Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethics Statement
2.3. Laboratory Methods
2.4. Outcome Definitions and Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Participant’s Characteristics
3.2. Comparison of Paired CSF and Plasma HIV-1 VL at Days 1, 7 and 14
3.3. Prevalence and Factors Associated with CSF HIV-1 Viral Escape
3.4. HIV-1 Viral Load Trajectories and Factors Associated with Changes in HIV-1 Viral Load
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasingham, R.; Smith, R.M.; Park, B.J.; Jarvis, J.N.; Govender, N.P.; Chiller, T.M.; Denning, D.W.; Loyse, A.; Boulware, D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect. Dis. 2017, 17, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Gaolathe, T.; Wirth, K.E.; Holme, M.P.; Makhema, J.; Moyo, S.; Chakalisa, U.; Yankinda, E.K.; Lei, Q.; Mmalane, M.; Novitsky, V.; et al. Botswana’s progress toward achieving the 2020 UNAIDS 90-90-90 antiretroviral therapy and virological suppression goals: A population-based survey. Lancet HIV 2016, 3, e221–e230. [Google Scholar] [CrossRef] [Green Version]
- Tenforde, M.W.; Mokomane, M.; Leeme, T.; Patel, R.K.K.; Lekwape, N.; Ramodimoosi, C.; Dube, B.; Williams, E.A.; Mokobela, K.O.; Tawanana, E.; et al. Advanced Human Immunodeficiency Virus Disease in Botswana Following Successful Antiretroviral Therapy Rollout: Incidence of and Temporal Trends in Cryptococcal Meningitis. Clin. Infect. Dis. 2017, 65, 779–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na Pombejra, S.; Salemi, M.; Phinney, B.S.; Gelli, A. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Front. Cell. Infect. Microbiol. 2017, 7, 296. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.-Y.; Zhu, H.-M.; Wu, J.-H.; Wen, H.; Liu, C.-J. Increased permeability of blood–brain barrier is mediated by serine protease during Cryptococcus meningitis. J. Int. Med. Res. 2014, 42, 85–92. [Google Scholar] [CrossRef]
- Christo, P.P.; Greco, D.B.; Aleixo, A.W.; Livramento, J.A. Factors influencing cerebrospinal fluid and plasma HIV-1 RNA detection rate in patients with and without opportunistic neurological disease during the HAART era. BMC Infect. Dis. 2007, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Adewumi, O.M.; Dukhovlinova, E.; Shehu, N.Y.; Zhou, S.; Council, O.D.; Akanbi, M.O.; Taiwo, B.; Ogunniyi, A.; Robertson, K.; Kanyama, C.; et al. HIV-1 Central Nervous System Compartmentalization and Cytokine Interplay in Non-Subtype B HIV-1 Infections in Nigeria and Malawi. AIDS Res. Hum. Retrovir. 2020, 36, 490–500. [Google Scholar] [CrossRef]
- Louboutin, J.-P.; Strayer, D.S. Blood-Brain Barrier Abnormalities Caused by HIV-1 gp120: Mechanistic and Therapeutic Implications. Sci. World J. 2012, 2012, 482575. [Google Scholar] [CrossRef]
- Kanmogne, G.D.; Kennedy, R.C.; Grammas, P. HIV-1 gp120 proteins and gp160 peptides are toxic to brain endothelial cells and neurons: Possible pathway for HIV entry into the brain and HIV-associated dementia. J. Neuropathol. Exp. Neurol. 2002, 61, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Kanmogne, G.D.; Primeaux, C.; Grammas, P. HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permeability: Implications for the pathogenesis of HIV-associated dementia. J. Neuropathol. Exp. Neurol. 2005, 64, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, X.P.; McArthur, J.C.; Scott, J.; Gartner, S. Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: Evidence for monocyte trafficking into brain. J. Neurovirol. 2000, 6 (Suppl. S1), S70–S81. [Google Scholar]
- Meeker, R.B.; Bragg, D.C.; Poulton, W.; Hudson, L. Transmigration of macrophages across the choroid plexus epithelium in response to the feline immunodeficiency virus. Cell Tissue Res. 2012, 347, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Mukerji, S.S.; Misra, V.; Lorenz, D.; Cervantes-Arslanian, A.M.; Lyons, J.; Chalkias, S.; Wurcel, A.; Burke, D.; Venna, N.; Morgello, S.; et al. Temporal Patterns and Drug Resistance in CSF Viral Escape among ART-Experienced HIV-1 Infected Adults. J. Acquir. Immune Defic. Syndr. 2017, 75, 246–255. [Google Scholar] [CrossRef]
- Manesh, A.; Barnabas, R.; Mani, S.; Karthik, R.; Abraham, O.C.; Chacko, G.; Kannangai, R.; Varghese, G.M. Symptomatic HIV CNS viral escape among patients on effective cART. Int. J. Infect. Dis. 2019, 84, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Mukerji, S.S.; Misra, V.; Lorenz, D.R.; Uno, H.; Morgello, S.; Franklin, D.; Ellis, R.J.; Letendre, S.; Gabuzda, D. Impact of Antiretroviral Regimens on Cerebrospinal Fluid Viral Escape in a Prospective Multicohort Study of Antiretroviral Therapy-Experienced Human Immunodeficiency Virus-1-Infected Adults in the United States. Clin. Infect. Dis. 2018, 67, 1182–1190. [Google Scholar] [CrossRef]
- Letendre, S.; Marquie-Beck, J.; Capparelli, E.; Best, B.; Clifford, D.; Collier, A.C.; Gelman, B.B.; McArthur, J.C.; McCutchan, J.A.; Morgello, S.; et al. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch. Neurol. 2008, 65, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, S.; Michael, B.D.; Fisher, M.; Winston, A.; Nelson, M.; Taylor, S.; Ustianowski, A.; Ainsworth, J.; Gilson, R.; Haddow, L.; et al. CSF/plasma HIV-1 RNA discordance even at low levels is associated with up-regulation of host inflammatory mediators in CSF. Cytokine 2016, 83, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, S.; Geretti, A.M.; Beloukas, A.; Fisher, M.; Winston, A.; Else, L.; Nelson, M.; Taylor, S.; Ustianowski, A.; Ainsworth, J.; et al. Discordant CSF/plasma HIV-1 RNA in patients with unexplained low-level viraemia. J. Neurovirology 2016, 22, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Ulfhammer, G.; Edén, A.; Antinori, A.; Brew, B.J.; Calcagno, A.; Cinque, P.; De Zan, V.; Hagberg, L.; Lin, A.; Nilsson, S.; et al. Cerebrospinal Fluid viral load across the spectrum of untreated HIV-1 infection: A cross-sectional multi-center study. Clin. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Patrocínio-Jesus, R.; Flor-de-Lima, B.; Carlos, C.; Ta, J.; Diva, T.; Silva, J.; Patricia, P.W. HIV Viral Escape in Central Nervous System: A Retrospective Cohort. J. HIV AIDS Res. 2019, 1, 7. [Google Scholar]
- Handoko, R.; Chan, P.; Jagodzinski, L.; Pinyakorn, S.; Ubolyam, S.; Phanuphak, N.; Sacdalan, C.; Kroon, E.; Dumrongpisutikul, N.; Paul, R.; et al. Minimal detection of cerebrospinal fluid escape after initiation of antiretroviral therapy in acute HIV-1 infection. Aids 2021, 35, 777–782. [Google Scholar] [CrossRef]
- Dravid, A.N.; Natrajan, K.; Kulkarni, M.M.; Saraf, C.K.; Mahajan, U.S.; Kore, S.D.; Rathod, N.M.; Mahajan, U.S.; Wadia, R.S. Discordant CSF/plasma HIV-1 RNA in individuals on virologically suppressive antiretroviral therapy in Western India. Medicine 2018, 97, e9969. [Google Scholar] [CrossRef]
- Nagot, N.; Ouédraogo, A.; Foulongne, V.; Konaté, I.; Weiss, H.A.; Vergne, L.; Defer, M.-C.; Djagbaré, D.; Sanon, A.; Andonaba, J.-B.; et al. Reduction of HIV-1 RNA Levels with Therapy to Suppress Herpes Simplex Virus. N. Engl. J. Med. 2007, 356, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, R.A.; Lucchetti, A.; Whittington, W.L.; Sanchez, J.; Coombs, R.W.; Zuñiga, R.; Magaret, A.S.; Wald, A.; Corey, L.; Celum, C. Herpes simplex virus (HSV) suppression with valacyclovir reduces rectal and blood plasma HIV-1 levels in HIV-1/HSV-2-seropositive men: A randomized, double-blind, placebo-controlled crossover trial. J. Infect. Dis. 2007, 196, 1500–1508. [Google Scholar] [CrossRef]
- Kelentse, N.; Moyo, S.; Mogwele, M.; Lechiile, K.; Moraka, N.O.; Maruapula, D.; Seatla, K.K.; Esele, L.; Molebatsi, K.; Leeme, T.B.; et al. Differences in human immunodeficiency virus-1C viral load and drug resistance mutation between plasma and cerebrospinal fluid in patients with human immunodeficiency virus-associated cryptococcal meningitis in Botswana. Medicine 2020, 99, e22606. [Google Scholar] [CrossRef]
- Jarvis, J.N.; Lawrence, D.S.; Meya, D.B.; Kagimu, E.; Kasibante, J.; Mpoza, E.; Rutakingirwa, M.K.; Ssebambulidde, K.; Tugume, L.; Rhein, J.; et al. Single-Dose Liposomal Amphotericin B Treatment for Cryptococcal Meningitis. N. Engl. J. Med. 2022, 386, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.K.; Leeme, T.; Azzo, C.; Tlhako, N.; Tsholo, K.; Tawanana, E.O.; Molefi, M.; Mosepele, M.; Lawrence, D.S.; Mokomane, M.; et al. High Mortality in HIV-Associated Cryptococcal Meningitis Patients Treated With Amphotericin B-Based Therapy Under Routine Care Conditions in Africa. Open Forum Infect. Dis. 2018, 5, ofy267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenforde, M.W.; Mokomane, M.; Leeme, T.; Tlhako, N.; Tsholo, K.; Ramodimoosi, C.; Dube, B.; Mokobela, K.O.; Tawanana, E.; Chebani, T.; et al. Epidemiology of adult meningitis during antiretroviral therapy scale-up in southern Africa: Results from the Botswana national meningitis survey. J. Infect. 2019, 79, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenforde, M.W.; Mokomane, M.; Leeme, T.B.; Tlhako, N.; Tsholo, K.; Chebani, T.; Stephenson, A.; Hutton, J.; Mitchell, H.K.; Patel, R.K.K.; et al. Mortality in adult patients with culture-positive and culture-negative meningitis in the Botswana national meningitis survey: A prevalent cohort study. Lancet Infect. Dis. 2019, 19, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.; Troy, S.B. The differential diagnosis of hypoglycorrhachia in adult patients. Am. J. Med. Sci. 2014, 348, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, D.; Bower Chammard, T. Management of ART Exposed Patients: Ambition-cm Phase III Trial (Working Practice Document 17); Ambition Trial Coordinating Centre: Gaborone, Botswana, 2019. [Google Scholar]
- Lustig, G.; Cele, S.; Karim, F.; Derache, A.; Ngoepe, A.; Khan, K.; Gosnell, B.I.; Moosa, M.-Y.S.; Ntshuba, N.; Marais, S.; et al. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog. 2021, 17, e1009871. [Google Scholar] [CrossRef]
- Christo, P.P.; Greco, D.B.; Aleixo, A.W.; Livramento, J.A. HIV-1 RNA levels in cerebrospinal fluid and plasma and their correlation with opportunistic neurological diseases in a Brazilian AIDS reference hospital. Arq. Neuropsiquiatr. 2005, 63, 907–913. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Dudani, S. Symptomatic CSF HIV Escape in Patients on Anti Retroviral Therapy—A Case Series from India. J. Assoc. Physicians India 2020, 68, 47–51. [Google Scholar]
- De Almeida, S.M.; Rotta, I.; Ribeiro, C.E.; Oliveira, M.F.; Chaillon, A.; De Pereira, A.P.; Cunha, A.P.; Zonta, M.; Bents, J.F.; Raboni, S.M.; et al. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J. Neurovirol. 2017, 23, 460–473. [Google Scholar] [CrossRef]
- Pérez-Valero, I.; Ellis, R.; Heaton, R.; Deutsch, R.; Franklin, D.; Clifford, D.B.; Collier, A.; Gelman, B.; Marra, C.; McCutchan, J.A.; et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: Prevalence, risk factors and neurocognitive effects. Aids 2019, 33, 475–481. [Google Scholar] [CrossRef]
- Joseph, S.B.; Kincer, L.P.; Bowman, N.M.; Evans, C.; Vinikoor, M.J.; Lippincott, C.K.; Gisslén, M.; Spudich, S.; Menezes, P.; Robertson, K.; et al. Human Immunodeficiency Virus Type 1 RNA Detected in the Central Nervous System (CNS) After Years of Suppressive Antiretroviral Therapy Can Originate from a Replicating CNS Reservoir or Clonally Expanded Cells. Clin. Infect. Dis. 2019, 69, 1345–1352. [Google Scholar] [CrossRef]
- Cecchini, D.M.; Cañizal, A.M.; Rojas, H.; Arechavala, A.; Negroni, R.; Bouzas, M.B.; Benetucci, J.A. Kinetics of HIV-1 in cerebrospinal fluid and plasma in cryptococcal meningitis. Infect. Dis. Rep. 2012, 4, e30. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.E.; Teparrukkul, P.; Rajanuwong, A.; Chierakul, W.; Mahavanakul, W.; Chantratita, W.; White, N.J.; Harrison, T.S. Cerebrospinal fluid HIV-1 viral load during treatment of cryptococcal Meningitis. J. Acquir. Immune Defic. Syndr. 2010, 53, 668–669. [Google Scholar] [CrossRef] [Green Version]
- Harrison, T.S.; Nong, S.; Levitz, S.M. Induction of human immunodeficiency virus type 1 expression in monocytic cells by Cryptococcus neoformans and Candida albicans. J. Infect. Dis. 1997, 176, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.; Silber, E.; Sonnenberg, P.; Eintracht, S.; Nyoka, S.; Lyons, S.F.; Saffer, D.; Koornhof, H.; Martin, D.J. High human immunodeficiency virus type 1 RNA load in the cerebrospinal fluid from patients with lymphocytic meningitis. J. Infect. Dis. 1998, 177, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Winston, A.; Antinori, A.; Cinque, P.; Fox, H.S.; Gisslen, M.; Henrich, T.J.; Letendre, S.; Persaud, D.; Price, R.W.; Spudich, S. Defining cerebrospinal fluid HIV RNA escape: Editorial review AIDS. Aids 2019, 33, S107–S111b. [Google Scholar] [CrossRef]
- EACS Guidelines October 2021, Version 11.0; European AIDS Clinical Society: Brussels, Belgium, 2021.
- Dravid, A.N.; Gawali, R.; Betha, T.P.; Sharma, A.K.; Medisetty, M.; Natrajan, K.; Kulkarni, M.M.; Saraf, C.K.; Mahajan, U.S.; Kore, S.D.; et al. Two treatment strategies for management of Neurosymptomatic cerebrospinal fluid HIV escape in Pune, India. Medicine 2020, 99, e20516. [Google Scholar] [CrossRef]
Characteristic | Value (n = 83) |
---|---|
Age, years, median (IQR) | 40 (34–44) |
Gender, Male, No. (%) | 57 (68.7%) |
CD4+ T-cell count, cells/µL, median (IQR) * | 30 (9–62) |
ART status, No. (%) | |
ART-naïve | 46 (55.4) |
ART-experienced | 37 (44.6) |
Duration on ART, months, median (IQR) | 18 (0–67) |
ART-regimen, No. (%) | |
ABC/3TC + DTG | 1 (2.7) |
AZT/3TC + EFV | 2 (5.4) |
AZT/3TC + NVP | 1 (2.7) |
DTG; Other | 1 (2.7) |
TDF/3TC/DTG | 16 (43.2) |
TDF/3TC/EFV | 13 (35.1) |
Unknown | 3 (8.1) |
ART-decision, No. (%) | |
ART-continued | 16 (19.3) |
ART-interrupted | 21 (25.3) |
ART-naïve | 46 (55.4) |
CSF WCC, cells/mm3, median (IQR) * | 7.5 (2–59) |
CSF protein concentration, g/L, median (IQR) * | 0.69 (0.52–1.40) |
CSF glucose concentration, mmol/L, median (IQR) * | 2.4 (1.5–3.0) |
CSF Fungal load, log10 CFU/mL, median (IQR) | 4.8 (3.4–5.7) |
Baseline HIV-1 viral load, log10 copies/mL, median (IQR) * | |
CSF | 4.3 (3.4–5.5) |
Plasma | 5.0 (3.9–5.4) |
Characteristic | CSF Viral Escape | Univariable Analysis | Multivariable Analysis * | |||
---|---|---|---|---|---|---|
Characteristic | Yes (n = 20) No. (%), Median (IQR) | No (n = 42) No. (%), Median (IQR) | OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
Fungal burden, log10 CFU/mL | 3.9 (1.7–5.3) | 5.3 (4.2–5.8) | 0.9 (0.8–1.0) | 0.056 | 0.9 (0.8–1.2) | 0.640 |
Age, years | ||||||
≥35 | 12 (60) | 30 (71.4) | 0.6 (0.2–1.8) | 0.365 | - | - |
<35 | 8 (40) | 12 (28.6) | 1.0 (Ref) | - | - | - |
Gender | ||||||
Male | 13(65) | 29 (69.0) | 0.8 (0.3–2.5) | 0.731 | - | - |
Female | 7 (35) | 13 (31.0) | 1.0 (Ref.) | - | - | - |
CD4, cells/µL | ||||||
<50 | 4 (30.8) | 24 (75.0) | 0.2 (0.04–0.6) | 0.007 | 1.6 (0.2–13.8) | 0.683 |
≥50 | 9 (69.2) | 8 (25.0) | 1.0 (Ref.) | - | 1.0 (Ref.) | - |
Missing | 7 (35.0) | 10 (23.8) | ||||
Duration on ART | ||||||
On ART ≥6 months | 4 (23.5) | 11 (26.2) | 1.1 (0.3–3.9) | 0.942 | 2.5 (0.4–15.2) | 0.328 |
On ART <6 months | 7 (41.2) | 6 (14.3) | 3.1 (0.9–11.2) | 0.083 | 3.0 (0.3–27.8) | 0.354 |
ART-naïve | 9 (52.9) | 25 (59.5) | 1.0 (Ref.) | - | 1.0 (Ref.) | - |
CSF protein concentration, g/L | ||||||
≥1 | 10 (55.6) | 7 (21.2) | 4.4 (1.3–14.7) | 0.015 | - | - |
<1 | 8 (44.4) | 26 (78.8) | 1.0 (Ref.) | - | - | - |
Missing | 2 (10) | 9 (21.4) | ||||
CSF glucose concentration, mmol/L | ||||||
<2 | 11 (55.0) | 14 (35.0) | 2.2 (0.8–6.5) | 0.144 | 1.9 (0.4–8.6) | 0.401 |
≥2 | 9 (45.0) | 26 (65.0) | 1.0 (Ref.) | - | 1.0 (Ref.) | - |
Missing | - | 2 (4.8) | ||||
CSF WCC, cells/mm3 | ||||||
≥20 | 12 (60.0) | 10 (25.0) | 4.3 (1.4–13.1) | 0.009 | 6.5 (1.1–36.9) | 0.034 |
<20 | 8 (40.0) | 30 (75.0) | 1.0 (Ref.) | - | 1.0 (Ref.) | - |
Missing | - | 2 (4.8) |
CSF | PLASMA | |||||||
---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | |||||
β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | |
Day: | ||||||||
Day 7 | −0.03 (−0.21, 0.15) | 0.718 | −0.03 (−0.21, 0.15) | 0.718 | 0.12 (0.04, 0.28) | 0.133 | 0.12 (−0.04, 0.28) | 0.133 |
Day 14 | −0.47 (−0.69, −0.25) | <0.001 | −0.47 (−0.688, −0.252) | <0.001 | 0.03 (−0.15, 0.21) | 0.746 | 0.03 (−0.15, 0.21) | 0.746 |
ART Decision: | ||||||||
ART-interrupted | 1.32 (0.70, 1.95) | <0.001 | 1.38 (0.68, 2.08) | <0.001 | 2.48 (2.05, 2.92) | <0.001 | 2.64 (2.14, 3.14) | <0.001 |
ART-naïve | 1.67 (1.16, 2.17) | <0.001 | 1.69 (0.98, 2.40) | <0.001 | 2.62 (2.22, 3.02) | <0.001 | 2.83 (2.37, 3.30) | <0.001 |
Age (≥35) | 0.31 (−0.22, 0.85) | 0.252 | - | - | 0.29 (−0.31, 0.90) | 0.344 | - | - |
Gender (Male) | 0.29 (−0.22, 0.81) | 0.265 | - | - | −0.04 (−0.61, 0.53) | 0.895 | - | - |
CSF WCC (≥20) | 0.37 (−0.11, 0.85) | 0.134 | 0.62 (0.18, 1.06) | 0.006 | −0.33 (−0.90, 0.25) | 0.265 | - | - |
Baseline Fungal load, log10 CFU/mL | 0.10 (−0.04, 0.23) | 0.157 | −0.03 (−0.17, 0.10) | 0.618 | 0.24 (0.08, 0.40) | 0.004 | 0.01 (−0.06, 0.08) | 0.773 |
Treatment arm (Single dose) | 0.005 (−0.47, 0.46) | 0.983 | - | - | 0.04 (−0.47, 0.56) | 0.873 | - | - |
CD4 (<50), cells/µL | 0.64 (0.11, 1.17) | 0.017 | 0.28 (−0.32, 0.88) | 0.356 | 1.02 (0.39, 1.65) | 0.002 | −0.28 (−0.63, 0.06) | 0.108 |
CSF protein concentration (≥1), g/L | 0.29 (−0.24, 0.81) | 0.286 | - | - | −0.30 (−0.92, 0.32) | 0.346 | - | - |
Duration on ART: | ||||||||
On ART (<6 months) | −1.35 (−1.87, −0.82) | <0.001 | - * | - | −2.25 (−2.74, −1.76) | <0.001 | - | - |
ART-naïve | −5.5 (−1.12, 0.03) | 0.061 | - * | - | −0.33 (−0.82, 0.17) | 0.194 | - | - |
Abnormal mental status | 0.23 (−0.28, 0.73) | 0.384 | 0.38 (−0.004, 0.76) | 0.052 | 0.04 (−0.52, 0.59) | 0.893 | 0.24 (−0.03, 0.52) | 0.086 |
CSF | PLASMA | |||||||
---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | |||||
β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | β Coefficient (95% CI) | p-Value | |
Day: | ||||||||
Day7 | 7.21 × 10−5 (−0.27, 0.27) | 1.000 | 7.21 × 10−5 (−0.27, 0.27) | 1.000 | 0.22 (0.02, 0.42) | 0.031 | 0.22 (0.02, 0.42) | 0.031 |
Day14 | −0.66 (−0.92, −0.41) | <0.001 | −0.66 (−0.92, −0.41) | <0.001 | 0.02 (−0.17, 0.21) | 0.822 | 0.02 (−0.17, 0.21) | 0.822 |
Age (≥35) | −0.005 (−0.52, 0.51) | 0.983 | - | - | 0.24 (−0.23, 0.70) | 0.326 | - | - |
Gender (Male) | −0.23 (−0.64, 0.19) | 0.291 | - | - | −0.14 (−0.50, 0.22) | 0.448 | - | - |
CSF WCC (≥20) | 0.62 (0.25, 1.00) | 0.001 | 0.52 (−0.03, 1.07) | 0.065 | 0.21 (−0.14, 0.57) | 0.242 | - | - |
Baseline Fungal load, log10 CFU/mL | −0.04 (−0.26, 0.18) | 0.716 | - | - | −0.10 (−0.17, −0.02) | 0.016 | −0.04 (−0.13, 0.05) | 0.417 |
Treatment arm (Single dose) | 0.11 (−0.36, 0.57) | 0.658 | - | - | 0.40 (0.06, 0.74) | 0.021 | 0.35 (0.05, 0.65) | 0.022 |
CD4 (<50), cells/µL | −0.08 (−0.76, 0.60) | 0.814 | - | - | −0.52 (−0.87, −0.16) | 0.005 | −0.25 (−0.60, 0.09) | 0.153 |
CSF protein concentration (≥1), g/L | 0.56 (0.07, 1.05) | 0.025 | 0.16 (−0.52, 0.83) | 0.649 | 0.46 (0.15, 0.78) | 0.004 | 0.19 (−0.13, 0.52) | 0.247 |
Abnormal mental status | 0.43(0.02, 0.85) | 0.042 | 0.38 (−0.08, 0.83) | 0.104 | 0.23 (−0.08, 0.54) | 0.141 | 0.11 (−0.16, 0.38) | 0.414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelentse, N.; Moyo, S.; Molebatsi, K.; Morerinyane, O.; Bitsang, S.; Bareng, O.T.; Lechiile, K.; Leeme, T.B.; Lawrence, D.S.; Kasvosve, I.; et al. Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana. Biomedicines 2022, 10, 1399. https://doi.org/10.3390/biomedicines10061399
Kelentse N, Moyo S, Molebatsi K, Morerinyane O, Bitsang S, Bareng OT, Lechiile K, Leeme TB, Lawrence DS, Kasvosve I, et al. Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana. Biomedicines. 2022; 10(6):1399. https://doi.org/10.3390/biomedicines10061399
Chicago/Turabian StyleKelentse, Nametso, Sikhulile Moyo, Kesaobaka Molebatsi, Olorato Morerinyane, Shatho Bitsang, Ontlametse T. Bareng, Kwana Lechiile, Tshepo B. Leeme, David S. Lawrence, Ishmael Kasvosve, and et al. 2022. "Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana" Biomedicines 10, no. 6: 1399. https://doi.org/10.3390/biomedicines10061399
APA StyleKelentse, N., Moyo, S., Molebatsi, K., Morerinyane, O., Bitsang, S., Bareng, O. T., Lechiile, K., Leeme, T. B., Lawrence, D. S., Kasvosve, I., Musonda, R., Mosepele, M., Harrison, T. S., Jarvis, J. N., & Gaseitsiwe, S. (2022). Reversal of CSF HIV-1 Escape during Treatment of HIV-Associated Cryptococcal Meningitis in Botswana. Biomedicines, 10(6), 1399. https://doi.org/10.3390/biomedicines10061399