Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Soluble Endothelial Markers
2.3. Prematurity-Related Outcomes
2.4. Statistical Analysis
3. Results
3.1. Population
3.2. Endothelial Profile
3.2.1. Relationship between VPIs and FTIs
- Angiopoietins: VPIs compared with FTIs had:
- Lower Ang-1 at T1 and T2 (p < 0.001);
- Higher Ang-2 at T1, T2, and T3 (p < 0.001);
- Higher Ang-2/Ang-1 ratio at T1, T2, and T3 (p < 0.001 at T1–T2; p = 0.017 at T3).
- Adhesion molecules: E-selectin was lower in VPIs at T1, T2, and T3 compared to the control group (p < 0.001 at T1–T2; p = 0.008 at T3). VCAM-1 showed higher values in VPIs at T1 than in FTIs (p < 0.001).
- Tissue Factor: TF was higher in the VPIs at T2 than in the control group (p < 0.001).
3.2.2. Relationship between T1–T2–T3
- Angiopoietins: Ang-1 was higher at T3 compared to T1 [16.7 (14.9) vs. 5.4 (9.8) ng/mL, p = 0.013] and T2 [16.7 (14.9) vs. 4.1 (5.1) ng/mL, p = 0.005]; Ang-2 increased from T1 to T2 [27.3 (8.4) vs. 36.2 (9.5) ng/mL, p = 0.022], and it further increased comparing T1 and T3 [27.3 (8.4) vs. 34.8 (9.3) ng/mL, p = 0.013]; The Ang-2/Ang-1 ratio was lower at T3 compared to T1 [6.8 (8.9) vs. 11.1 (9.5) ng/mL, p = 0.034] and T2 [6.8 (8.9) vs. 15.4 (9.6) ng/mL, p < 0.001].
- Adhesion molecules: E-selectin was lower at T1 compared to T2 [39.1 (30.0) vs. 59.5 (32.5) ng/mL, p < 0.001] and T3 [39.1 (30.0) vs. 73.3 (35.1) ng/mL, p < 0.001]; VCAM-1 decreased from T1 to T2 [5244 (1226) vs. 3741 (1378) ng/mL, p = 0.005], subsequently remaining unchanged at T3.
- Tissue Factor: TF increased from T1 to T2 [0.098 (0.055) vs. 0.126 (0.050) ng/mL, p = 0.001], then it decreased from T2 to T3 [0.126 (0.050) vs. 0.093 (0.024) ng/mL, p = 0.010].
3.2.3. Soluble Endothelial Markers and Baseline Parameters
3.3. Endothelial Profile and Subgroups Analysis
3.3.1. Neonatal Mortality
3.3.2. Hemodynamic and Respiratory Complications
3.3.3. Maternal Endotypes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALI | acute lung injury |
Ang-1 | angiopoietin 1 |
Ang-2 | angiopoietin 2 |
CRP | c reactive protein |
EDTA | ethylenediaminetetraacetic-acid |
ELBW | extremely low birth weight |
ENOS | endothelial nitric oxide synthase |
ET-1 | endothelin 1 |
FTIs | full-term infants |
GA | gestational age |
HUVECs | human umbilical vein endothelial cells |
IVH | intraventricular hemorrhage |
NICU | neonatal intensive care unit |
NO | nitric oxide |
PDA | patent ductus arteriosus |
PROM | prolonged rupture of membranes |
SIRS | systemic inflammatory response syndrome |
TF | tissue factor |
Tie-2 | transmembrane tyrosine-protein kinase receptor Tie-2 |
VPIs | very preterm infants |
VCAM-1 | vascular adhesion molecule 1 |
References
- McElrath, T.F.; Hecht, J.L.; Dammann, O.; Boggess, K.; Onderdonk, A.; Markenson, G.; Harper, M.; Delpapa, E.; Allred, E.N.; Leviton, A.; et al. Pregnancy Disorders That Lead to Delivery Before the 28th Week of Gestation: An Epidemiologic Approach to Classification. Am. J. Epidemiol. 2008, 168, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.; et al. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am. J. Obstet. Gynecol. 2016, 215, 103.e1–103.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, U.; Augustin, H.G. Angiopoietins: A link between angiogenesis and inflammation. Trends Immunol. 2006, 27, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Granger, D.N.; Senchenkova, E. Inflammation and the Microcirculation. Colloq. Ser. Integr. Syst. Physiol. Mol. Funct. 2010, 2, 1–87. [Google Scholar] [CrossRef]
- Pierro, M.; Van Mechelen, K.; van Westering-Kroon, E.; Villamor-Martínez, E.; Villamor, E. Endotypes of Prematurity and Phenotypes of Bronchopulmonary Dysplasia: Toward Personalized Neonatology. J. Pers. Med. 2022, 12, 687. [Google Scholar] [CrossRef]
- Pierro, M.; Villamor-Martinez, E.; van Westering-Kroon, E.; Alvarez-Fuente, M.; Abman, S.H.; Villamor, E. Association of the dysfunctional placentation endotype of prematurity with bronchopulmonary dysplasia: A systematic review, meta-analysis and meta-regression. Thorax 2021, 77, 268–275. [Google Scholar] [CrossRef]
- Edgar, J.D.M.; Gabriel, V.; Gallimore, J.R.; McMillan, S.A.; Grant, J. A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid A in the diagnosis of neonatal infection. BMC Pediatr. 2010, 10, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Erez, O.; Romero, R.; Vaisbuch, E.; Than, N.G.; Kusanovic, J.P.; Mazaki-Tovi, S.; Gotsch, F.; Mittal, P.; Dong, Z.; Chaiworapongsa, T.; et al. Tissue factor activity in women with preeclampsia or SGA: A potential explanation for the excessive thrombin generation in these syndromes. J. Matern. Neonatal Med. 2017, 31, 1568–1577. [Google Scholar] [CrossRef]
- Zonneveld, R.; Martinelli, R.; Shapiro, N.I.; Kuijpers, T.W.; Plötz, F.B.; Carman, C.V. Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit. Care 2014, 18, 204. [Google Scholar] [CrossRef] [Green Version]
- Saleh, L.; Verdonk, K.; Visser, W.; van den Meiracker, A.H.; Danser, A.H.J. The emerging role of endothelin-1 in the pathogenesis of pre-eclampsia. Ther. Adv. Cardiovasc. Dis. 2016, 10, 282–293. [Google Scholar] [CrossRef]
- Huseynova, S.A.; Panakhova, N.F.; Hajiyeva, A.S.; Orujova, P.A.; Mukhtarova, S.N.; Agayeva, G.T. Endothelial dysfunction and developmental outcomes of very low birth weight newborns with hypoxic encephalopathy. J. Pak. Med. Assoc. 2017, 67, 1857–1863. [Google Scholar] [PubMed]
- Parker, T.A.; le Cras, T.D.; Kinsella, J.P.; Abman, S.H. Developmental changes in endothelial nitric oxide synthase expression and activity in ovine fetal lung. Am. J. Physiol. Cell. Mol. Physiol. 2000, 278, L202–L208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCafferty, C.; Busuttil-Crellin, X.; Cai, T.; Monagle, P.; Goldenberg, N.A.; Ignjatovic, V. Plasma Proteomic Analysis Reveals Age-Specific Changes in Platelet- and Endothelial Cell–Derived Proteins and Regulators of Plasma Coagulation and Fibrinolysis. J. Pediatr. 2020, 221, S29–S36. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.S.; Hogan, B.M. Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Front. Physiol. 2020, 11, 842. [Google Scholar] [CrossRef]
- Suri, C.; Jones, P.F.; Patan, S.; Bartunkova, S.; Maisonpierre, P.C.; Davis, S.; Sato, T.N.; Yancopoulos, G.D. Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis. Cell 1996, 87, 1171–1180. [Google Scholar] [CrossRef] [Green Version]
- Calfee, C.S.; Gallagher, D.; Abbott, J.; Thompson, B.T.; Matthay, M.A.; The NHLBI ARDS Network. Plasma angiopoietin-2 in clinical acute lung injury: Prognostic and pathogenetic significance. Crit. Care Med. 2012, 40, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Mikacenic, C.; Hahn, W.; Price, B.L.; Harju-Baker, S.; Katz, R.L.; Kain, K.; Himmelfarb, J.; Liles, W.C.; Wurfel, M.M. Biomarkers of Endothelial Activation Are Associated with Poor Outcome in Critical Illness. PLoS ONE 2015, 10, e0141251. [Google Scholar] [CrossRef]
- Zonneveld, R.; Jongman, R.; Juliana, A.; Zijlmans, W.; Plötz, F.; Molema, G.; van Meurs, M. Low Serum Angiopoietin-1, High Serum Angiopoietin-2, and High Ang-2/Ang-1 Protein Ratio are Associated with Early Onset Sepsis in Surinamese Newborns. Shock 2017, 48, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.K.; Hayford, K.; Tran, V.; Al Kibria, G.M.; Baqui, A.; Manajjir, A.; Mahmud, A.; Begum, N.; Siddiquee, M.; Kain, K.C.; et al. Biomarkers of endothelial dysfunction predict sepsis mortality in young infants: A matched case-control study. BMC Pediatr. 2018, 18, 118. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Heep, A.; Odd, D. Biochemical and clinical predictors of hypoxic–ischemic encephalopathy after perinatal asphyxia. J. Matern. Neonatal Med. 2017, 31, 791–796. [Google Scholar] [CrossRef]
- Kluckow, M. Low systemic blood flow and pathophysiology of the preterm transitional circulation. Early Hum. Dev. 2005, 81, 429–437. [Google Scholar] [CrossRef] [PubMed]
- van Laere, D.; van Overmeire, B.; Gupta, S.; El-Khuffash, A.; Savoia, M.; McNamara, P.J.; Schwarz, C.E.; de Boode, W.P.; European Special Interest Group ‘Neonatologist Performed Echocardiography’ (NPE). Application of Neonatologist Performed Echocardiography in the assessment of a patent ductus arteriosus. Pediatr. Res. 2018, 84, 46–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papile, L.-A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Julious, S.A. Sample size of 12 per group rule of thumb for a pilot study. Pharm. Stat. 2005, 4, 287–291. [Google Scholar] [CrossRef]
- Benjamini, Y.; Krieger, A.M.; Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006, 93, 491–507. [Google Scholar] [CrossRef]
- Garrido, F.; Allegaert, K.; Arribas, C.; Villamor, E.; Raffaeli, G.; Paniagua, M.; Cavallaro, G.; on behalf of European Antibiotics Study Group (EASG). Variations in Antibiotic Use and Sepsis Management in Neonatal Intensive Care Units: A European Survey. Antibiotics 2021, 10, 1046. [Google Scholar] [CrossRef]
- Hasperhoven, G.F.; Al-Nasiry, S.; Bekker, V.; Villamor, E.; Kramer, B. Universal screening versus risk-based protocols for antibiotic prophylaxis during childbirth to prevent early-onset group B streptococcal disease: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2020, 127, 680–691. [Google Scholar] [CrossRef] [Green Version]
- Beal, S.; Dancer, S. Antenatal prevention of neonatal group B streptococcal infection. Rev. Gynaecol. Périnat. Pract. 2006, 6, 218–225. [Google Scholar] [CrossRef]
- Mohamed, W.A.W.; Niyazy, W.H.; Mahfouz, A.A. Angiopoietin-1 and Endostatin Levels in Cord Plasma Predict the Development of Bronchopulmonary Dysplasia in Preterm Infants. J. Trop. Pediatr. 2010, 57, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-H.; Kim, H.-S. Serial Changes of Serum Endostatin and Angiopoietin-1 Levels in Preterm Infants with Severe Bronchopulmonary Dysplasia and Subsequent Pulmonary Artery Hypertension. Neonatology 2014, 106, 55–61. [Google Scholar] [CrossRef]
- Koh, G.Y. Orchestral actions of angiopoietin-1 in vascular regeneration. Trends Mol. Med. 2013, 19, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Maisonpierre, P.C.; Suri, C.; Jones, P.F.; Bartunkova, S.; Wiegand, S.J.; Radziejewski, C.; Compton, D.; McClain, J.; Aldrich, T.H.; Papadopoulos, N.; et al. Angiopoietin-2, a Natural Antagonist for Tie2 That Disrupts in vivo Angiogenesis. Science 1997, 277, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Makinde, T.; Agrawal, D. Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. J. Cell. Mol. Med. 2008, 12, 810–828. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.C.; Rossant, J.; Alitalo, K.; Bernstein, A.; Partanen, J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 1995, 14, 5884–5891. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Matthay, M.A.; Kangelaris, K.N.; Stein, J.; Chu, J.C.; Imp, B.M.; Cortez, A.; Abbott, J.; Liu, K.D.; Calfee, C.S. Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2013, 187, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Wisgrill, L.; Muck, M.; Wessely, I.; Berger, A.; Spittler, A.; Förster-Waldl, E.; Sadeghi, K. Endothelial cells of extremely premature infants display impaired immune response after proinflammatory stimulation. Pediatr. Res. 2017, 83, 128–134. [Google Scholar] [CrossRef]
- D’Alquen, D.; Kramer, B.W.; Seidenspinner, S.; Marx, A.; Berg, D.; Groneck, P.; Speer, C.P. Activation of Umbilical Cord Endothelial Cells and Fetal Inflammatory Response in Preterm Infants with Chorioamnionitis and Funisitis. Pediatr. Res. 2005, 57, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Puhlmann, M.; Weinreich, D.M.; Farma, J.M.; Carroll, N.M.; Turner, E.M.; Alexanderjr, H.R. Interleukin-1β induced vascular permeability is dependent on induction of endothelial Tissue Factor (TF) activity. J. Transl. Med. 2005, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Auvinen, K.; Jalkanen, S.; Salmi, M. Expression and function of endothelial selectins during human development. Immunology 2014, 143, 406–415. [Google Scholar] [CrossRef]
- Eppihimer, M.J.; Wolitzky, B.; Anderson, D.C.; Labow, M.A.; Granger, D.N. Heterogeneity of Expression of E- and P-Selectins In Vivo. Circ. Res. 1996, 79, 560–569. [Google Scholar] [CrossRef]
- Eppihimer, M.J.; Russell, J.; Anderson, D.C.; Wolitzky, B.A.; Granger, D.N. Endothelial cell adhesion molecule expression in gene-targeted mice. Am. J. Physiol. Circ. Physiol. 1997, 273, H1903–H1908. [Google Scholar] [CrossRef] [PubMed]
- Henninger, D.D.; Panés, J.; Eppihimer, M.; Russell, J.; Gerritsen, M.; Anderson, D.C.; Granger, D.N. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J. Immunol. 1997, 158, 1825–1832. [Google Scholar] [PubMed]
- Fiedler, U.; Scharpfenecker, M.; Koidl, S.; Hegen, A.; Grunow, V.; Schmidt, J.M.; Kriz, W.; Thurston, G.; Augustin, H.G. The Tie-2 ligand Angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 2004, 103, 4150–4156. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.; Provitera, L.; Cavallaro, G.; Lattuada, D.; Ercoli, G.; Mosca, F.; Villamor, E. Vasomotor effects of hydrogen sulfide in human umbilical vessels. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2017, 68, 737–747. [Google Scholar]
- Provitera, L.; Cavallaro, G.; Griggio, A.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Lattuada, D.; Ercoli, G.; Lonati, C.; Tomaselli, A. Cyclic nucleotide-dependent relaxation in human umbilical vessels. J. Physiol. Pharmacol. 2019, 70, 619–630. [Google Scholar] [CrossRef]
- Moonen, R.M.; Huizing, M.J.; Cavallaro, G.; González-Luis, G.E.; Bas-Suárez, P.; Bakker, J.A.; Villamor, E. Plasma Levels of Dimethylarginines in Preterm Very Low Birth Weight Neonates: Its Relation with Perinatal Factors and Short-Term Outcome. Int. J. Mol. Sci. 2014, 16, 19–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huseynova, S.A.; Panakhova, N.F.; Orujova, P.A.; Hasanov, S.S.; Guliyev, M.R.; Yagubova, V.I. Altered endothelial nitric oxide synthesis in preterm and small for gestational age infants. Pediatr. Int. 2014, 57, 269–275. [Google Scholar] [CrossRef]
VPIs | Total (n = 20) |
Gestational age (weeks), mean (SD) | 26.9 (1.5) |
Birth weight (grams), mean (SD) | 872 (218) |
Male, n (%) | 11 (55) |
Multiple pregnancy, n (%) | 8 (40) |
Monochorionic, n (%) | 2 (10) |
Cesarean section, n (%) | 18 (90) |
Chorioamnionitis, n (%) | 12 (60) |
Placental abuption, n (%) | 4 (20) |
Pre-eclampsia/IUGR, n (%) | 4 (20) |
Antenatal steroids, n (%) | 16 (80) |
Apgar score 1’, median [IQR] | 5 [4–6] |
Apgar score 5’, median [IQR] | 8 [7–8] |
Cordonal ph (venous), mean (SD) | 7.33 (0.09) |
FTIs | Total (n = 14) |
Gestational age (weeks), mean (SD) | 39.6 (1.2) |
Birth weight (grams), mean (SD) | 3323 (257) |
Male, n (%) | 6 (43) |
Multiple pregnancy, n (%) | 0 (0) |
Cesarean section, n (%) | 3 (21) |
Apgar score 1’, median [IQR] | 9 [9–9] |
Apgar score 5’, median [IQR] | 10 [10–10] |
Variables 1 | VPIs T1 (n = 20) | VPIs T2 (n = 17) | VPIs T3 (n = 16) | FTIs (n = 14) | p-Value 2 | ||
---|---|---|---|---|---|---|---|
(T1-FTIs) | (T2-FTIs) | (T3-FTIs) | |||||
Ang-1 (ng/mL) | 4.9 (8.8) | 3.9 (5) | 16.7 (14.9) | 27.0 (25.4) | <0.001 | <0.001 | 0.313 |
Ang-2 (ng/mL) | 29.5 (10.6) | 36.1 (9.2) | 34.8 (9.3) | 15.5 (3.3) | <0.001 | <0.001 | <0.001 |
Ang-2/Ang-1 (ratio) | 12.6 (10) | 16.5 (10.4) | 6.8 (8.9) | 1.8 (1.9) | <0.001 | <0.001 | 0.017 |
E-selectin (ng/mL) | 44.1 (32.7) | 61.6 (32.5) | 73.2 (35.1) | 104.5 (31.8) | <0.001 | <0.001 | 0.008 |
VCAM-1 (ng/mL) | 5359 (1335) | 3745 (1334) | 4456 (1441) | 3680 (743) | <0.001 | 0.830 | 0.131 |
TF (ng/mL) | 0.131 (0.112) | 0.123 (0.049) | 0.093 (0.025) | 0.087 (0.014) | 0.993 | <0.001 | 0.886 |
Variables 1 | Dead (n = 5) | Survived (n = 15) | p-Value 2 |
---|---|---|---|
Ang-1 (ng/mL) | 2.9 (2.3) | 5.6 (10.1) | 0.553 |
Ang-2 (ng/mL) | 27.4 (8.7) | 35.9 (14.0) | 0.230 |
Ang-2/Ang-1 (ratio) | 17.4 (10.0) | 11.0 (9.9) | 0.197 |
E-selectin (ng/mL) | 41.1 (29.9) | 53.2 (42.4) | 0.395 |
VCAM-1 (ng/mL) | 5987 (1646) | 5149 (1207) | 0.735 |
TF (ng/mL) | 0.232 (0.178) | 0.097 (0.056) | 0.098 |
Variables 1 | with Complications | without Complications | p-Value 2 |
---|---|---|---|
T1 (n = 14 vs. 6) | |||
Ang-1 (ng/mL) | 5.6 (10.5) | 3.4 (1.5) | 0.659 |
Ang-2 (ng/mL) | 32.1 (10.9) | 23.5 (7.4) | 0.076 |
Ang-2/Ang-1 (ratio) | 14.8 (11.3) | 7.4 (2.2) | 0.179 |
E-selectin (ng/mL) | 49.4 (37.5) | 31.8 (11.7) | >0.999 |
VCAM-1 (ng/mL) | 5319 (1580) | 5451 (517) | 0.659 |
TF (ng/mL) | 0.153 (0.128) | 0.079 (0.029) | 0.207 |
T2 (n = 11 vs. 6) | |||
Ang-1 (ng/mL) | 4.6 (6.1) | 2.6 (1.0) | 0.961 |
Ang-2 (ng/mL) | 38.0 (7.9) | 32.6 (11.0) | 0.462 |
Ang-2/Ang-1 (ratio) | 18.3 (12.5) | 13.2 (3.4) | 0.591 |
E-selectin (ng/mL) | 64.7 (38.9) | 55.8 (17.1) | 0.961 |
VCAM-1 (ng/mL) | 3434 (1432) | 4315 (996) | 0.149 |
TF (ng/mL) | 0.131 (0.060) | 0.109 (0.018) | 0.5249 |
T3 (n = 10 vs. 6) | |||
Ang-1 (ng/mL) | 17.4 (17.3) | 15.5 (11.1) | 0.875 |
Ang-2 (ng/mL) | 39.0 (9.2) | 27.7 (3.4) | 0.005 |
Ang-2/Ang-1 (ratio) | 8.9 (10.7) | 3.2 (2.9) | 0.713 |
E-selectin (ng/mL) | 83.0 (40.9) | 57.0 (13.2) | 0.147 |
VCAM-1 (ng/mL) | 4212 (1612) | 4863 (110) | 0.368 |
TF (ng/mL) | 0.099 (0.030) | 0.082 (0.003) | 0.4923 |
Variables 1 | Inflammation (n = 4) | Dysfunctional Placentation (n = 16) | p-Value 2 |
---|---|---|---|
Ang-1 (ng/mL) | 3.1 (1.7) | 12.2 (19.6) | 0.873 |
Ang-2 (ng/mL) | 30.5 (11.3) | 25.6 (7.0) | 0.807 |
Ang-2/Ang-1 (ratio) | 13.8 (10.7) | 7.9 (5.8) | 0.484 |
E-selectin (ng/mL) | 48.7 (34.7) | 25.8 (12.7) | 0.211 |
VCAM-1 (ng/mL) | 5501 (1206) | 4790 (1864) | 0.494 |
TF (ng/mL) | 0.133 (0.120) | 0.120 (0.089) | 0.915 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amelio, G.S.; Provitera, L.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Cortesi, V.; Manzoni, F.; Pesenti, N.; Tripodi, M.; Pravatà, V.; et al. Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study. Biomedicines 2022, 10, 1185. https://doi.org/10.3390/biomedicines10051185
Amelio GS, Provitera L, Raffaeli G, Amodeo I, Gulden S, Cortesi V, Manzoni F, Pesenti N, Tripodi M, Pravatà V, et al. Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study. Biomedicines. 2022; 10(5):1185. https://doi.org/10.3390/biomedicines10051185
Chicago/Turabian StyleAmelio, Giacomo S., Livia Provitera, Genny Raffaeli, Ilaria Amodeo, Silvia Gulden, Valeria Cortesi, Francesca Manzoni, Nicola Pesenti, Matteo Tripodi, Valentina Pravatà, and et al. 2022. "Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study" Biomedicines 10, no. 5: 1185. https://doi.org/10.3390/biomedicines10051185
APA StyleAmelio, G. S., Provitera, L., Raffaeli, G., Amodeo, I., Gulden, S., Cortesi, V., Manzoni, F., Pesenti, N., Tripodi, M., Pravatà, V., Lonati, C., Cervellini, G., Mosca, F., & Cavallaro, G. (2022). Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study. Biomedicines, 10(5), 1185. https://doi.org/10.3390/biomedicines10051185