Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, G.C.; Seemungal, T.A.R.; Bhowmik, A.; A Wedzicha, J. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002, 57, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestbo, J.; Edwards, L.D.; Scanlon, P.D.; Yates, J.C.; Agusti, A.; Bakke, P.; Calverley, P.M.; Celli, B.; Coxson, H.O.; Crim, C.; et al. Changes in Forced Expiratory Volume in 1 Second over Time in COPD. N. Engl. J. Med. 2011, 365, 1184–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler-Cataluna, J.J.; Martínez-García, M.; Sánchez, P.R.; Salcedo, E.; Navarro, M.; Ochando, R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005, 60, 925–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suissa, S.; Dell’Aniello, S.; Ernst, P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax 2012, 67, 957–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur. Respir. J. 2017, 49, 1700214. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Kolsum, U.; Brightling, C.; Locantore, N.; Agusti, A.; Tal-Singer, R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014, 44, 1697–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Xiang, Z.-J.; Hou, X.-M.; Chai, J.-J.; Yang, Y.-L.; Zhang, X.-T. Blood eosinophil count-guided corticosteroid therapy and as a prognostic biomarker of exacerbations of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Ther. Adv. Chronic Dis. 2021, 12, 20406223211028768. [Google Scholar] [CrossRef] [PubMed]
- Hastie, A.T.; Martinez, F.J.; Curtis, J.L.; Doerschuk, C.M.; Hansel, N.N.; Christenson, S.; Putcha, N.; Ortega, V.E.; Li, X.; Barr, R.G.; et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2017, 5, 956–967. [Google Scholar] [CrossRef]
- McDonough, J.E.; Yuan, R.; Suzuki, M.; Seyednejad, N.; Elliott, W.M.; Sanchez, P.G.; Wright, A.C.; Gefter, W.B.; Litzky, L.; Coxson, H.O.; et al. Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2011, 365, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, F.S.L.; Takiguchi, H.; Akata, K.; Ra, S.W.; Moon, J.-Y.; Kim, H.K.; Cho, Y.; Yamasaki, K.; Milne, S.; Yang, J.; et al. Effects of Inhaled Corticosteroid/Long-Acting β2-Agonist Combination on the Airway Microbiome of Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial (DISARM). Am. J. Respir. Crit. Care Med. 2021, 204, 1143–1152. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. NCBI Sequence Read Archive [Online Data Repository]. Effects of Inhaled Corticosteroid/Long Acting Beta-2 Agonist Combinations on the Airway Microbiome of Patients with COPD: A Randomised Controlled Trial (DISARM). BioProject Accession no. PRJNA685554. Available online: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA685554/ (accessed on 22 April 2022).
- National Center for Biotechnology Information. NCBI Gene Expression Omnibus [Online Data Repository]. The DISARM Study: Effects of Inhaled Corticosteroids on Bronchial Epithelial Cell Gene Expression in COPD. GEO Accession no. GSE162120. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162120 (accessed on 22 April 2022).
- Leung, J.M.; Yang, C.X.; Tam, A.; Shaipanich, T.; Hackett, T.-L.; Singhera, G.K.; Dorscheid, D.R.; Sin, D.D. ACE-2 expression in the small airway epithelia of smokers and COPD patients: Implications for COVID-19. Eur. Respir. J. 2020, 55, 2000688. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; Du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef]
- Bafadhel, M.; Pavord, I.D.; Russell, R.E.K. Eosinophils in COPD: Just another biomarker? Lancet Respir. Med. 2017, 5, 747–759. [Google Scholar] [CrossRef]
- Brusselle, G.; Pavord, I.D.; Landis, S.; Pascoe, S.; Lettis, S.; Morjaria, N.; Barnes, N.; Hilton, E. Blood eosinophil levels as a biomarker in COPD. Respir. Med. 2018, 138, 21–31. [Google Scholar] [CrossRef]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; MacNee, W.; et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.E.; Tal-Singer, R.; Rennard, S.I.; Furtwaengler, A.; Leidy, N.; Lowings, M.; Martin, U.J.; Martin, T.R.; Merrill, D.D.; Snyder, J.; et al. Plasma Fibrinogen Qualification as a Drug Development Tool in Chronic Obstructive Pulmonary Disease. Perspective of the Chronic Obstructive Pulmonary Disease Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016, 193, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Leigh, R.; Pizzichini, M.M.M.; Morris, M.M.; Maltais, F.; Hargreave, F.E.; Pizzichini, E. Stable COPD: Predicting benefit from high-dose inhaled corticosteroid treatment. Eur. Respir. J. 2006, 27, 964–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzichini, E.; Pizzichini, M.M.; Gibson, P.; Parameswaran, K.; Gleich, G.J.; Berman, L.; Dolovich, J.; Hargreave, F.E. Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am. J. Respir. Crit. Care Med. 1998, 158, 1511–1517. [Google Scholar] [CrossRef]
- Barnes, P.J. Inflammatory endotypes in COPD. Allergy 2019, 74, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
Whole Group N = 57 † | No BAL Eosinophilia (≤1%) N = 36 | BAL Eosinophilia (>1%) N = 21 | |
---|---|---|---|
Age, median (range) years | 64 (48–82) | 64 (48–80) | 66 (52–82) |
Male, % | 84.2 | 83.3 | 85.7 |
BMI, kg/m2 | 25.6 (5.7) | 26.3 (5.9) | 24.3 (5.2) |
Current smokers, % | 47.4 | 52.8 | 38.1 |
Smoking exposure, pack years | 45.8 (20.9) | 47.6 (22.8) | 42.5 (16.8) |
Post-BD FEV1, % of predicted | 59.8 (18.1) | 63.7 (18.0) | 52.8 (16.5) |
GOLD class, n (%) | |||
I | 5 (9) | 4 (11) | 1 (5) |
II | 27 (47) | 18 (50) | 9 (43) |
III | 22 (39) | 13 (36) | 9 (43) |
IV | 3 (5) | 1 (3) | 2 (9) |
SGRQ, total score | 41.5 (17.1) | 40.7 (17.8) | 42.6 (16.3) |
Medications at enrollment, % | |||
LAMA | 84.2 | 80.6 | 90.5 |
ICS | 57.9 | 55.6 | 61.9 |
Pre-treatment inflammatory status, n abnormal/n normal | |||
Peripheral blood eosinophilia (>2%) ‡ | 37/18 | ||
Peripheral blood eosinophilia (>3%) ‡ | 27/28 | ||
Peripheral blood eosinophilia (>4%) ‡ | 16/39 | ||
BAL neutrophilia (>1%) † | 41/16 | ||
BAL lymphocytosis (>2.25/μL) † | 27/30 | ||
Treatment allocation following randomization, n | |||
Formoterol | 20 | 9 | 11 |
Formoterol/budesonide | 19 | 16 | 3 |
Salmeterol/fluticasone | 18 | 11 | 7 |
Number of AECOPD events in year of follow-up, median (range) | 1 (0–5) | 0 (0–5) | 1 (0–5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.G.; Milne, S.; Li, X.; Yang, C.X.; Leitao Filho, F.S.; Cheung, C.Y.; Yang, J.S.W.; Hernández Cordero, A.I.; Yang, C.W.T.; Shaipanich, T.; et al. Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD. Biomedicines 2022, 10, 1412. https://doi.org/10.3390/biomedicines10061412
Ho CG, Milne S, Li X, Yang CX, Leitao Filho FS, Cheung CY, Yang JSW, Hernández Cordero AI, Yang CWT, Shaipanich T, et al. Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD. Biomedicines. 2022; 10(6):1412. https://doi.org/10.3390/biomedicines10061412
Chicago/Turabian StyleHo, Chunman Germain, Stephen Milne, Xuan Li, Chen Xi Yang, Fernando Sergio Leitao Filho, Chung Yan Cheung, Julia Shun Wei Yang, Ana I Hernández Cordero, Cheng Wei Tony Yang, Tawimas Shaipanich, and et al. 2022. "Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD" Biomedicines 10, no. 6: 1412. https://doi.org/10.3390/biomedicines10061412
APA StyleHo, C. G., Milne, S., Li, X., Yang, C. X., Leitao Filho, F. S., Cheung, C. Y., Yang, J. S. W., Hernández Cordero, A. I., Yang, C. W. T., Shaipanich, T., van Eeden, S. F., Leung, J. M., Lam, S., & Sin, D. D. (2022). Airway Eosinophilia on Bronchoalveolar Lavage and the Risk of Exacerbations in COPD. Biomedicines, 10(6), 1412. https://doi.org/10.3390/biomedicines10061412