Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Differential Scanning Calorimetry
2.2.2. Preparation of Lipid Nanostructures; Polymer–Lipid Nanostructures; and Lipid-Dendrimer Nanostructures
2.2.3. Cryogenic Transmission Electron Microscopy (cryo-TEM) Measurements
2.2.4. In Vitro Cytotoxicity
2.2.5. BSA Encapsulation and Encapsulation Efficiency (%EE) Studies
3. Results and Discussion
3.1. Preformulation Studies: The Role of the Guest into DDA:TDB Lipid Bilayer Thermotropic Behavior
3.2. Formulation Studies: The Role of the Guest on DDA:TDB Liposome Size and Morphology
3.3. Nanotoxicity Studies and Protein Loading Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rose, F.; Wern, J.E.; Ingvarsson, P.T.; van de Weert, M.; Andersen, P.; Follmann, F.; Foged, C. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach. J. Control. Release 2015, 210, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.J.; Machado, R.; Ribeiro, A.; Gonçalves, H.; Real Oliveira, M.E.C.D.; Viseu, T.; das Neves, J.; Lúcio, M. Rational Development of Liposomal Hydrogels: A Strategy for Topical Vaginal Antiretroviral Drug Delivery in the Context of HIV Prevention. Pharmaceutics 2019, 11, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.M.; Martins-Gomes, C.; Fangueiro, J.F.; Andreani, T.; Souto, E.B. Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines. Pharm. Dev. Technol. 2019, 24, 1243–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, G.; Anderluzzi, G.; Tandrup Schmidt, S.; Woods, S.; Gallorini, S.; Brazzoli, M.; Giusti, F.; Ferlenghi, I.; Johnson, R.; Roberts, C.W.; et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection. J. Control. Release 2020, 325, 370–379. [Google Scholar] [CrossRef]
- Lee, H.; Jiang, D.; Pardridge, W.M. Lyoprotectant Optimization for the Freeze-Drying of Receptor-Targeted Trojan Horse Liposomes for Plasmid DNA Delivery. Mol. Pharm. 2020, 17, 2165–2174. [Google Scholar] [CrossRef]
- Gallez, A.; Palazzo, C.; Blacher, S.; Tskitishvili, E.; Noël, A.; Foidart, J.M.; Evrard, B.; Pequeux, C.; Piel, G. Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17β-estradiol: An innovative drug delivery system that prevents the activation of the membrane-initiated steroid signaling (MISS) of estrogen receptor α. Int. J. Pharm. 2020, 573, 118861. [Google Scholar] [CrossRef]
- Davidsen, J.; Rosenkrands, I.; Christensen, D.; Vangala, A.; Kirby, D.; Perrie, Y.; Agger, E.M.; Andersen, P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6-dibehenate)- a novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta 2005, 1718, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Fomsgaard, A.; Karlsson, I.; Gram, G.; Schou, C.; Tang, S.; Bang, P.; Kromann, I.; Andersen, P.; Andreasen, L.V. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine 2011, 29, 7067–7074. [Google Scholar] [CrossRef]
- Nordly, P.; Agger, E.M.; Andersen, P.; Nielsen, H.M.; Foged, C. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: Physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res. 2011, 28, 553–562. [Google Scholar] [CrossRef]
- Liu, Y.; Ng, Y.; Toh, M.R.; Chiu, G.N.C. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. J. Control. Release 2015, 220, 438–446. [Google Scholar] [CrossRef]
- Khopade, A.J.; Shenoy, D.B.; Khopade, S.A.; Jain, N.K. Phase structures of a hydrated anionic phospholipid composition containing cationic dendrimers and pegylated lipids. Langmuir 2004, 20, 7368–7373. [Google Scholar] [CrossRef] [PubMed]
- Akesson, A.; Bendtsen, K.M.; Beherens, M.A.; Pedersen, J.S.; Alfredsson, V.; Cárdenas Gómez, M. The effect of PAMAM G6 dendrimers on the structure of lipid vesicles. Phys. Chem. Chem. Phys. 2010, 12, 12267–12272. [Google Scholar] [CrossRef] [PubMed]
- Akesson, A.; Lind, T.K.; Barker, R.; Hughes, A.; Cárdenas, M. Unraveling dendrimer translocation across cell membrane mimics. Langmuir 2012, 28, 13025–13033. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.P.; Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014, 177, 8–18. [Google Scholar] [CrossRef]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 286. [Google Scholar] [CrossRef] [Green Version]
- Worsham, R.D.; Thomas, V.; Farid, S.S. Potential of Continuous Manufacturing for Liposomal Drug Products. Biotechnol. J. 2019, 14, e1700740. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Marioli, M.; Zhang, K.J. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021, 192, 113642. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipid nanocarriers systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Costa, A.; Burgess, D.J. Protein Encapsulation in unilamellar liposomes: High encapsulation efficiency and a novel technique to assess lipid-protein interaction. Pharm. Res. 2012, 29, 1919–1931. [Google Scholar] [CrossRef]
- Moncalvo, F.; Martinez Espinoza, M.I.; Cellesi, F. Nanosized Delivery Systems for Therapeutic Proteins: Clinically Validated Technologies and Advanced Development Strategies. Front. Bioeng. Biotechnol. 2020, 8, 89. [Google Scholar] [CrossRef]
- Chountoulesi, M.; Pippa, N.; Chrysostomou, V.; Pispas, S.; Chrysina, E.D.; Forys, A.; Otulakowski, L.; Trzebicka, B.; Demetzos, C. Stimuli-responsive lyotropic liquid crystalline nanosystems with incorporated Poly(2-dimethylamino Ethyl Methacrylate)-b-Poly(Lauryl Methacrylate) Amphiphilic Block Copolymer. Polymers 2019, 11, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chountoulesi, M.; Romano Perinelli, D.; Pippa, N.; Chrysostomou, V.; Forys, A.; Otulakowski, L.; Bonacucina, G.; Trzebicka, B.; Pispas, S.; Demetzos, C. Physicochemical, morphological and thermal evaluation of lyotropic lipidic liquid crystalline nanoparticles: The effect of stimuli responsive polymeric stabilizer. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124678. [Google Scholar] [CrossRef]
- Naziris, N.; Pippa, N.; Sereti, E.; Chrysostomou, V.; Kędzierska, M.; Kajdanek, J.; Ionov, M.; Miłowska, K.; Balcerzak, Ł.; Garofalo, S.; et al. Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34. Int. J. Mol. Sci. 2021, 22, 6271. [Google Scholar] [CrossRef]
- Luo, M.; Wang, H.; Wang, Z.; Cai, H.; Lu, Z.; Li, Y.; Du, M.; Huanf, G.; Wang, C.; Chen, X.; et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654. [Google Scholar] [CrossRef]
- Zhiyu, L.; Allan, T.P.; Gill, T.A. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods 2015, 19, 733–743. [Google Scholar]
- Feitosa, E.; Barreleiro, P.C.A.; Olofsson, G. Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem. Phys. Lipids 2000, 105, 201–213. [Google Scholar] [CrossRef]
- Barreleiro, P.C.A.; Olofsson, G.; Brown, W.; Edwards, K.; Bonassi, M.N.; Feitosa, E. Interaction of octaethylene glycol n-dodecyl monoether with dioctadecyldimethylammonium bromide and chloride vesicles. Langmuir 2002, 18, 1024–1029. [Google Scholar] [CrossRef]
- Go, Y.K.; Kambar, N.; Leal, C. Hybrid Unilamellar Vesicles of Phospholipids and Block Copolymers with Crystalline Domains. Polymers 2020, 12, 1232. [Google Scholar] [CrossRef]
- Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta Rev. Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef]
- Pippa, N.; Perinelli, D.R.; Pispas, S.; Bonacuccina, G.; Demetzos, C.; Forys, A.; Trzebicka, B. Studying the colloidal behavior of the chimeric liposomes by cryo-TEM, micro-differential scanning Calorimetry and high-resolution ultrasound spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 539–547. [Google Scholar] [CrossRef]
- Naziris, N.; Pippa, N.; Chrysostomou, V.; Pispas, S.; Demetzos, C.; Libera, M.; Trzbicka, B. Morphological diversity of blockcopolymer/lipid chimeric nanostructures. J. Nanoparticle Res. 2017, 19, 347. [Google Scholar] [CrossRef]
- Schulz, M.; Binder, W.H. Chimeric hybrid lipid/polymer vesicles as a novel membrane platform. Macromol. Rapid Commun. 2015, 36, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Grad, P.; Gedda, L.; Edwards, K. Effect of gangliosides on structure and integrity of polyethylene glycol (PEG)-stabilized liposomes. J. Colloid Interface Sci. 2020, 578, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Nordström, R.; Zhu, L.; Härmark, J.; Levi-Kalisman, Y.; Koren, E.; Barenholz, Y.; Levinton, G.; Shamrakov, D. Quantitative Cryo-TEM Reveals New Structural Details of Doxil-Like PEGylated Liposomal Doxorubicin Formulation. Pharmaceutics 2021, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Mecke, A.; Uppuluri, S.; Sassanella, T.M.; Lee, D.K.; Ramamoorthy, A.; Baker, J.R., Jr.; Orr, B.G.; Banaszak Holl, M.M. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem. Phys. Lipids 2004, 132, 3–14. [Google Scholar] [CrossRef]
- Pippa, N.; Forys, A.; Katifelis, H.; Chrysostomou, V.; Trzbicka, B.; Gazouli, M.; Demetzos, C.; Pispas, S. Design and development of DSPC:DAP:PDMAEMA-b-PLMA nanostructures: From the adumbration of their morphological characteristics to in vitro evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 6322, 127768. [Google Scholar] [CrossRef]
Sample | Weight Ratio | Tonset.m (°C) a | Tm (°C) b | ΔΤ1/2.m (°C) c | ΔHm (J/mol) d | Tonset.s (°C) | Ts (°C) | ΔΤ1/2 (°C) | ΔHs (KJ/mol) |
---|---|---|---|---|---|---|---|---|---|
Heating | |||||||||
DDA:TDB | 1:0.2 | 49.7 | 51.4 | 1.69 | −117.0 | 38.5 | 40.3 | 1.71 | −109 |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:0.5 | 36.8 | 39.5 | 2.98 | −133.7 | 32.6 | 33.8 | 2.54 | −274 |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:1 | 38.8 | 40.3 | 1.43 | −46.5 | 29.2 | 30.9 | 1.97 | −19 |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:2.5 | 37.6 | 40.3 | 2.06 | −42.6 | - | - | - | - |
DDA:TDB:PAMAM G4 | 1:0.2:0.1 | 26.6 | 37.9 | 16.19 | −4.5 | - | - | - | - |
Cooling | |||||||||
DDA:TDB | 1:0.2 | 37.7 | 37.6 | 1.68 | 363.9 | - | - | - | - |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:0.5 | 40.4 | 37.4 | 5.84 | 613.9 | - | - | - | - |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:1 | 40.0 | 37.4 | 4.57 | 409.3 | - | - | - | - |
DDA:TDB:PLMA-b-PDMAEMA | 1:0.2:2.5 | 42.8 | 35.5 | 7.01 | 447.2 | - | - | - | - |
DDA:TDB:PAMAM G4 | 1:0.2:0.1 | 43.5 | 38.2 | 8.0 | 84.8 | - | - | - | - |
System | Weight Ratio | Dh (nm) | Ζ-Potential (mV) | I (KCps) | % Loading |
---|---|---|---|---|---|
DDA:TDB:PLMA-b-PDMAEMA:BSA | 1:0.2:0.5:1 | 418.8 ± 29.5 | 14.8 ± 1.6 | 203.4 ± 1.7 | 82.0 ± 3.9 |
DDA:TDB:PLMA-b-PDMAEMA:BSA | 1:0.2:1:1 | 277.9 ± 13.9 | 13.2 ± 8.1 | 240.8 ± 1.9 | 88.7 ± 5.7 |
DDA:TDB:PLMA-b-PDMAEMA:BSA | 1:0.2:2.5:1 | 231 ± 25 | 18.2 ± 1.7 | 221.7 ± 1.7 | 91.5 ± 1.8 |
DDA:TDB:PAMAM G4:BSA | 1:0.2:0.1:1 | 2721.1 ± 153.6 | 32.3 ± 6.2 | 130.7 ± 3.7 | 93.0 ± 8.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pippa, N.; Lagopati, N.; Forys, A.; Chountoulesi, M.; Katifelis, H.; Chrysostomou, V.; Trzebicka, B.; Gazouli, M.; Demetzos, C.; Pispas, S. Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery. Biomedicines 2022, 10, 1228. https://doi.org/10.3390/biomedicines10061228
Pippa N, Lagopati N, Forys A, Chountoulesi M, Katifelis H, Chrysostomou V, Trzebicka B, Gazouli M, Demetzos C, Pispas S. Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery. Biomedicines. 2022; 10(6):1228. https://doi.org/10.3390/biomedicines10061228
Chicago/Turabian StylePippa, Natassa, Nefeli Lagopati, Aleksander Forys, Maria Chountoulesi, Hektor Katifelis, Varvara Chrysostomou, Barbara Trzebicka, Maria Gazouli, Costas Demetzos, and Stergios Pispas. 2022. "Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery" Biomedicines 10, no. 6: 1228. https://doi.org/10.3390/biomedicines10061228
APA StylePippa, N., Lagopati, N., Forys, A., Chountoulesi, M., Katifelis, H., Chrysostomou, V., Trzebicka, B., Gazouli, M., Demetzos, C., & Pispas, S. (2022). Aqueous Heat Method for the Preparation of Hybrid Lipid–Polymer Structures: From Preformulation Studies to Protein Delivery. Biomedicines, 10(6), 1228. https://doi.org/10.3390/biomedicines10061228