scholar] [CrossRef]
- Galasso, M.; Costantino, G.; Pasquali, L.; Minotti, L.; Baldassari, F.; Corrà, F.; Agnoletto, C.; Volinia, S. Profiling of the Predicted Circular RNAs in Ductal In Situ and Invasive Breast Cancer: A Pilot Study. Int. J. Genomics 2016, 2016, 4503840. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Zhao, Y.; Zheng, J.; Jin, S.; Liu, Z.; Wang, T. Circular RNA: A Potential Diagnostic, Prognostic, and Therapeutic Biomarker for Human Triple-Negative Breast Cancer. Mol. Ther. Nucleic Acids 2021, 26, 63–80. [Google Scholar] [CrossRef]
- Nair, A.A.; Niu, N.; Tang, X.; Thompson, K.J.; Wang, L.; Kocher, J.-P.; Subramanian, S.; Kalari, K.R. Circular RNAs and Their Associations with Breast Cancer Subtypes. Oncotarget 2016, 7, 80967–80979. [Google Scholar] [CrossRef] [Green Version]
- Coscujuela Tarrero, L.; Ferrero, G.; Miano, V.; De Intinis, C.; Ricci, L.; Arigoni, M.; Riccardo, F.; Annaratone, L.; Castellano, I.; Calogero, R.A.; et al. Luminal Breast Cancer-Specific Circular RNAs Uncovered by a Novel Tool for Data Analysis. Oncotarget 2018, 9, 14580–14596. [Google Scholar] [CrossRef] [Green Version]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid Biopsy Enters the Clinic—Implementation Issues and Future Challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef]
- De Rubis, G.; Rajeev Krishnan, S.; Bebawy, M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol. Sci. 2019, 40, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Xiao, J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine 2018, 34, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, Y.; Su, X.; Wang, P.; Lin, W. The Value of Circulating Circular RNA in Cancer Diagnosis, Monitoring, Prognosis, and Guiding Treatment. Front. Oncol. 2021, 11, 4158. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhou, S.; Xu, H.; Wang, D.; Feng, J.; Zhao, J.; Zhong, S. Circular RNA Expression in Exosomes Derived from Breast Cancer Cells and Patients. Epigenomics 2019, 11, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Wang, D.-D.; Zhou, S.-Y.; Zhang, Q.; Wang, J.-Y.; Zhong, S.-L.; Zhang, H.; Wang, X.-Y.; Xia, X.; Chen, W.; et al. Identification of CircRNA-MiRNA Networks for Exploring an Underlying Prognosis Strategy for Breast Cancer. Epigenomics 2020, 12, 101–125. [Google Scholar] [CrossRef]
- Lin, L.; Cai, G.-X.; Zhai, X.-M.; Yang, X.-X.; Li, M.; Li, K.; Zhou, C.-L.; Liu, T.-C.; Han, B.-W.; Liu, Z.-J.; et al. Plasma-Derived Extracellular Vesicles Circular RNAs Serve as Biomarkers for Breast Cancer Diagnosis. Front. Oncol. 2021, 11, 4575. [Google Scholar] [CrossRef]
- Smid, M.; Wilting, S.M.; Uhr, K.; Rodríguez-González, F.G.; de Weerd, V.; Prager-Van der Smissen, W.J.C.; van der Vlugt-Daane, M.; van Galen, A.; Nik-Zainal, S.; Butler, A.; et al. The Circular RNome of Primary Breast Cancer. Genome Res. 2019, 29, 356–366. [Google Scholar] [CrossRef]
- Yin, W.-B.; Yan, M.-G.; Fang, X.; Guo, J.-J.; Xiong, W.; Zhang, R.-P. Circulating Circular RNA Hsa_circ_0001785 Acts as a Diagnostic Biomarker for Breast Cancer Detection. Clin. Chim. Acta 2018, 487, 363–368. [Google Scholar] [CrossRef]
- Hu, Y.; Song, Q.; Zhao, J.; Ruan, J.; He, F.; Yang, X.; Yu, X. Identification of Plasma Hsa_circ_0008673 Expression as a Potential Biomarker and Tumor Regulator of Breast Cancer. J. Clin. Lab. Anal. 2020, 34, e23393. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Zuo, Z.; Tang, J.; Song, Y.; Cao, F.; Yu, X.; Liu, S.; Cai, X. Circ_0008673 Regulates Breast Cancer Malignancy by MiR-153-3p/CFL2 Axis. Arch. Gynecol. Obstet. 2022, 305, 223–232. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Hu, G.; Zhang, Y.; Feng, Y.; Jiang, Y.; Wang, J. Profiling and Integrated Analysis of Differentially Expressed CircRNAs as Novel Biomarkers for Breast Cancer. J. Cell. Physiol. 2020, 235, 7945–7959. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, F.; Wu, L.; Zhang, X.; Tian, J.; Li, J.; Cao, J.; Ma, Y.; Zhang, L.; Wang, L. Identification of Hsa_circ_0104824 as a Potential Biomarkers for Breast Cancer. Technol. Cancer Res. Treat. 2020, 19, 153303382096074. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Ling, Y.; Mehrpour, M.; Saw, P.E.; Liu, Z.; Tan, W.; Tian, Z.; Zhong, W.; Lin, W.; Luo, Q.; et al. Autophagy-Associated CircRNA CircCDYL Augments Autophagy and Promotes Breast Cancer Progression. Mol. Cancer 2020, 19, 65. [Google Scholar] [CrossRef]
- Jia, Q.; Ye, L.; Xu, S.; Xiao, H.; Xu, S.; Shi, Z.; Li, J.; Chen, Z. Circular RNA 0007255 Regulates the Progression of Breast Cancer through MiR-335-5p/SIX2 Axis. Thorac. Cancer 2020, 11, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Memczak, S.; Papavasileiou, P.; Peters, O.; Rajewsky, N. Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood. PLoS ONE 2015, 10, e0141214. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA Is Enriched and Stable in Exosomes: A Promising Biomarker for Cancer Diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Zhou, T.; Gu, W. The Potential of Using Blood Circular RNA as Liquid Biopsy Biomarker for Human Diseases. Protein Cell 2021, 12, 911–946. [Google Scholar] [CrossRef]
- De Palma, F.D.E.; Luglio, G.; Tropeano, F.P.; Pagano, G.; D’Armiento, M.; Kroemer, G.; Maiuri, M.C.; De Palma, G.D. The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Int. J. Mol. Sci. 2020, 21, 7040. [Google Scholar] [CrossRef]
- Omid-Shafaat, R.; Moayeri, H.; Rahimi, K.; Menbari, M.-N.; Vahabzadeh, Z.; Hakhamaneshi, M.-S.; Nouri, B.; Ghaderi, B.; Abdi, M. Serum Circ-FAF1/Circ-ELP3: A Novel Potential Biomarker for Breast Cancer Diagnosis. J. Clin. Lab. Anal. 2021, 35, e24008. [Google Scholar] [CrossRef]
- Fu, B.; Liu, W.; Zhu, C.; Li, P.; Wang, L.; Pan, L.; Li, K.; Cai, P.; Meng, M.; Wang, Y.; et al. Circular RNA CircBCBM1 Promotes Breast Cancer Brain Metastasis by Modulating MiR-125a/BRD4 Axis. Int. J. Biol. Sci. 2021, 17, 3104–3117. [Google Scholar] [CrossRef]
- El Sayed, R.; El Jamal, L.; El Iskandarani, S.; Kort, J.; Abdel Salam, M.; Assi, H. Endocrine and Targeted Therapy for Hormone-Receptor-Positive, HER2-Negative Advanced Breast Cancer: Insights to Sequencing Treatment and Overcoming Resistance Based on Clinical Trials. Front. Oncol. 2019, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Huang, J.-J.; Hua, X.; Zhao, J.-L.; Lin, Y.; Zhang, Y.-Q.; Wu, Z.; Zhang, L.; Bi, X.; Xia, W.; et al. Trastuzumab plus Endocrine Therapy or Chemotherapy as First-Line Treatment for Metastatic Breast Cancer with Hormone Receptor-Positive and HER2-Positive: The Sysucc-002 Randomized Clinical Trial. JCO 2021, 39, 1003-1003. [Google Scholar] [CrossRef]
- Martínez-Sáez, O.; Prat, A. Current and Future Management of HER2-Positive Metastatic Breast Cancer. JCO Oncol. Pract. 2021, 17, 594–604. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Bang, Y.-J. HER2-Targeted Therapies—A Role beyond Breast Cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment Landscape of Triple-Negative Breast Cancer—Expanded Options, Evolving Needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. Int. J. Environ. Res. Public Health 2020, 17, 2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroemer, G.; Senovilla, L.; Galluzzi, L.; André, F.; Zitvogel, L. Natural and Therapy-Induced Immunosurveillance in Breast Cancer. Nat. Med. 2015, 21, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Zepeda, A.B.; Castillo, R.L.; Figueroa, C.A.; Arias, C.; Figueroa, E.; Farías, J.G. Molecular Aspects of Breast Cancer Resistance to Drugs (Review). Int. J. Oncol. 2015, 47, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance Mechanisms of Breast Cancer and Their Countermeasures. Biomed. Pharmacother. 2019, 114, 108800. [Google Scholar] [CrossRef]
- Luque-Bolivar, A.; Pérez-Mora, E.; Villegas, V.E.; Rondón-Lagos, M. Resistance and Overcoming Resistance in Breast Cancer. BCTT 2020, 12, 211–229. [Google Scholar] [CrossRef]
- Xu, T.; Wang, M.; Jiang, L.; Ma, L.; Wan, L.; Chen, Q.; Wei, C.; Wang, Z. CircRNAs in Anticancer Drug Resistance: Recent Advances and Future Potential. Mol. Cancer 2020, 19, 127. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Gu, J.; Wang, X.; Wang, Y.; Feng, M.; Zhou, D.; Guo, J.; Zhou, M. Inhibition of Circular RNA CDR1as Increases Chemosensitivity of 5-FU-resistant BC Cells through Up-regulating MiR-7. J. Cell. Mol. Med. 2019, 23, 3166–3177. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, X.; Wang, X.; Gu, J.; Zhou, D.; Wang, Y.; Yin, B.; Guo, J.; Zhou, M. Silencing CDR1as Enhances the Sensitivity of Breast Cancer Cells to Drug Resistance by Acting as a MiR-7 Sponge to down-Regulate REGγ. J. Cell. Mol. Med. 2019, 23, 4921–4932. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, J.; Tian, Y.; Gao, Y.; Dong, X.; Chen, W.; Yuan, X.; Yin, W.; Xu, J.; Chen, K.; et al. CircRNA Inhibits DNA Damage Repair by Interacting with Host Gene. Mol. Cancer 2020, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, X.; Li, Y.; Su, P.; Han, D.; Ma, T.; Guo, R.; Chen, B.; Zhao, W.; Sang, Y.; et al. CircKDM4C Suppresses Tumor Progression and Attenuates Doxorubicin Resistance by Regulating MiR-548p/PBLD Axis in Breast Cancer. Oncogene 2019, 38, 6850–6866. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, X.; Liu, B.; Meng, D.; Fang, K.; Guo, Z.; Li, L. Screening Circular RNA Related to Chemotherapeutic Resistance in Breast Cancer. Epigenomics 2017, 9, 1175–1188. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, D.; Shen, P.; Yu, Y.; Yan, Y.; You, W. Hsa_circ_0092276 Promotes Doxorubicin Resistance in Breast Cancer Cells by Regulating Autophagy via MiR-348/ATG7 Axis. Transl. Oncol. 2021, 14, 101045. [Google Scholar] [CrossRef]
- Liang, Y.; Song, X.; Li, Y.; Ma, T.; Su, P.; Guo, R.; Chen, B.; Zhang, H.; Sang, Y.; Liu, Y.; et al. Targeting the CircBMPR2/MiR-553/USP4 Axis as a Potent Therapeutic Approach for Breast Cancer. Mol. Ther. Nucleic Acids 2019, 17, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.; Chen, B.; Song, X.; Li, Y.; Liang, Y.; Han, D.; Zhang, N.; Zhang, H.; Liu, Y.; Chen, T.; et al. CircRNA_0025202 Regulates Tamoxifen Sensitivity and Tumor Progression via Regulating the MiR-182-5p/FOXO3a Axis in Breast Cancer. Mol. Ther. 2019, 27, 1638–1652. [Google Scholar] [CrossRef]
- Huang, P.; Li, F.; Mo, Z.; Geng, C.; Wen, F.; Zhang, C.; Guo, J.; Wu, S.; Li, L.; Brünner, N.; et al. A Comprehensive RNA Study to Identify CircRNA and MiRNA Biomarkers for Docetaxel Resistance in Breast Cancer. Front. Oncol. 2021, 11, 669270. [Google Scholar] [CrossRef]
- Ma, J.; Fang, L.; Yang, Q.; Hibberd, S.; Du, W.W.; Wu, N.; Yang, B.B. Posttranscriptional Regulation of AKT by Circular RNA Angiomotin- like 1 Mediates Chemoresistance against Paclitaxel in Breast Cancer Cells. Aging (Albany NY) 2019, 11, 11369–11381. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.; Li, Y.; Zhang, X.; Huang, G. Circ-RNF111 Contributes to Paclitaxel Resistance in Breast Cancer by Elevating E2F3 Expression via MiR-140-5p. Thorac. Cancer 2020, 11, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Gong, P.; Yang, Y.; Yang, C.; Yang, B.; Ren, L. Circ-ABCB10 Contributes to Paclitaxel Resistance in Breast Cancer Through Let-7a-5p/DUSP7 Axis. Cancer Manag. Res. 2020, 12, 2327–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhong, R.; Deng, C.; Zhou, Z. Circle RNA CircABCB10 Modulates PFN2 to Promote Breast Cancer Progression, as Well as Aggravate Radioresistance Through Facilitating Glycolytic Metabolism Via MiR-223-3p. Cancer Biother. Radiopharm. 2021, 36, 477–490. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Yang, X.; Zhang, M.; Luo, J.; Zhou, H.; Huang, N.; Xiao, F.; Lai, B.; Lv, W.; et al. Circular HER2 RNA Positive Triple Negative Breast Cancer Is Sensitive to Pertuzumab. Mol. Cancer 2020, 19, 142. [Google Scholar] [CrossRef]
- Shao, T.; Pan, Y.; Xiong, X. Circular RNA: An Important Player with Multiple Facets to Regulate Its Parental Gene Expression. Mol. Ther.-Nucleic Acids 2021, 23, 369–376. [Google Scholar] [CrossRef]
- Xu, J.; Chen, X.; Sun, Y.; Shi, Y.; Teng, F.; Lv, M.; Liu, C.; Jia, X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front. Oncol. 2021, 11, 2660. [Google Scholar] [CrossRef]
- He, A.T.; Liu, J.; Li, F.; Yang, B.B. Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges. Signal Transduct. Target. Ther. 2021, 6, 185. [Google Scholar] [CrossRef]
circRNA | circBase ID | Tissue Comparison | Expression in T | Clinical Interest | Diagnostic/Prognostic Value (ROC/KM Curve) | Experimental Approach |
---|---|---|---|---|---|---|
circABCB10 | hsa_circ_008717 | T vs. N | up | diagnosis | - | ex vivo, in vitro, in silico [51] |
circDENND4C | - | diagnosis, prognosis | - | ex vivo, in vitro, in vivo, in silico [52,53] | ||
circHIPK3 | hsa_circ_0000284 | diagnosis, prognosis | - | ex vivo, in vitro, in vivo, in silico [54,55,56] | ||
circHMCU | hsa_circ_0000247 | diagnosis, prognosis | HR = 3.09, p = 0.039 | ex vivo, in vitro, in vivo, in silico [57] | ||
circPTCD3 | hsa_circ_0055478 | diagnosis | - | ex vivo, in vitro, in vivo [58] | ||
cirRNF20 | hsa_circ_0087784 | diagnosis, prognosis | - | ex vivo, in vitro, in vivo [59] | ||
circRPPH1_015 | hsa_circ_0000517 | diagnosis, prognosis | - | ex vivo, in vitro, in vivo, in silico [60] | ||
- | hsa_circ_0001791 | early stage diagnosis | AUC = 1.0, p < 0.0001 | ex vivo, in silico [61] | ||
- | hsa_circ_0002496 | early stage diagnosis | - | ex vivo, in silico [62] | ||
- | hsa_circ_0005046 | early stage diagnosis | AUC = 0.77, p = 0.02 | ex vivo, in silico [61] | ||
- | hsa_circ_0005230 | diagnosis, prognosis | HR = 1.945, p = 0.042 | ex vivo, in vitro, in silico [63] | ||
- | hsa_circ_0006743 | early stage diagnosis | - | ex vivo, in silico [62] | ||
- | hsa_circ_103110 | diagnosis | AUC = 0.63, p = 0.016 | ex vivo, in silico [64] | ||
- | hsa_circ_103552 | diagnosis, prognosis | - | ex vivo, in vitro, in silico [65] | ||
- | hsa_circ_104689 | diagnosis | AUC = 0.61, p = 0.041 | ex vivo, in silico [64] | ||
- | hsa_circ_104821 | diagnosis | AUC = 0.60, p = 0.031 | ex vivo, in silico [64] | ||
circCCDC85A | down | diagnosis | - | ex vivo, in vitro, in vivo, in silico [66] | ||
circLARP4 | - | diagnosis, prognosis | - | ex vivo, in vitro, in silico [67] | ||
circVRK1 | hsa_circ_0141206 | diagnosis, prognosis | AUC = 0.720, Sensitivity = 61.7%, Specificity = 79.1%, HR = 0.375, p = 0.002 | ex vivo, in vitro, in silico [68] | ||
- | hsa_circ_006054 | diagnosis | AUC = 0.71, p < 0.001 | ex vivo, in silico [64] | ||
- | hsa_circ_0072309 | diagnosis, prognosis | - | ex vivo, in vitro, in vivo, in silico [69] | ||
- | hsa_circ_100219 | diagnosis | AUC = 0.78, p < 0.001 | ex vivo, in silico [64] | ||
- | hsa_circ_406697 | diagnosis | AUC = 0.64, p < 0.008 | ex vivo, in silico [64] | ||
circRNA | circBase ID | Tissue comparison | Expression in TNBC | Clinical interest | Diagnostic/prognostic value (ROC/KM curve) | Experimental approach |
circAGFG1 | - | TNBC vs. N | up | diagnosis, prognosis | AUC = 0.767, HR = 6.072, p < 0.001 | ex vivo, in vitro, in vivo, in silico [70] |
circEPSTI1 | - | - | ex vivo, in vitro, in vivo, in silico [71] | |||
circFBXW7 | hsa_circ_0001451 | HR = 0.215, p = 0.001 | ex vivo, in vitro, in vivo, in silico [72] | |||
circGFRA1 | hsa_circ_005239 | - | ex vivo, in vitro, in vivo, in silico [73,74] | |||
circKIF4A | - | - | ex vivo, in vitro, in vivo, in silico [75] | |||
circPDCD11 | hsa_circ_0019853 | - | ex vivo, in vitro, in vivo, in silico [76] | |||
circSEPT9 | hsa_circ_0005320 | AUC = 0.711, Specificity = 75%, Sensitivity = 63.3%, HR = 3.042, p = 0.012 | ex vivo, in vitro, in vivo, in silico [77] | |||
circUBAP2 | hsa_circ_0001846 | - | ex vivo, in vitro, in vivo, in silico [78] | |||
circUBE2D2 | hsa_circ_0005728 | - | ex vivo, in vitro, in vivo, in silico [79] | |||
circTADA2A-E6 | hsa_circ_0006220 | down | AUC = 0.855, p < 0.0001 | ex vivo, in vitro, in vivo, in silico [80] | ||
circTADA2A-E5/E6 | hsa_circ_0043278 | AUC = 0.94, p < 0.001 | ex vivo, in vitro, in vivo, in silico [80] | |||
circRNA | circBase ID | Cell linecomparison | Expression in TNBC | Clinical interest | Diagnostic/prognostic value (ROC/KM curve) | Experimental approach |
circSLC8A1 | - | TNBC vs. luminal | up | diagnosis, BC subtypedistinction | - | ex vivo, in vitro, in vivo, in silico [81] |
- | hsa_circ_001783 | TNBC vs. luminal/HER2 | diagnosis, prognosis | HR = 9.114, p = 0.001 | ex vivo, in vitro, in silico [82] | |
circASS1 | hsa_circ_0089105 | TNBC vs. luminal | down | diagnosis | - | in vitro, in silico [83] |
circNR3C2 | hsa_circ_0071127 | TNBC vs. luminal | diagnosis, prognosis | - | ex vivo, in vitro, in vivo, in silico [84] | |
- | hsa_circ_0044234 | TNBC vs. non-TNBC | diagnosis, BC subtype distinction | AUC = 0.82, p < 0.0001, Sensitivity = 72.5%, Specificity = 83.6%, HR = 0.47, p = 0.058 | ex vivo, in vitro, in silico [85] | |
circRNA | circBase ID | Cell line comparison | Expression in luminal/epithelial TNBC | Clinical interest | Diagnostic/prognostic value (ROC/KM curve) | Experimental approach |
circDOCK1-1 | hsa_circ_0020397 | luminal/epithelial TNBC vs. mesenchymal TNBC cell lines | up | diagnosis, BC subtype distinction | - | in vitro, in silico [86] |
circRNA | Biological Source | Comparison | Expression in Tumor Specimens | Clinical Interest | Diagnostic Value (ROC) | Experimental Approach |
---|---|---|---|---|---|---|
hsa_circ_0009634 | exosomes (serum) | metastatic T vs. localized T vs. N | up | diagnosis | - | ex vivo, in vitro, in silico [95] |
hsa_circ_0020707 | diagnosis | - | ex vivo, in vitro, in silico [95] | |||
hsa_circ_0064923 | diagnosis | - | ex vivo, in vitro, in silico [95] | |||
hsa_circ_0087064 | diagnosis | - | ex vivo, in vitro, in silico [95] | |||
hsa_circ_0104852 | diagnosis | - | ex vivo, in vitro, in silico [95] | |||
circRNA_0005795 | T vs. N | down | diagnosis | - | ex vivo, in vitro, in silico [96] | |
circRNA_0088088 | diagnosis | - | ex vivo, in vitro, in silico [96] | |||
BCexoc (hsa_circ_0002190, hsa_circ_0007177, hsa_circ_0000642, hsa_circ_0001439, hsa_circ_0001417, hsa_circ_0005552, hsa_circ_0001073, hsa_circ_0000267, hsa_circ_0006404) | exosomes (plasma) | early diagnosis | AUC = 0.83 | ex vivo, in silico [97] | ||
circCNOT2 | plasma | T vs. N | up | prognosis, prediction of therapy response | - | ex vivo, in vitro, in silico [98] |
hsa_circ_0001785 | early diagnosis, prediction of therapy response | AUC = 0.784, Sensitivity = 0.764, Specificity = 0.699 | ex vivo, in silico [99] | |||
hsa_circ_0008673 | diagnosis, prognosis | AUC = 0.833, Specificity = 97.10%, Sensitivity = 55%, HR = 1.742, p = 0.047 | ex vivo, in vitro, in silico [100,101] | |||
hsa_circ_0017536 | diagnosis | AUC = 615, p < 0.05 | ex vivo, in vitro, in silico [102] | |||
hsa_circ_0017650 | diagnosis | AUC = 0.758, p < 0.05 | ex vivo, in vitro, in silico [102] | |||
hsa_circ_0069094 | diagnosis | AUC = 0.681, p < 0.05 | ex vivo, in vitro, in silico [102] | |||
hsa_circ_0079876 | diagnosis | AUC = 0.623, p < 0.05 | ex vivo, in vitro, in silico [102] | |||
hsa_circ_0104824 | diagnosis | AUC = 0.849, p = 0.0001, Sensitivity = 71.1%, Specificity = 75.5% | ex vivo, in silico [103] | |||
circCDYL (hsa_circ_0008285) | serum | diagnosis, prognosis, prediction of therapy response | HR = 3.748, p = 0.002 | ex vivo, in vitro, in vivo, in silico [104] | ||
circKIF4A (circ_0007255) | diagnosis, prognosis | AUC = 0.77 | ex vivo, in vitro, in vivo, in silico [105] |
circRNA Name | Circbase ID | Resistance/Sensitivity to: | Experimental Approach |
---|---|---|---|
cirCDR1as | hsa_circ_0001946 | 5-fluorouracil; cisplatin | ex vivo, in vitro, in vivo, in silico [123,124] |
circSMARCA5 | hsa_circ_0001445 | cisplatin | ex vivo, in vitro, in vivo, in silico [125] |
circKDM4C | hsa_circ_0001839 | doxorubicin | ex vivo, in vitro, in vivo, in silico [126] |
circLARP4 | - | doxorubicin | ex vivo, in vitro [67] |
circUBE2D2 | hsa_circ_0005728 | doxorubicin | ex vivo, in silico [79] |
- | hsa_circ-0006528 | doxorubicin | in vitro, in silico [127] |
- | hsa_circ_0092276 | doxorubicin | in vitro, in vivo, in silico [128] |
circBMPR2 | hsa_circ_0003218 | tamoxifen | ex vivo, in vitro, in silico [129] |
- | hsa_circ_0025202 | tamoxifen | ex vivo, in vitro, in vivo, in silico [130] |
circABCB1 | - | taxane (docetaxel) | in vitro, in silico [131] |
circEPHA3.1 | - | taxane (docetaxel) | in vitro, in silico [131] |
circEPHA3.2 | - | taxane (docetaxel) | in vitro, in silico [131] |
circAMOTL1 | - | taxane (paclitaxel) | in vitro, in silico [132] |
circGFRA1 | hsa_circ_0005239 | taxane (paclitaxel) | in vitro, in vivo [74] |
circRNF111 | hsa_circ_0001982 | taxane (paclitaxel) | ex vivo, in vitro, in vivo [133] |
circABCB10 | - | taxane (paclitaxel); radiations | ex vivo, in vitro, in vivo, in silico [134,135] |
circHER2 | hsa_circ_0007766 | pertuzumab | ex vivo, in vitro, in vivo, in silico [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Palma, F.D.E.; Salvatore, F.; Pol, J.G.; Kroemer, G.; Maiuri, M.C. Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines 2022, 10, 725. https://doi.org/10.3390/biomedicines10030725
De Palma FDE, Salvatore F, Pol JG, Kroemer G, Maiuri MC. Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines. 2022; 10(3):725. https://doi.org/10.3390/biomedicines10030725
Chicago/Turabian StyleDe Palma, Fatima Domenica Elisa, Francesco Salvatore, Jonathan G. Pol, Guido Kroemer, and Maria Chiara Maiuri. 2022. "Circular RNAs as Potential Biomarkers in Breast Cancer" Biomedicines 10, no. 3: 725. https://doi.org/10.3390/biomedicines10030725
APA StyleDe Palma, F. D. E., Salvatore, F., Pol, J. G., Kroemer, G., & Maiuri, M. C. (2022). Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines, 10(3), 725. https://doi.org/10.3390/biomedicines10030725