Acid Resistance of CAD/CAM Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Roughness Parameters
2.3. Determination of Vickers Hardness
2.4. Statistical Analysis
2.5. Further Analysis to Investigate the Damage Mechanisms
3. Results
3.1. Surface Roughness
3.2. Vickers Hardness
3.3. Damage Mechanisms
4. Discussion
5. Conclusions
- (1)
- All of the investigated CAD/CAM resin composites were susceptible to at least one of the applied media.
- (2)
- (3)
- The greatest differences were observed for Cerasmart after storage in hydrochloric acid. Further investigations via SEM–EDS and µXCT revealed leached fillers with reduced quantities of barium, aluminium, and titanium that were present in a 2 µm surface region of the rough surfaces. The comparison between polished and unpolished surfaces suggested that acid resistance may increase with lower surface roughness.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eccles, J.D. Tooth surface loss from abrasion, attrition and erosion. Dent. Update 1982, 9, 373–374. [Google Scholar] [PubMed]
- The Glossary of Prosthodontic Terms: Ninth Edition. J. Prosthet. Dent. 2017, 117, e1–e105. [CrossRef] [PubMed]
- Bergström, J.; Eliasson, S. Cervical abrasion in relation to toothbrushing and periodontal health. Scand. J. Dent. Res. 1988, 96, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Kanzow, P.; Wegehaupt, F.J.; Attin, T.; Wiegand, A. Etiology and pathogenesis of dental erosion. Quintessence Int. 2016, 47, 275–278. [Google Scholar] [CrossRef]
- Alaraudanjoki, V.; Laitala, M.L.; Tjäderhane, L.; Pesonen, P.; Lussi, A.; Ronkainen, J.; Anttonen, V. Influence of Intrinsic Factors on Erosive Tooth Wear in a Large-Scale Epidemiological Study. Caries Res. 2016, 50, 508–516. [Google Scholar] [CrossRef]
- Richards, D. Impact of diet on tooth erosion. Evid. Based Dent. 2016, 17, 40. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Donovan, T.E.; Swift, E.J. Dental Erosion: The Unrecognized Epidemic. J. Esthet. Restor. Dent. 2015, 27, 119–121. [Google Scholar] [CrossRef]
- Kisely, S.; Baghaie, H.; Lalloo, R.; Johnson, N.W. Association between poor oral health and eating disorders: Systematic review and meta-analysis. Br. J. Psychiatry 2015, 207, 299–305. [Google Scholar] [CrossRef]
- Tschammler, C.; Müller-Pflanz, C.; Attin, T.; Müller, J.; Wiegand, A. Prevalence and risk factors of erosive tooth wear in 3–6 year old German kindergarten children—A comparison between 2004/05 and 2014/15. J. Dent. 2016, 52, 45–49. [Google Scholar] [CrossRef]
- Schlueter, N.; Luka, B. Erosive tooth wear–a review on global prevalence and on its prevalence in risk groups. Br. Dent. J. 2018, 224, 364–370. [Google Scholar] [CrossRef]
- Mesko, M.E.; Sarkis-Onofre, R.; Cenci, M.S.; Opdam, N.J.; Loomans, B.; Pereira-Cenci, T. Rehabilitation of severely worn teeth: A systematic review. J. Dent. 2016, 48, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Schmidtke, J.; Schmohl, L.; Schneider-Feyrer, S.; Rosentritt, M.; Hoelzig, H.; Kloess, G.; Vejjasilpa, K.; Schulz-Siegmund, M.; Fuchs, F.; et al. Characterisation of the Filler Fraction in CAD/CAM Resin-Based Composites. Materials 2021, 14, 1986. [Google Scholar] [CrossRef] [PubMed]
- Hensel, F.; Koenig, A.; Doerfler, H.-M.; Fuchs, F.; Rosentritt, M.; Hahnel, S. CAD/CAM Resin-Based Composites for Use in Long-Term Temporary Fixed Dental Prostheses. Polymers 2021, 13, 3469. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, L.H.; Maia, H.P.; Baratieri, L.N.; Magne, P. Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion. J. Prosthet. Dent. 2011, 105, 217–226. [Google Scholar] [CrossRef]
- Moradi, Z.; Abbasi, M.; Khalesi, R.; Tabatabaei, M.H.; Shahidi, Z. Fracture Toughness Comparison of Three Indirect Composite Resins Using 4-Point Flexural Strength Method. Eur. J. Dent. 2020, 14, 212–216. [Google Scholar] [CrossRef]
- Skorulska, A.; Piszko, P.; Rybak, Z.; Szymonowicz, M.; Dobrzyński, M. Review on Polymer, Ceramic and Composite Materials for CAD/CAM Indirect Restorations in Dentistry-Application, Mechanical Characteristics and Comparison. Materials 2021, 14, 1592. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Silikas, N.; Salim, N.A.; Al-Nasrawi, S.; Satterthwaite, J.D. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef]
- Rauch, A.; König, A. Indirekte Komposite aus klinischer und werkstoffkundlicher Sicht. Quintessenz 2020, 71, 116–126. [Google Scholar]
- Soares, L.E.S.; Soares, A.L.S.; Oliveira, R.; de Nahórny, S. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis. Microsc. Res. Tech. 2016, 79, 646–656. [Google Scholar] [CrossRef]
- Shabanian, M.; Richards, L.C. In vitro wear rates of materials under different loads and varying pH. J. Prosthet. Dent. 2002, 87, 650–656. [Google Scholar] [CrossRef]
- Hwang, S.; Chung, S.H.; Lee, J.T.; Kim, Y.T.; Kim, Y.J.; Oh, S.; Yeo, I.S.L. Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials 2018, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Attin, T.; Filli, T.; Imfeld, C.; Schmidlin, P.R. Composite vertical bite reconstructions in eroded dentitions after 5·5 years: A case series. J. Oral Rehabil. 2012, 39, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Deutsches Institut für Normung e. V. Zahnheilkunde–Keramische Werkstoffe (ISO 6872:2015 + Amd.1:2018); Deutsche Fassung EN ISO 6872:2015 + A1:2018; Beuth Verlag GmbH: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e. V. DIN EN ISO 10477:2018-10, Zahnheilkunde_- Polymerbasierte Kronen- und Verblendwerkstoffe (ISO_10477:2018); Deutsche Fassung EN_ISO_10477:2018; Beuth Verlag GmbH: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Munusamy, S.M.; Yap, A.U.; Ching, H.L.; Yahya, N.A. Degradation of Computer-aided Design/Computer-aided Manufacturing Composites by Dietary Solvents: An Optical Three-dimensional Surface Analysis. Oper. Dent. 2020, 45, E176–E184. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Drummond, J.L.; Hanley, L. Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent. Mater 2005, 21, 145–155. [Google Scholar] [CrossRef]
- Drummond, J.L.; Andronova, K.; Al-Turki, L.I.; Slaughter, L.D. Leaching and mechanical properties characterization of dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 172–180. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e. V. Geometrische Produktspezifikation (GPS)–Oberflächenbeschaffenheit: Flächenhaft–Teil 2: Begriffe und Oberflächen-Kenngrößen (ISO 25178-2:2012); Deutsche Fassung EN ISO 25178-2:2012; Beuth Verlag GmbH: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e. V. DIN EN ISO 6507-4:2018-07, Metallische Werkstoffe_- Härteprüfung nach Vickers_- Teil_4: Tabellen zur Bestimmung der Härtewerte (ISO_6507-4:2018); Deutsche Fassung EN_ISO_6507-4:2018; Beuth Verlag GmbH: Berlin, Germany. [CrossRef]
- Koenig, A. Analysis of air voids in cementitious materials using micro X-ray computed tomography (µXCT). Constr. Build. Mater. 2020, 244, 118313. [Google Scholar] [CrossRef]
- Jones, C.S.; Billington, R.W.; Pearson, G.J. The in vivo perception of roughness of restorations. Br. Dent. J. 2004, 196, 42–45. [Google Scholar] [CrossRef]
- Sagsoz, O.; Polat, S.N. Chemical degradation of dental CAD/CAM materials. Biomed. Mater. Eng. 2019, 30, 419–426. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Schubert, A.; Wassmann, T.; Holtappels, M.; Kurbad, O.; Krohn, S.; Bürgers, R. Predictability of Microbial Adhesion to Dental Materials by Roughness Parameters. Coatings 2019, 9, 456. [Google Scholar] [CrossRef]
- Etxeberria, M.; Escuin, T.; Vinas, M.; Ascaso, C. Useful surface parameters for biomaterial discrimination. Scanning 2015, 37, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Matzinger, M.; Hahnel, S.; Preis, V.; Rosentritt, M. Polishing effects and wear performance of chairside CAD/CAM materials. Clin. Oral. Investig. 2019, 23, 725–737. [Google Scholar] [CrossRef]
- Rosentritt, M.; Schneider-Feyrer, S.; Strasser, T.; Koenig, A.; Schmohl, L.; Schmid, A. Thermoanalytical Investigations on the Influence of Storage Time in Water of Resin-Based CAD/CAM Materials. Biomedicines 2021, 9, 1779. [Google Scholar] [CrossRef]
- Pinto, L.F.A.; Rigoli, I.C.; Neumann, M.G.; Cavalheiro, C.C.S. Curing, Monomer Leaching and Water Sorption of TEGDMA/BisGMA Photopolymerized Copolymers. J. Braz. Chem. Soc. 2013, 24, 595–600. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Cune, M.S.; Schepke, U. Fractography of clinically fractured, implant-supported dental computer-aided design and computer-aided manufacturing crowns. SAGE Open Med. Case Rep. 2017, 5, 2050313X17741015. [Google Scholar] [CrossRef]
- Moraes RRDe Marimon, J.L.M.; Schneider, L.F.J.; Sinhoreti, M.A.C.; Correr-Sobrinho, L.; Bueno, M. Effects of 6 Months of Aging in Water on Hardness and Surface Roughness of Two Microhybrid Dental Composites. J. Prosthodont. 2008, 17, 323–326. [Google Scholar] [CrossRef]
- Yesilyurt, C.; Yoldas, O.; Altintas, S.H.; Kusgoz, A. Effects of food-simulating liquids on the mechanical properties of a silorane-based dental composite. Dent. Mater. J. 2009, 28, 362–367. [Google Scholar] [CrossRef]
- Pomes, B.; Derue, I.; Lucas, A.; Nguyen, J.-F.; Richaud, E. Water ageing of urethane dimethacrylate networks. Polym. Degrad. Stab. 2018, 154, 195–202. [Google Scholar] [CrossRef]
- Prakki, A.; Cilli, R.; Mondelli, R.F.L.; Kalachandra, S.; Pereira, J.C. Influence of pH environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Söderholm, K.J.; Yang, M.C.; Garcea, I. Filler particle leachability of experimental dental composites. Eur. J. Oral. Sci. 2000, 108, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Palacios, T.; Abad, C.; Pradíes, G.; Pastor, J.Y. Evaluation of resin composites for dental restorations. Procedia Manuf. 2019, 41, 914–921. [Google Scholar] [CrossRef]
- Schmalz, G.; Hickel, R.; van Landuyt, K.L.; Reichl, F.-X. Nanoparticles in dentistry. Dent. Mater. 2017, 33, 1298–1314. [Google Scholar] [CrossRef] [PubMed]
- Chapter 13-Chemical aspects of leaching. In Municipal Solid Waste Incinerator Residues; Elsevier: Amsterdam, The Netherlands, 1997; pp. 507–578. [CrossRef]
- Buckwalter, C.; Pederson, L.; McVay, G. The effects of surface area to solution volume ratio and surface roughness on glass leaching. J. Non-Cryst. Solids 1982, 49, 397–412. [Google Scholar] [CrossRef]
Material | Abbreviation | Manufacturer | Lot No. | Inorganic Filler |
---|---|---|---|---|
BRILLIANT Crios | Br | Colténe, Altstätten, Switzerland | H96172 (block) IO3077 (package) | barium glass <1.0 µm; amorphous silica <20 nm |
CERASMART | Ce | GC, Bad Homburg, Germany | 1710041 | silica and barium glass nanoparticles |
Grandio blocs | Gr | VOCO, Cuxhaven, Germany | 1831584 | nanohybrid fillers |
Lava Ultimate | La | 3M, St. Paul, MN, USA | N401476 | silica nanomers 20 nm; zirconia nanomers 4–11 nm; zirconia-silica nanoclusters 0.6–10 µm |
SHOFU Block HC | Sh | Shofo, Kyoto, Japan | 0818225 | silica-based glass and silica |
Media | Abbreviation | Manufacturer | pH Value | Concentration (mol L−1 ) |
---|---|---|---|---|
Demineralized water | MH2O | - | - | - |
Tonic water | MTW | Schweppes Deutschland, Kreuztal, Germany | 2.59 | Degassed |
Acetic acid | MAcOH | Carl Roth, Karlsruhe, Germany | 2.48 | 0.94 |
Hydrochloric acid | MHCl | Carl Roth, Karlsruhe | 1.68 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmohl, L.; Roesner, A.J.; Fuchs, F.; Wagner, M.; Schmidt, M.B.; Hahnel, S.; Rauch, A.; Koenig, A. Acid Resistance of CAD/CAM Resin Composites. Biomedicines 2022, 10, 1383. https://doi.org/10.3390/biomedicines10061383
Schmohl L, Roesner AJ, Fuchs F, Wagner M, Schmidt MB, Hahnel S, Rauch A, Koenig A. Acid Resistance of CAD/CAM Resin Composites. Biomedicines. 2022; 10(6):1383. https://doi.org/10.3390/biomedicines10061383
Chicago/Turabian StyleSchmohl, Leonie, Anuschka Josephine Roesner, Florian Fuchs, Maximilian Wagner, Michael Benno Schmidt, Sebastian Hahnel, Angelika Rauch, and Andreas Koenig. 2022. "Acid Resistance of CAD/CAM Resin Composites" Biomedicines 10, no. 6: 1383. https://doi.org/10.3390/biomedicines10061383
APA StyleSchmohl, L., Roesner, A. J., Fuchs, F., Wagner, M., Schmidt, M. B., Hahnel, S., Rauch, A., & Koenig, A. (2022). Acid Resistance of CAD/CAM Resin Composites. Biomedicines, 10(6), 1383. https://doi.org/10.3390/biomedicines10061383