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Abstract: High-grade gliomas are among the most aggressive malignancies, with significantly low
median survival. Recent experimental research in the field has highlighted the importance of natural
substances as possible antiglioma agents, also known for their antioxidant and anti-inflammatory
action. We have previously shown that natural substances target several surface cluster of differentia-
tion (CD) markers in glioma cells, as part of their mechanism of action. We analyzed the genome-wide
NF-κB binding sites residing in consensus regulatory elements, based on ENCODE data. We found
that NF-κB binding sites reside adjacent to the promoter regions of genes encoding CD markers
targeted by antiglioma agents (namely, CD15/FUT4, CD28, CD44, CD58, CD61/SELL, CD71/TFRC,
and CD122/IL2RB). Network and pathway analysis revealed that the markers are associated with a
core network of genes that, altogether, participate in processes that associate tumorigenesis with in-
flammation and immune evasion. Our results reveal a core regulatory network that can be targeted in
glioblastoma, with apparent implications in individuals that suffer from this devastating malignancy.

Keywords: glioma; anticancer therapy; NF-κB; natural antiglioma agents; CD markers

1. Introduction

Carcinogenesis is a step-by-step process through which normal cells acquire genetic
and epigenetic alterations, and transform into malignant cells that form a tumor mass.
Cancer is the second leading cause of human mortality worldwide, with almost 10 million
deaths, or ~18% of total deaths, in 2020 [1]. Among them, central nervous system malignan-
cies (CNSMs), including brain tumors (ICD codes C70–72), account for ~308,000 new cases
and ~251,000 deaths, making it one of the deadliest types of cancer per case [2]. Central ner-
vous system tumors have been historically classified based on their histological parameters,
mainly as a result of the occurrence of malignancy from different brain tissues [3]. However,
the latest classifications of CNSMs—the 2016 and 2021 updates from the World Health
Organization—consider more advanced molecular characteristics that are now available in
the post-genomic era, providing a more comprehensive catalog with usefulness in clinical
management and treatment [2,4].

Glioblastoma (GBM) represents the most common malignant brain tumor. Despite
intensive clinical investigation and the discovery of several novel treatments, patients’
median survival remains poor, in the range of 15 months [5]. The standard therapeutic
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approach involves surgical resection of the tumor mass, which is followed by radiotherapy
with concurrent and adjuvant chemotherapy [6]. Temozolomide (TMZ) represents the
standard primary chemotherapy for GBM [7]. The genetic heterogeneity that leads to
diverse molecular mechanisms of tumor development makes it difficult to successfully
treat GBMs. Cells that survive the first line of treatment eventually develop resistance,
leading to recurring tumors that are resistant to both radiotherapy and chemotherapy [8].

In previous reports by our team, the natural substances moschamine [9], n-p-coumaroyl-
serotonin [10], and deglucohellebrin [11] have been shown to exhibit significant antiglioma
activity in vitro and low cytotoxicity in normal tissues in vivo, as shown in a zebrafish
embryo toxicity model. An interesting feature of these natural substances is that they
represent distinct paradigms of compounds with potent antioxidant and anti-inflammatory
activities [12,13].

Nuclear factor kappa B (NF-κB) represents a family of transcription factors that
play major roles in molecular circuits that associate carcinogenesis with inflammatory
response [14]. It has been established that NF-κB plays a major role in glioma pathogenesis
and chemoresistance [14]. Based on the above roles, NF-κB is a potent molecular target in
glioblastoma [15].

In the present article, we report a molecular network that includes common targets
of natural compounds and the NF-κB family of transcription factors. Our results suggest
a possible common mechanism of action for natural compounds and a core regulatory
network that may be further targeted in glioblastoma.

2. Materials and Methods
2.1. Sequence Analysis and Annotation

Transcription factor binding sites for the RELB subunit of the NF-κB family were
extracted from ChIP-seq data available from the ENCODE (Encyclopedia Of DNA Ele-
ments) Project Consortium, and were further analyzed using bioinformatic tools available
in the UCSC Genome Browser (http://genome.ucsc.edu/) [16–18], as well as the UCSC
Table Browser [19]. Our data retrieval workflow included the following steps: First, ChIP-
seq peaks that were generated as part of the ENCODE Project [20], were retrieved using
the UCSC Table Browser (filtering the data available in the table wgEncodeRegTfbsClus-
teredV3) [21–23]. The presence of candidate cis-regulatory elements by ENCODE [24] was
determined using the UCSC Table Browser, in the extracted ChIP-seq peaks. ChIP-seq
peaks that reside in CREs were annotated in relation to transcription start sites (TSSs) using
the Genomic Regions Enrichment of Annotations Tool (GREAT) (great.stanford.edu) [25].
The resulting data were further inspected and analyzed using the UCSC Genome Browser.
The servers were last accessed on 2 March 2022.

2.2. Network Analysis

The regulatory network that includes common targets of natural compounds and NF-κB
was constructed with the GENEMANIA prediction server tool (www.genemania.org), using the
default settings that result in the generation of a number of 20 nearest-neighbor genes in the final
network [26]. The involvement of the final gene list from the aforementioned network in cellular
pathways was calculated by enrichment analysis in the Reactome pathway knowledgebase
(www.reactome.org) [27]. Analysis was performed against Reactome version 79. In addition,
the resulting gene set was analyzed for enrichment of Gene Ontologies, cellular pathways, and
disease, using the Enrichr tool (https://amp.pharm.mssm.edu/Enrichr/) [28,29]. The servers
were last accessed on 2 March 2022.

3. Results
3.1. The Binding Landscape of NF-κB in Consensus Regulatory Elements and in the Vicinity of
Transcription Start Sites

Our initial goal was to establish the genome-wide binding landscape of NF-κB in
regulatory regions. First, the ChIP-seq-related peaks for RELB were extracted from available
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ENCODE project consortium data. A total of 35,961 ChIP-seq peaks were further filtered
for their presence in candidate cis-regulatory elements (cCREs) genomic regions. We
found that 31,477 RELB binding sites (87.5% of the total binding sites) reside in cCREs
(Table S1), and may have the potential to take part in the regulation of gene expression. To
create an NF-κB binding landscape in the vicinity of genes, we performed GREAT analysis,
finding the single nearest gene in the vicinity of each ChIP-seq peak, no more than a
maximum extension of 5 Kb to the transcription start site (TSS). Several peaks (10,681 peaks,
or 34% of total peaks) were found in the vicinity of 7927 genes (Figure S1 and Table S2,
Supplementary Materials).

3.2. Natural Substances Target Cluster of Differentiation (CD) Markers That Contain NF-κB
Binding Elements

Based on our previous results, we found several cluster of differentiation (CD) markers
that are targeted by the natural compounds moschamine, n-p-coumaroyl-serotonin, and
deglucohellebrin. Importantly, their expression has also been associated with the significant
antiglioma activity of the compounds [9–11]. Since a known action of these compounds is
their potent anti-inflammatory activity [12,13], a candidate common antiglioma mechanism
may include the action of NF-κB—a potent molecular target in glioblastoma [15]. To this end,
we screened the CD molecules targeted by moschamine (MM), n-p-coumaroyl-serotonin
(CS), and deglucohellebrin (DGH) for the presence of NF-κB binding sites in cCREs. Most
CD molecules targeted by CS, MM, and DGH—namely, CD15/FUT4, CD28, CD44, CD58,
CD61/SELL, CD71/TFRC, and CD122/IL2RB—are also targets of NF-κB, at a distance to
TSS of less than 5 Kb (Figure 1).

Notably, following manual verification in the UCSC Genome Browser, we found that
the NF-κB peaks were either adjacent to TSSs (in CD15/FUT4, CD28, CD71/TFRC, and
CD122/IL2RB), or the cis-regulatory region contained several NF-κB binding sites (3 in
CD44, 12 in CD58, and 3 in CD61/SELL). As regards the regulatory potential of the NF-κB
binding sites, six out of seven promoter-like cCREs (in CD15 CD28, CD58, CD61, CD71, and
CD122) were associated with at least one NF-κB peak, while in CD44, NF-κB peaks were
present in distal enhancer cCREs. Collectively, the action of the natural compounds CS,
MM, and DGH is associated with altered expression of CD molecules that contain NF-κB
binding sites in their cis-regulatory elements.

3.3. An Expanded Glioma-Therapy-Associated Network of CD Markers Containing NF-κB cCREs

Next, therapy and NF-κB associated CD markers were used as an initial seed for the
construction of a regulatory network also containing 20 resultant genes in the GeneMA-
NIA web server. The potential glioma-therapy-related network (GTN) contains 27 genes
(Figure 2). Associated pathways are also present in the final network. The resultant genes
contain members of the FUT family (including FUT3, FUT5, FUT6, FUT7, FUT9, FUT10,
and FUT11), other CD markers (e.g., CD2, CD34, CD80, CD86), and members of the se-
lectin family (e.g., SELE, SELPLG), as well as TF, TFR2, HFE, DUSP14, ITGAL, IL12A,
and MADCAM1.

3.4. Enriched Pathways Containing GTN Genes

GTN genes were further characterized using two types of enrichment analysis. First,
Reactome analysis was performed to provide an overview of the significant pathways and
their associations (Figure 3 and Table S2, Supplementary Materials). The analysis revealed
the 25 most enriched pathways (summarized in Table 1), most of which can be categorized
in terms of highly associated cellular functions.
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Figure 1. Binding of the NF-κB subunit RELB in glioma-therapy-associated CD markers. For every 
CD marker, a chromosome ideogram with chromosomal band location is shown as a vertical red 
line. Below each chromosome ideogram, parallel lines depict a chromosomal scale, the exact loca-
tion of each gene transcriptional start site (based on GENCODE V39), and the positions of respec-
tive RELB binding sites and ENCODE candidate cis-regulatory elements. 

  

Figure 1. Binding of the NF-κB subunit RELB in glioma-therapy-associated CD markers. For every
CD marker, a chromosome ideogram with chromosomal band location is shown as a vertical red line.
Below each chromosome ideogram, parallel lines depict a chromosomal scale, the exact location of
each gene transcriptional start site (based on GENCODE V39), and the positions of respective RELB
binding sites and ENCODE candidate cis-regulatory elements.
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Figure 2. Interaction network containing surface markers that are targeted by NF-κB. The nodes
indicate interaction. The color of each node designates a different type of interaction, explained in the
bottom-left corner legend. Associated functions are designated with a colored pie chart within the
respective circles representing individual proteins, explained in the bottom-right corner legend.
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Table 1. Most significant pathways containing GTN genes. The 25 most relevant pathways sorted by
p-value are shown.

Pathway Name
Entities Reactions

Found Ratio p-Value FDR * Found Ratio

Lewis blood group
biosynthesis 8/39 0.003 1.78 × 10−13 1.94 × 10−11 5/13 9.53 × 10−4

Blood group systems
biosynthesis 8/52 0.003 1.73 × 10−12 9.37 × 10−11 5/22 0.002

Insulin-like Growth Factor-2
mRNA Binding Proteins

(IGF2BPs/IMPs/VICKZs)
bind RNA

5/13 8.63 × 10−4 3.49 × 10−10 1.26 × 10−8 2/3 2.20 × 10−4

Interleukin-10 signaling 6/86 0.006 1.31 × 10−7 3.53 × 10−6 2/15 0.001

Metabolism of carbohydrates 9/457 0.03 3.15 × 10−6 5.79 × 10−5 8/243 0.018

Iron uptake and transport 5/83 0.006 3.22 × 10−6 5.79 × 10−5 9/34 0.002

Transferrin endocytosis
and recycling 4/39 0.003 4.21 × 10−6 6.31 × 10−5 7/11 8.06 × 10−4

Cell surface interactions at the
vascular wall 7/257 0.017 5.67 × 10−6 7.37 × 10−5 4/65 0.005

CD28 dependent
Vav1 pathway 3/17 0.001 1.48 × 10−5 1.78 × 10−4 5/6 4.40 × 10−4

CTLA4 inhibitory signaling 3/25 0.002 4.64 × 10−5 4.64 × 10−4 3/5 3.66 × 10−4

CD28 dependent
PI3K/Akt signaling 3/26 0.002 5.21 × 10−5 4.69 × 10−4 2/9 6.60 × 10−4

Costimulation by the
CD28 family 4/97 0.006 1.44 × 10−4 0.001 14/35 0.003

CD28 co-stimulation 3/39 0.003 1.72 × 10−4 0.001 11/19 0.001

Immune System 17/2684 0.178 3.46 × 10−4 0.002 97/1625 0.119

RUNX3 Regulates Immune
Response and Cell Migration 2/10 6.64 × 10−4 3.55 × 10−4 0.002 2/5 3.66 × 10−4

Interleukin-35 Signalling 2/16 0.001 8.99 × 10−4 0.005 24/26 0.002

Hemostasis 8/803 0.053 0.001 0.008 5/334 0.024

Signaling by Interleukins 7/643 0.043 0.002 0.008 71/493 0.036

Integrin cell surface
interactions 3/86 0.006 0.002 0.008 4/55 0.004

Cytokine Signaling in
Immune system 9/1092 0.072 0.002 0.011 73/710 0.052

Constitutive Signaling by
Aberrant PI3K in Cancer 3/96 0.006 0.002 0.011 1/2 1.47 × 10−4

PI3K/AKT Signaling
in Cancer 3/124 0.008 0.005 0.019 1/21 0.002

Adaptive Immune System 8/1005 0.067 0.005 0.02 17/264 0.019

PI5P, PP2A and IER3 Regulate
PI3K/AKT Signaling 3/129 0.009 0.005 0.021 1/7 5.13 × 10−4

Negative regulation of the
PI3K/AKT network 3/137 0.009 0.006 0.025 1/10 7.33 × 10−4

* False Discovery Rate.
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Figure 3. Overview of pathways associated with GTN genes, following Reactome analysis. Signifi-
cantly enriched pathways (p < 0.05) are highlighted in yellow.

These pathways mostly take part in CD28- and PI3K/AKT-associated signaling (stim-
ulation by the CD28 family CD28 co-stimulation; CD28-dependent Vav1 pathway CTLA4
inhibitory signaling; CD28-dependent PI3K/Akt signaling; constitutive signaling by aber-
rant PI3K in cancer; PI3K/AKT signaling in the cancer adaptive immune system; PI5P,
PP2A, and IER3 regulate PI3K/AKT signaling; negative regulation of the PI3K/AKT
network), immune response (immune system; RUNX3 regulates immune response and
cell migration), iron homeostasis (iron uptake and transport; transferrin endocytosis and
recycling), and inflammation-associated interleukin and cytokine signaling (interleukin-
10 signaling; interleukin-35 signaling hemostasis; signaling by interleukin–integrin cell
surface interactions; cytokine signaling in the immune system). In addition, several other
independent pathways are also enriched, including blood group systems’ biosynthesis,
insulin-like growth factor-2 mRNA binding proteins (e.g., IGF2BPs/IMPs/VICKZs) to bind
RNA, and the metabolism of carbohydrates and cell surface interactions at the vascular wall.

Second, Enrichr analysis was performed for the enrichment of GTN genes in gene
sets present in specific databases (Figure 4). The top 10 enriched transcription factors in
TRRUST Transcription Factor Database version 2019 include several members of the NF-κB
family (human RELA, human NFKB1, murine NFKB1, and human IKBKB). Importantly,
microglia in the cerebrum and cerebellum are included among the tissues types in which
GTN genes are expressed, from the Descartes Cell Types and Tissue Database version 2021.
Enriched pathways, from the WikiPathways Database version 2021, among others, include
cancer-related pathways (cancer immunotherapy by CTLA4 blockade WP4582; interac-
tions between immune cells and microRNAs in the tumor microenvironment WP4559),
immune-system-related pathways (control of immune tolerance by vasoactive intestinal
peptide WP4484; allograft rejection WP2328), virus-related pathways (FOXP3 in COVID-19
WP5063; acute viral myocarditis WP4298), and inflammatory response pathway WP453,
iron metabolism in placenta WP2007, PI3K/AKT/mTOR-VitD3 signaling WP4141, and
3q29 copy number variation syndrome WP4906.
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based on Enrichr analysis. Individual asterisks denote p-values.
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4. Discussion

In the present report, we established the existence of a novel molecular network of
common targets between natural compounds and the NF-κB transcription factor family.
Our approach suggests that a possible common mechanism of action for natural compounds
might involve the action of NF-κB, leading to a core regulatory network that acts in
glioblastoma and is associated with chemosensitivity. The significance of our results is
based on three lines of evidence:

First, the antiglioma action of the natural substances MM, CS, and DGH has been
previously established [9–11]. The GTN gene set established in the present report is
relevant to our previous findings, since they are expressed in microglia in the cerebrum
and cerebellum (from Descartes Cell Types and Tissue 2021)—the tissue types that include
most cells that transform into glioma. In addition, GTN genes are also associated with
cancer-related immunotherapy (WP4582) and the interactions between immune cells and
microRNAs in the tumor microenvironment (WP4559). The GTN gene set includes the
majority of surface markers that we found to be altered following chemosensitivity of
glioma cells, possibly following the potent antioxidant and anti-inflammatory activities
of MM, CS, and DGH [12,13]. A possible limitation of our study is that while MM and CS
share a highly similar structure, DGH is a bufadienolide with a different structure. On
the other hand, the potential of substances with different structures to instigate similar
biological outcomes might constitute an interesting finding, and may also suggest that
other potent antioxidant and anti-inflammatory substances may have antiglioma activity,
by affecting our suggested network.

Second, NF-κB promotes the survival and chemoresistance of glioblastoma, and there
is evidence that this action may potentially be inhibited by several natural compounds.
The transcription factor NF-κB plays an important role in (a) the survival and regulation of
the cell cycle in glioblastoma [30], (b) resistance to chemotherapy [31–33], (c) the induction
of cancerous stem cells [34] and aggressive phenotypes [35,36], and (d) invasion, angio-
genesis [37] and metastasis of glioblastoma cells [38,39]. Inhibition of NF-κB is associated
with increased sensitivity to chemotherapy [33], and has therefore been proposed as a
strategy for treating glioblastoma [15]. Given that CS is known to inhibit NF-κB [40], and
based on the common structural characteristics and the similarity in in vitro action [41,42],
NF-κB is a potent candidate for glioblastoma treatment. Several members of the NF-κB
family (i.e., human RELA, human NFKB1, murine NFKB1, and human IKBKB, based on
the TRRUST Database) are included among the top 10 enriched TFs in GTN genes. In
addition, the immune response, immune-system-related pathways (WP4484; WP2328),
and inflammation-associated interleukin- and cytokine signaling (WP453) are among the
pathways most associated with GTN genes, in both Reactome and Enrichr. NF-κB is known
to play major roles in both immunity and inflammation [43], as well as in the interplay
between inflammation and cancer [14]. In addition, NF-κB may also be associated with
virus-related pathways, such as FOXP3 in COVID-19 (WP50630). There is a known in-
terplay between FOXP3 and NF-κB, whereby FOXP3 can modulate NF-κB activity, and
vice versa, leading to diverse physiological and pathological effects [44,45]. Both factors
have been associated with severe COVID-19, while NF-κB targeting has been proposed
as a treatment that might also involve some of the GTN genes [46,47]. Importantly, acute
viral myocarditis (WP4298)—an additional enriched pathway with GTN genes—is asso-
ciated with NF-κB-induced inflammation, in a regulatory network that also involves the
microRNAs miR148a and miR-155 [48].

Third, MM, CS, and DGH action and NF-κB binding converge in GTN genes. To the
best of our knowledge, this is the first study to examine whether the aforementioned CD
markers contain NF-κB binding sites. The implications of such binding are the functional
targeting by NF-κB and the potential to create feedback loops taking part in regulatory
networks. FUT4/CD15 have been shown to be targeted by NF-κB—an observation that
strengthens our arguments [49,50]. A drawback of the suggested mechanism is that it
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needs further experimental validation. We believe that additional studies would confirm
the regulatory role of NF-κB in GTN genes.

Among the GTN genes, the most abundant are the members of the fucosyltransferase
(FUT) family, including FUT4/CD15, FUT5, FUT6, FUT7, FUT9, FUT10, and FUT11. CD15
is a cancer-associated marker in brain malignancies [51], which is also present in normal [52]
and cancer stem cells [53,54]. FUT5 and FUT6 have been associated with a PI3K-mediated
aggressive phenotype in colorectal cancer [55]. FUT7 is induced by L-selectin to facilitate
hematogenous carcinoma metastasis, which is supported by aggregated platelets and
white blood cells [56], while in bladder urothelial carcinoma it is associated with epithelial–
mesenchymal transition [57]. FUT9 has been associated with colon cancer progression
both by induction of cell dedifferentiation into a stem-like state [58], and by metabolic
remodeling [59]. Importantly, FUT4, FUT5, FUT6, and FUT7 have been confirmed as NF-κB
targets [49,60,61].

CD28 expression is altered following DGH or TMZ treatment in glioma [11]. In our study,
several CD28-associated pathways included GTN genes and involved PI3K/Akt signaling
(co-stimulation by the CD28 family; CD28-dependent Vav1 pathway; CD28-dependent). These
pathways might represent the significance of targeting the GTN gene network in glioma,
which also involves the established PI3K/Akt activity in glioma [62,63]—an enriched pathway
with GTN genes (WP4141). Significantly, CD28-mediated NF-κB activation [64,65] supports
the notion that a positive feedback loop exists between CD28 and NF-κB, and supports the
position of CD28 as a central molecule in the GTN network.

CD44 is a transmembrane glycoprotein that is expressed in most cell types, and is
a receptor for hyaluronic acid and a marker of cancer stem cells, which is upregulated
by NF-κB [50]. In glioblastoma, CD44 downregulation prevents tumor growth and sen-
sitizes cancer cells to cytotoxic drugs [66]. The CD58 marker is a lymphocyte adhesion
molecule, found to be overexpressed in gliomas associated with normal brain tissue [67].
This molecule is important for immune response, and CD58+ glioma cells are capable of
causing tumor onset in vivo [68], while a significant decrease in CD58 expression by DGH
suggests possible modified immunological responses in gliomas. CD71 corresponds to the
transferrin-1 receptor (TfR1), and is associated with iron homeostasis at the cellular and or-
ganism level. CD71 expression is known to be elevated in various types of malignancy [69],
and is an indicator of poor prognosis in various types of cancer, including glioblastoma [70].
Alteration of CD71 expression can also lead to disruption of intracellular iron levels, known
to be associated with oxidative stress induction [71], which may represent a mechanism
to sensitize glioma cells to cell death, or may inhibit glioblastoma cells from performing
important biochemical functions. This conceptual framework is consistent with this study’s
results, where GTN genes were associated with iron homeostasis (iron uptake and transport;
transferrin endocytosis and recycling) and iron metabolism in the placenta (WP2007).

An interesting subsection of the suggested regulatory network involves the presence
of IL2RB—a receptor for IL-2—as well as IL-12a. IL-12 is associated with a Th1-type
anticancer immune response, and is capable of eliciting potent antitumor activity [72], as
well as regulating the transcription of matrix metalloproteinases [73]. Cytokine signaling
is tightly connected with NF-κB activity, and takes part in known networks that connect
cancer with inflammation and immune response [14,74]. Cytokine signaling may also be
associated with an orchestrated alteration of immune cell subtypes, cytokine levels, and an
altered metabolite profile [74].

Collectively, our results support the presence of an expanded therapy-associated
network of cluster of differentiation markers containing NF-κB cCREs, providing a compre-
hensive and unified mechanism of action for antiglioma therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines10050935/s1, Figure S1: Distance of NF-kB binding sites to human genes
promoters, Table S1: NF-kB binding related to concesus cis-regulatory elements, Table S2: NF-κB
binding sites in relation to human gene promoters.
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