Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Finishing and Polishing Procedure
2.3. Simulation of Acid Attack
2.4. Toothbrushing Simulation
2.5. Surface Roughness Measurement
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FDI World Dental Federation. FDI policy statement on dental amalgam and the Minamata Convention on Mercury: Adopted by the FDI General Assembly: 13 September 2014, New Delhi, India. Int. Dent J. 2014, 64, 295–296. [Google Scholar] [CrossRef]
- Tanthanuch, S.; Kukiattrakoon, B.; Keawjinda, K.; Udomaksorn, T.; Kongsaeng, S.; Ittiariyawikul, A. Surface Roughness and Erosion of Bulk-fill Restorative Materials after Exposure to Acidic Beverages and Brushing. Int. J. Dentistry. Oral. Sci. 2021, 8, 3188–3193. [Google Scholar]
- Chimello, D.T.; Dibb, R.G.; Corona, S.A.; Lara, E.H. Assessing wear and surface roughness of different composite resins after toothbrushing. Mater. Res. 2001, 4, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New resin-based bulk-fill composites: In vitro evaluation of micro-hardness and depth of cure as infection risk indexes. Materials 2020, 13, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, M.G.; Soares, C.J.; Maia, T.S.; Bicalho, A.A.; Barbosa, T.P.; Costa, H.L.; Menezes, M.S. Effect of acidic drinks on shade matching, surface topography, and mechanical properties of conventional and bulk-fill composite resins. J. Prosthet. Dent. 2019, 121, 868-e1. [Google Scholar] [CrossRef] [PubMed]
- Somacal, D.C.; Manfroi, F.B.; Monteiro, M.S.; Oliveira, S.D.; Bittencourt, H.R.; Borges, G.A.; Spohr, A.M. Effect of pH cycling followed by simulated toothbrushing on the surface roughness and bacterial adhesion of bulk-fill composite resins. Oper. Dent. 2020, 45, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Pinheiro de Melo, T.; Delgado, A.H.; Monteiro, P.; Rua, J.; Proença, L.; Caldeira, J.; Mano Azul, A.; Mendes, J.J. Varying the Polishing Protocol Influences the Color Stability and Surface Roughness of Bulk-Fill Resin-Based Composites. J. Funct. Bio. 2020, 12, 1. [Google Scholar] [CrossRef]
- Monterubbianesi, R.; Orsini, G.; Tosi, G.; Conti, C.; Librando, V.; Procaccini, M.; Putignano, A. Spectroscopic and mechanical properties of a new generation of bulk fill composites. Front. Physiol. 2016, 27, 652. [Google Scholar] [CrossRef] [Green Version]
- Chesterman, J.; Jowett, A.; Gallacher, A.; Nixon, P.J. Bulk-fill resin-based composite restorative materials: A review. Br. Dent. J. 2017, 222, 337–344. [Google Scholar] [CrossRef]
- Abed, Y.A.; Sabry, H.A.; Alrobeigy, N.A. Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite. Tanta Dent. J. 2015, 12, 71–80. [Google Scholar] [CrossRef]
- Yap, A.U.J.; Lim, L.Y.; Yang, T.Y.; Ali, A.; Chung, S.M. Influence of dietary solvents on strength of nanofilled and ormocer composites. Oper. Dent. 2005, 30, 129–133. [Google Scholar]
- Alencar, M.F.; Pereira, M.T.; De-Moraes, M.D.; Santiago, S.L.; Passos, V.F. The effects of intrinsic and extrinsic acids on nanofilled and bulk fill resin composites: Roughness, surface hardness, and scanning electron microscopy analysis. Microsc. Res. Tech. 2020, 83, 202–207. [Google Scholar] [CrossRef]
- Lussi, A.; Jäggi, T. Erosion—Diagnosis and risk factors. Clin. Oral. Investig. 2008, 12, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Tanthanuch, S.; Kukiattrakoon, B.; Eiam-O-Pas, K.; Pokawattana, K.; Pamanee, N.; Thongkamkaew, W.; Kochatung, A. Surface changes of various bulk-fill resin-based composites after exposure to different food-simulating liquid and beverages. J. Esthet. Restor. Dent. 2018, 30, 126–135. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; O’Really, M.M.; Shariati, M.; Brugler, S. Enhancement of remineralization in vitro and in vivo. In Factors Relating to Demineralization and Remineralization of the Teeth; Leach, S.A., Ed.; IRL Press: Oxford, UK, 1989; pp. 23–24. [Google Scholar]
- Serra, M.C.; Cury, J.A. The in vitro effect of glassionomer cement restoration on enamel subjected to a demineralization and remineralization model. Quintessence Int. 1992, 23, 143–147. [Google Scholar]
- Laske, M.; Opdam, N.J.; Bronkhorst, E.M.; Braspenning, J.C.; Huysmans, M.C. Risk factors for dental restoration survival: A practice-based study. J. Dent. Res. 2019, 98, 414–422. [Google Scholar] [CrossRef]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Soderholm, K.J.; Mukherjee, R.; Longmate, J. Filler leachability of composites stored in distilled water or artificial saliva. J. Dent. Res. 1996, 75, 1692–1699. [Google Scholar] [CrossRef]
- Söderholm, K.J.; Shang, S.W. Molecular orientation of silane at the surface of colloidal silica. J. Dent. Res. 1993, 72, 1050–1054. [Google Scholar] [CrossRef]
- Hollanders, A.C.; Ruben, J.L.; Kuper, N.K.; Huysmans, M.C. In vitro effect of occlusal loading on cervical wall lesion development in a Class II composite restoration. Caries Res. 2022, 56, 1–7. [Google Scholar] [CrossRef]
- Ghiorghe, C.A.; Iovan, G.; Pancu, G.; Topoliceanu, C.; Georgescu, A.; Rusu, L.C.; Andrian, S. Effects of Hydrochloric Acid on Enamel Adjacent to Composite Restorations an in vitro Study. Mat. Plast. 2015, 52, 301. [Google Scholar]
- Camilotti, V.; Mendonça, M.J.; Dobrovolski, M.; Detogni, A.C.; Ambrosano, G.M.; Mario, F.D.G. Impact of dietary acids on the surface roughness and morphology of composite resins. J. Oral Sci. 2021, 63, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.C.; Comba, A.; Brambilla, E.; Ilie, N.; Breschi, L.; Cadenaro, M.; Scotti, N. Influence of Curing Time on the Microbiological Behavior of Bulk-Fill Nanohybrid Resin Composites. Polymers 2021, 13, 2948. [Google Scholar] [CrossRef] [PubMed]
- Stoleriu, S.; Pancu, G.; Nica, I.; Andrian, S.; Topoliceanu, C.; Iovan, G. Study Regarding the Effect of Toothbrush and Toothpaste on Surface Roughness of Different Restorative Materials. Mater. Plast. 2016, 53, 752–754. [Google Scholar]
- Lazarchik, D.A.; Frazier, K.B. Dental erosion and acid reflux disease: An overview. Gen. Dent. 2009, 57, 151–156. [Google Scholar]
- Wongkhantee, S.; Patanapiradej, V.; Maneenut, C.; Tantbirojn, D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 2006, 34, 214–220. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef]
- El-Safty, S.M.; Kenawy, E.R. Effect of Synthesized Bis-GMA and UDMA Nanofibers on Cuspal Flexure, Microhardness, Wear, Surface Roughness and Color Stability of Experimental Resin-Composites. Egypt. Dent. J. 2019, 65, 3883–3898. [Google Scholar] [CrossRef] [Green Version]
- Borş, A.; Molnar-Varlam, C.; Székely, M. The behaviour of composites, glass ionomers and compomers in erosive conditions–in vitro study. Acta Marisiensis-Seria Med. 2014, 60, 200–203. [Google Scholar] [CrossRef] [Green Version]
- Pollington, S.; Van Noort, R. A clinical evaluation of a resin composite and a compomer in non-carious Class V lesions. A 3-year follow-up. Am. J. Dent. 2008, 21, 49–52. [Google Scholar]
- Han, G.; Huan, S.; Han, J.; Zhang, Z.; Wu, Q. Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites. Materials 2013, 7, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Par, M.; Attin, T.; Tarle, Z.; Tauböck, T.T. A new customized bioactive glass filler to functionalize resin composites: Acid-neutralizing capability, degree of conversion, and apatite precipitation. J. Clin. Med. 2020, 9, 1173. [Google Scholar] [CrossRef]
- Özgünaltay, G.; Önen, A. Three-year clinical evaluation of a resin modified glass–ionomer cement and a composite resin in non-carious class V lesions. J. Oral Rehabil. 2002, 29, 1037–1041. [Google Scholar] [CrossRef]
- Major, I.A.; Shen, C.; Eliasson, S.T.; Richter, S. Placement and replacement of restorations in general dental practice in Iceland. Oper. Dent. 2002, 27, 117–123. [Google Scholar]
- Sexton, J.C.; Phillips, R.W. Studies on the effects of abrasives on acrylic resins. J. Prosthet. Dent. 1951, 1, 454–471. [Google Scholar]
- Haugen, H.J.; Marovic, D.; Par, M.; Khai Le Thieu, M.; Reseland, J.E.; Johnsen, G.F. Bulk fill composites have similar performance to conventional dental composites. Int. J. Mol. Sci. 2020, 21, 5136. [Google Scholar] [CrossRef]
- Fonseca, A.S.; Labruna Moreira, A.D.; de Albuquerque, P.P.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F. Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar]
- Opdam, N.J.; Bronkhorst, E.M.; Loomans, B.A.; Huysmans, M.C. 12-year survival of composite vs. amalgam restorations. J. Dent. Res. 2010, 89, 1063–1067. [Google Scholar] [CrossRef]
- Comba, A.; Scotti, N.; Maravić, T.; Mazzoni, A.; Carossa, M.; Breschi, L.; Cadenaro, M. Vickers hardness and shrinkage stress evaluation of low and high viscosity bulk-fill resin composite. Polymers 2020, 12, 1477. [Google Scholar] [CrossRef]
- Marovic, D.; Par, M.; Macan, M.; Klarić, N.; Plazonić, I.; Tarle, Z. Aging-Dependent Changes in Mechanical Properties of the New Generation of Bulk-Fill Composites. Materials 2022, 15, 902. [Google Scholar] [CrossRef]
Name of Flowable Composite Resin | Manufacturer | Composite Type | Batch No. | Resin Composition | Filler wt%/vol% |
---|---|---|---|---|---|
X-tra Fil (XTF) | VOCO GmbH, Cuxhaven, Germany | Hybrid | 2026242 | Bis-GMA, TEGDMA, UDMA | 86 wt%/70 vol% |
Filtek Bulk-fill Posterior Restorative | 3M-ESPE, St. Paul, MN, USA | Nanofill | N938942 | AUDMA, UDMA, DDDMA, AFM | 76.5 wt%/58.4 vol% |
G-aenial Posterior | GC Japan | Hybrid | 1806191 | UDMA, Dimethacrylate comonomers | 77 wt%/65 vol% |
Subgroups | 1 | 2a | 2b | 3a | 3b | 4a | 4b | 5 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C |
A | 0.32 ± 0.07 | * | * | 0.432 ± 0.055 | * | * | 0.464 ± 0.056 | * | * | 0.461 ± 0.039 | * | * | 0.475 ± 0.029 | * | * | 0.465 ± 0.029 | * | * | 0.469 ± 0.042 | * | * | 0.354 ± 0.037 | * | * |
B | * | 0.329 ± 0.065 | * | * | 0.463 ± 0.021 | * | * | 0.468 ± 0.032 | * | * | 0.47 ± 0.025 | * | * | 0.478 ± 0.038 | * | * | 0.456 ± 0.013 | * | * | 0.483 ± 0.023 | * | * | 0.38 ± 0.016 | * |
C | * | * | 0.309 ± 0.077 | * | * | 0.451 ± 0.045 | * | * | 0.466 ± 0.026 | * | * | 0.476 ± 0.016 | * | * | 0.489 ± 0.023 | * | * | 0.463 ± 0.015 | * | * | 0.484 ± 0.016 | * | * | 0.355 ± 0.023 |
Group A | Group B | Group C | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2a | 2b | 3a | 3b | 4a | 4b | 5 | 1 | 2a | 2b | 3a | 3b | 4a | 4b | 5 | 1 | 2a | 2b | 3a | 3b | 4a | 4b | 5 | |
1 | - | ** | ** | ** | ** | ** | ** | * | - | ** | ** | ** | ** | ** | ** | * | - | ** | ** | ** | ** | ** | ** | * |
2a | ** | - | * | * | * | * | * | * | ** | - | * | * | * | * | * | ** | ** | - | * | * | * | * | * | ** |
2b | ** | * | - | * | * | * | * | ** | ** | * | - | * | * | * | * | ** | ** | * | - | * | * | * | * | ** |
3a | ** | * | * | - | * | * | * | ** | ** | * | * | - | * | * | * | ** | ** | * | * | - | * | * | * | ** |
3b | ** | * | * | * | - | * | * | ** | ** | * | * | * | - | * | * | ** | ** | * | * | * | - | * | * | ** |
4a | ** | * | * | * | * | - | * | ** | ** | * | * | * | * | - | * | ** | ** | * | * | * | * | - | * | ** |
4b | ** | * | * | * | * | - | ** | ** | * | * | * | * | * | - | ** | ** | * | * | * | * | * | - | ** | |
5 | * | * | ** | ** | ** | ** | ** | - | * | ** | ** | ** | ** | ** | ** | - | * | ** | ** | ** | ** | ** | ** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tărăboanță, I.; Buhățel, D.; Brînză Concită, C.A.; Andrian, S.; Nica, I.; Tărăboanță-Gamen, A.C.; Brânzan, R.; Stoleriu, S. Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions. Biomedicines 2022, 10, 1008. https://doi.org/10.3390/biomedicines10051008
Tărăboanță I, Buhățel D, Brînză Concită CA, Andrian S, Nica I, Tărăboanță-Gamen AC, Brânzan R, Stoleriu S. Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions. Biomedicines. 2022; 10(5):1008. https://doi.org/10.3390/biomedicines10051008
Chicago/Turabian StyleTărăboanță, Ionuț, Dan Buhățel, Corina Alexandra Brînză Concită, Sorin Andrian, Irina Nica, Andra Claudia Tărăboanță-Gamen, Răzvan Brânzan, and Simona Stoleriu. 2022. "Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions" Biomedicines 10, no. 5: 1008. https://doi.org/10.3390/biomedicines10051008
APA StyleTărăboanță, I., Buhățel, D., Brînză Concită, C. A., Andrian, S., Nica, I., Tărăboanță-Gamen, A. C., Brânzan, R., & Stoleriu, S. (2022). Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions. Biomedicines, 10(5), 1008. https://doi.org/10.3390/biomedicines10051008