Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Case Definition and Assessment of Confounders
2.3. A Nested Case-Control Study with Propensity Score Matching
2.4. Analysis of Oxidative/Nitrosative Stress Biomarkers
2.5. Analytical Method for Urinary Malondialdehyde
2.6. Analytical Method for Urinary Phthalate Metabolites
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Distribution of Urinary Phthalate Metabolites and Oxidative Stress Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Ethics Approval
Conflicts of Interest
References
- HPA. Taiwan National Health Interview Survey; Health Promotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2017.
- Gold, D.R.; Wright, R. Population disparities in asthma. Annu. Rev. Public Health 2005, 26, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Strachan, D.P.; Cook, D.G. Health effects of passive smoking. 1. Parental smoking and lower respiratory illness in infancy and early childhood. Thorax 1997, 52, 905–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strachan, D.P.; Cook, D.G. Health effects of passive smoking. 6. Parental smoking and childhood asthma: Longitudinal and case-control studies. Thorax 1998, 53, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautier, C.; Charpin, D. Environmental triggers and avoidance in the management of asthma. J. Asthma Allergy 2017, 10, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, N.Y.; Lee, C.C.; Wang, J.Y.; Li, Y.C.; Chang, H.W.; Chen, C.Y.; Bornehag, C.G.; Wu, P.C.; Sundell, J.; Su, H.J. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air 2012, 22, 186–199. [Google Scholar] [CrossRef]
- Callesen, M.; Beko, G.; Weschler, C.J.; Sigsgaard, T.; Jensen, T.K.; Clausen, G.; Toftum, J.; Norberg, L.A.; Host, A. Associations between selected allergens, phthalates, nicotine, polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air 2014, 24, 136–147. [Google Scholar] [CrossRef]
- Callesen, M.; Beko, G.; Weschler, C.J.; Langer, S.; Brive, L.; Clausen, G.; Toftum, J.; Sigsgaard, T.; Host, A.; Jensen, T.K. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int. J. Hyg. Environ. Health 2014, 217, 645–652. [Google Scholar] [CrossRef]
- Kimber, I.; Dearman, R.J. An assessment of the ability of phthalates to influence immune and allergic responses. Toxicology 2010, 271, 73–82. [Google Scholar] [CrossRef]
- Dut, R.; Dizdar, E.A.; Birben, E.; Sackesen, C.; Soyer, O.U.; Besler, T.; Kalayci, O. Oxidative stress and its determinants in the airways of children with asthma. Allergy 2008, 63, 1605–1609. [Google Scholar] [CrossRef]
- Sugiura, H.; Ichinose, M. Oxidative and nitrative stress in bronchial asthma. Antioxid. Redox Signal. 2008, 10, 785–797. [Google Scholar] [CrossRef]
- Babusikova, E.; Jurecekova, J.; Evinova, A.; Jesenak, M.; Dobrota, D. Oxidative damage and bronchial asthma. In Respiratory Diseases; InTech: London, UK, 2012; pp. 151–176. [Google Scholar]
- Jiang, L.; Diaz, P.T.; Best, T.M.; Stimpfl, J.N.; He, F.; Zuo, L. Molecular characterization of redox mechanisms in allergic asthma. Ann. Allergy Asthma Immunol. 2014, 113, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Antus, B. Oxidative Stress Markers in Sputum. Oxid. Med. Cell Longev. 2016, 2016, 2930434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dearman, R.J.; Beresford, L.; Bailey, L.; Caddick, H.T.; Betts, C.J.; Kimber, I. Di-(2-ethylhexyl) phthalate is without adjuvant effect in mice on ovalbumin. Toxicology 2008, 244, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Han, B.; Qin, L.; Li, B.; You, H.; Yang, J.; Liu, D.; Wei, C.; Nanberg, E.; Bornehag, C.G.; et al. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS ONE 2012, 7, e39008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Duan, J.; Song, J.; Luo, C.; Liu, H.; Li, B.; Yang, X.; Yu, W.; Chen, M. Exposure to a combination of formaldehyde and DINP aggravated asthma-like pathology through oxidative stress and NF-κB activation. Toxicology 2018, 404–405, 49–58. [Google Scholar] [CrossRef]
- Wang, I.J.; Karmaus, W.J. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int. J. Environ. Res. Public Health 2017, 14, 162. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Han, M.; Ren, Y.; Yang, X.; Duan, L.; Zeng, Y.; Li, J. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. Ecotoxicol. Environ. Saf. 2020, 199, 110740. [Google Scholar] [CrossRef]
- Nishioka, J.; Iwahara, C.; Kawasaki, M.; Yoshizaki, F.; Nakayama, H.; Takamori, K.; Ogawa, H.; Iwabuchi, K. Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages. Inflamm. Res. 2012, 61, 69–78. [Google Scholar] [CrossRef]
- Sandeep, T.; Roopakala, M.S.; Silvia, C.R.; Chandrashekara, S.; Rao, M. Evaluation of serum immuno-globulin E levels in bronchial asthma. Lung India 2010, 27, 138–140. [Google Scholar]
- Mancini, A.; di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Curro, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat. Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, S.T.; Peng, K.H.; Cheng, T.J.; Wu, K.Y. Concurrent quantification of multiple biomarkers indicative of oxidative stress status using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2016, 512, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Lin, T.J. FLG P478S polymorphisms and environmental risk factors for the atopic march in Taiwanese children: A prospective cohort study. Ann. Allergy Asthma Immunol. 2015, 114, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bateman, E.D.; Becker, A.; Boulet, L.P.; Cruz, A.A.; Drazen, J.M.; Haahtela, T.; Hurd, S.S.; Inoue, H.; de Jongste, J.C.; et al. A summary of the new GINA strategy: A roadmap to asthma control. Eur. Respir. J. 2015, 46, 622–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.W.; Liao, K.W.; Huang, C.Y.; Huang, H.B.; Chang, W.T.; Jaakkola, J.J.K.; Hsu, C.C.; Chen, P.C.; Huang, P.C. Phthalate exposure increased the risk of early renal impairment in Taiwanese without type 2 diabetes mellitus. Int. J. Hyg. Environ. Health 2020, 224, 113414. [Google Scholar] [CrossRef]
- Huang, H.B.; Pan, W.H.; Chang, J.W.; Chiang, H.C.; Guo, Y.L.; Jaakkola, J.J.; Huang, P.C. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013. Env. Res. 2017, 153, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Alexander, W.; Chen, H.C.; Kuo, P.L.; Wang, C.W.; Huang, H.B.; Chang, W.H.; Shih, S.F.; Huang, P.C. Urinary phthalate metabolites are associated with biomarkers of DNA damage and lipid peroxidation in pregnant women—Tainan Birth Cohort Study (TBCS). Env. Res. 2020, 188, 109863. [Google Scholar]
- Liao, K.W.; Kuo, P.L.; Huang, H.B.; Chang, J.W.; Chiang, H.C.; Huang, P.C. Increased risk of phthalates exposure for recurrent pregnancy loss in reproductive-aged women. Env. Pollut. 2018, 241, 969–977. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Hoppin, J.A.; Jaramillo, R.; London, S.J.; Bertelsen, R.J.; Salo, P.M.; Sandler, D.P.; Zeldin, D.C. Phthalate exposure and allergy in the U.S. population: Results from NHANES 2005–2006. Environ. Health Perspect. 2013, 121, 1129–1134. [Google Scholar] [CrossRef] [Green Version]
- Franken, C.; Lambrechts, N.; Govarts, E.; Koppen, G.; den Hond, E.; Ooms, D.; Voorspoels, S.; Bruckers, L.; Loots, I.; Nelen, V.; et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int. J. Hyg. Environ. Health 2017, 220, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, T.H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O.M.; Okada, N.; Satake, Y.; Fukagawa, K.; Shimazaki, J.; et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol. Vis. 2010, 16, 2465–2475. [Google Scholar] [PubMed]
- Yadav, U.C.; Ramana, K.V. Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid. Med. Cell Longev. 2013, 2013, 690545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galam, L.; Failla, A.; Soundararajan, R.; Lockey, R.F.; Kolliputi, N. 4-hydroxynonenal regulates mitochondrial function in human small airway epithelial cells. Oncotarget 2015, 6, 41508–41521. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gambino, F., Jr.; Algenio, C.S.; Wu, C.; Gao, Y.; Bouchard, C.S.; Qiao, L.; Bu, P.; Zhao, S. Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1717–1725. [Google Scholar] [CrossRef]
- Beko, G.; Callesen, M.; Weschler, C.J.; Toftum, J.; Langer, S.; Sigsgaard, T.; Host, A.; Kold Jensen, T.; Clausen, G. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. Environ. Res. 2015, 137, 432–439. [Google Scholar] [CrossRef]
- Cabana, M.D.; Slish, K.K.; Lewis, T.C.; Brown, R.W.; Nan, B.; Lin, X.; Clark, N.M. Parental management of asthma triggers within a child’s environment. J. Allergy Clin. Immunol. 2004, 114, 352–357. [Google Scholar] [CrossRef]
- American College of Allergy, Asthma & Immunology. Environmental Trigger Avoidance. 2014. Available online: http://acaai.org/allergies/allergy-treatment/environmental-trigger-avoidance (accessed on 13 June 2022).
- Guo, Y.; Kannan, K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Env. Sci. Technol. 2011, 45, 3788–3794. [Google Scholar] [CrossRef]
- Li, H.L.; Song, W.W.; Zhang, Z.F.; Ma, W.L.; Gao, C.J.; Li, J.; Huo, C.Y.; Mohammed, M.O.A.; Liu, L.Y.; Kannan, K.; et al. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment. Sci. Total Environ. 2016, 565, 496–502. [Google Scholar] [CrossRef]
- Langer, S.; Weschler, C.J.; Fischer, A.; Bekö, G.; Toftum, J.; Clausen, G. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos. Env. 2010, 44, 2294–2301. [Google Scholar] [CrossRef]
- Clausen, P.A.; Lindeberg Bille, R.L.; Nilsson, T.; Hansen, V.; Svensmark, B.; Bøwadt, S. Simultaneous extraction of di(2-ethylhexyl) phthalate and nonionic surfactants from house dust. Concentrations in floor dust from 15 Danish schools. J. Chromatogr. A 2003, 986, 179–190. [Google Scholar] [CrossRef]
- He, R.; Li, Y.; Xiang, P.; Li, C.; Zhou, C.; Zhang, S.; Cui, X.; Ma, L.Q. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment. Chemosphere 2016, 150, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Ait Bamai, Y.; Shibata, E.; Saito, I.; Araki, A.; Kanazawa, A.; Morimoto, K.; Nakayama, K.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci. Total Environ. 2014, 485–486, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Ait Bamai, Y.; Araki, A.; Kawai, T.; Tsuboi, T.; Saito, I.; Yoshioka, E.; Cong, S.; Kishi, R. Exposure to phthalates in house dust and associated allergies in children aged 6–12years. Env. Int. 2016, 96, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.M.; Lorber, M.; Christensen, K.L.; Palmke, C.; Koslitz, S.; Bruning, T. Identifying sources of phthalate exposure with human biomonitoring: Results of a 48 h fasting study with urine collection and personal activity patterns. Int. J. Hyg. Environ. Health 2013, 216, 672–681. [Google Scholar] [CrossRef]
- Wittassek, M.; Koch, H.M.; Angerer, J.; Bruning, T. Assessing exposure to phthalates—The human bio-monitoring approach. Mol. Nutr. Food Res. 2011, 55, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Ketema, R.M.; Ait Bamai, Y.; Miyashita, C.; Saito, T.; Kishi, R.; Ikeda-Araki, A. Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. Environ. Int. 2022, 160, 107083. [Google Scholar] [CrossRef] [PubMed]
- Paredi, P.; Kharitonov, S.A.; Barnes, P.J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 1450–1454. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Wu, Y.; Liu, M.; Attina, T.M.; Naidu, M.; Karthikraj, R.; Kannan, K.; Warady, B.A.; Furth, S.; Vento, S.; et al. Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med. 2020, 17, e1003384. [Google Scholar] [CrossRef]
- Lee, I.; Alakeel, R.; Kim, S.; Al-Sheikh, Y.A.; Al-Mandeel, H.; Alyousef, A.A.; Kho, Y.; Choi, K. Urinary phthalate metabolites among children in Saudi Arabia: Occurrences, risks, and their association with oxidative stress markers. Sci. Total Environ. 2019, 654, 1350–1357. [Google Scholar] [CrossRef]
- Rocha, B.A.; Asimakopoulos, A.G.; Barbosa, F., Jr.; Kannan, K. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci. Total Environ. 2017, 586, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Otenbaker, N.P.; Rose, B.A.; Salisbury, K.S. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol. Immunol. 2013, 56, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Qiao, Y.; Li, B.; Yang, J.; Liu, D.; Yao, H.; Xu, D.; Yang, X. Adjuvant effect of di-(2-ethylhexyl) phthalate on asthma-like pathological changes in ovalbumin-immunised rats. Food Agric. Immunol. 2008, 19, 351–362. [Google Scholar] [CrossRef]
- You, H.; Chen, S.; Mao, L.; Li, B.; Yuan, Y.; Li, R.; Yang, X. The adjuvant effect induced by di-(2-ethylhexyl) phthalate (DEHP) is mediated through oxidative stress in a mouse model of asthma. Food Chem. Toxicol. 2014, 71, 272–281. [Google Scholar] [CrossRef]
- Beko, G.; Weschler, C.J.; Langer, S.; Callesen, M.; Toftum, J.; Clausen, G. Children’s phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS ONE 2013, 8, e62442. [Google Scholar] [CrossRef] [Green Version]
- Chiang, L.C.; Huang, J.L.; Lu, C.M. A Study of Predisposing Factors and Self-Management Behaviors of School-Age Children with Asthma and the Impact of Summer Asthma Camp. J. Nurs. Res. 1999, 7, 307–320. [Google Scholar]
- Huang, C.N.; Yee, H.; Cho, H.B.; Lee, C.W. Children’s exposure to phthalates in dust and soil in Southern Taiwan: A study following the phthalate incident in 2011. Sci. Total Environ. 2019, 696, 133685. [Google Scholar] [CrossRef]
Demographic Characteristics | All (n = 152) | Control (n = 111) | Case (n = 41) | p Value c |
---|---|---|---|---|
Sex | ||||
Male | 113 (74.3%) | 82 (73.8%) | 31 (75.6%) | >0.995 |
Female | 39 (25.7%) | 29 (26.1%) | 10 (24.4) | |
Age (years, Mean ± SD) (range) | 7.4 ± 2.5 (3, 18) | 7.3 ± 2.0 (3, 18) | 7.5 ± 3.5 (3, 17) | 0.759 |
BMI (kg/m2, Mean ± SD) (range) | 16.6 ± 2.0 (13.2, 23.4) | 16.5 ± 1.9 (13.2, 23.2) | 16.8 ± 2.0 (13.4, 23.4) | 0.245 |
Family history of asthma a | ||||
Yes | 18 (12.3%) | 11 (10.5%) | 7 (17.1%) | 0.276 |
No | 128 (87.7%) | 94 (89.5%) | 34 (82.9%) | |
Active smoking during Pregnancy a | ||||
Yes | 4 (2.84%) | 1 (0.98%) | 3 (7.69%) | 0.064 |
No | 137 (97.2%) | 101 (99.0%) | 36 (92.3%) | |
Passive smoke during Pregnancy a | ||||
Yes | 64 (45.7%) | 40 (40.0%) | 24 (60.0%) | 0.039 |
No | 76 (54.3%) | 64 (60.0%) | 16 (40.0%) | |
Child passive smoking exposure a | ||||
Yes | 84 (59.6%) | 58 (58.0%) | 26 (63.4%) | 0.577 |
No | 67 (40.4%) | 42 (42.0%) | 15 (36.6%) | |
Living closer to a major road a | ||||
Yes | 90 (82.6%) | 64 (83.1%) | 26 (81.3%) | 0.788 |
No | 19 (17.4%) | 13 (16.9%) | 6 (18.8%) | |
Lay carpet a | ||||
Yes | 13 (9.2%) | 10 (9.9%) | 3 (7.5%) | 0.759 |
No | 128 (90.8%) | 91 (90.1%) | 37 (92.5%) | |
Raise furry or feathery pet a | ||||
Yes | 25 (17.5%) | 17 (16.7%) | 8 (19.5%) | 0.808 |
No | 118 (82.3%) | 85 (83.3%) | 33 (80.5%) | |
Annual family income a,b | ||||
<600,000 NT | 44 (33.9%) | 24 (25.3%) | 19 (59.4%) | 0.001 |
≥600,000 NT | 84 (66.1%) | 71 (74.7%) | 13 (40.6%) |
Phthalate | Control (n = 111) | Case (n = 41) | |||||||
---|---|---|---|---|---|---|---|---|---|
(ng/mL) | DR% | GM (GSD) | Range Min-Max | Median (IQR) | DR% | GM (GSD) | Range Min-Max | Median (IQR) | p |
MMP | 93 | 12.5 (5.81) | (ND, 1451) | 14.1 (5.87, 34.9) | 93 | 11.2 (4.91) | (ND, 160) | 15.6 (4.61, 28.9) | 0.874 |
MEP | 88 | 15.3 (9.00) | (ND, 1676) | 18.9 (7.21, 58.6) | 93 | 14.0 (5.97) | (ND, 246) | 18.8 (7.88, 42.9) | 0.644 |
MiBP | 97 | 25.9 (5.92) | (ND, 1919) | 21.4 (8.72, 88.7) | 100 | 28.9 (3.98) | (2.34, 1092) | 20.4 (11.5, 96.0) | 0.787 |
MnBP | 98 | 45.2 (5.82) | (ND, 1555) | 31.3 (15.4, 191) | 100 | 43.8 (4.70) | (3.27, 812) | 34.8 (15.7, 179) | 0.936 |
MBzP | 59 | 1.50 (9.10) | (ND, 1737) | 2.52 (ND, 7.06) | 61 | 2.16 (11.8) | (ND, 4548) | 3.94 (ND, 11l3) | 0.020 |
MEHP | 94 | 49.6 (8.81) | (ND, 7855) | 35.3 (20.0, 175) | 95 | 40.8 (8.21) | (ND, 2282) | 36.2 (16.3, 139) | 0.535 |
MEHHP | 95 | 29.3 (6.85) | (ND, 24521) | 29.8 (9.84, 134) | 100 | 35.2 (4.19) | (2.22, 344) | 38.8 (11.0, 111) | 0.608 |
MEOHP | 86 | 12.7 (8.39) | (ND, 1540) | 16.5 (5.81, 39.4) | 87 | 13.7 (7.69) | (ND, 289) | 21.9 (6.69, 61.2) | 0.665 |
MECPP | 95 | 42.5 (7.40) | (ND, 1599) | 34.5 (13.0, 191) | 100 | 57.4 (4.42) | (3.94, 775) | 74.9 (13.9, 212) | 0.577 |
MCMHP | 91 | 9.96 (6.79) | (ND, 1354) | 10.7 (4.50, 27.7) | 90 | 9.75 (6.13) | (ND, 342) | 14.4 (5.17, 27.0) | 0.088 |
MiNP | 50 | 2.69 (34.1) | (ND, 2294) | 2.13 (ND, 67.6) | 44 | 1.04 (14.8) | (ND, 300) | ND (ND, 15.7) | 0.004 |
(nmol/mL) | |||||||||
ΣDEHPm | 0.81 (4.64) | (0.03, 84.5) | 0.82(0.25, 2.62) | 0.71 (4.42) | (0.04, 8.73) | 0.79(0.20, 1.80) | 0.874 | ||
ΣDBPm | 0.36 (5.40) | (0.02, 8.73) | 0.27(0.10, 1.14) | 0.38 (4.25) | (0.03, 8.14) | 0.26(0.14, 1.22) | 0.949 |
Biomarkers | Control (n = 111) | Case (n = 41) | |||||||
---|---|---|---|---|---|---|---|---|---|
DR% | GM (GSD) | Range Min-Max | Median (IQR) | DR% | GM (GSD) | Range Min-Max | Median (IQR) | p | |
MDA (μmol/L) | 100 | 6.22 (1.94) | (2.00, 41.10) | 5.86 (4.06, 8.30) | 100 | 6.12 (1.93) | (1.15, 29.90) | 6.36 (4.22, 8.50) | 0.415 |
8-OHdG (ng/mL) | 100 | 4.11 (1.87) | (0.92, 13.16) | 4.14 (2.74, 6.38) | 100 | 3.48 (1.90) | (0.94, 12.01) | 3.70 (2.36, 5.16) | 0.060 |
8-NO2Gua (ng/mL) | 95.5 | 3.09 (2.02) | (ND, 8.74) | 3.63 (1.95, 5.48) | 87.8 | 2.64 (2.28) | (ND, 7.96) | 3.29 (1.43, 4.93) | 0.574 |
4-HNEMA | 100 | 29.7 (1.81) | (6.18, 86.50) | 29.0 (21.3, 45.3) | 100 | 27.2 (1.91) | (5.89, 80.1) | 28.6 (16.5, 40.6) | 0.660 |
8-IsoPF2a | 100 | 4.71 (1.76) | (1.00, 14.13) | 4.85 (3.20, 7.03) | 100 | 4.58 (1.99) | (1.30, 12.78) | 4.78 (2.12, 8.12) | 0.544 |
Case (n = 41) | Control (n = 111) | cOR 95%CI | p Value | aOR 95%CI | p Value | |
---|---|---|---|---|---|---|
Above 75th percentile | ||||||
MMP | 9 (22.0%) | 29 (26.1%) | 0.78 (0.35, 1.76) | 0.551 | 0.39 (0.12, 1.32) | 0.130 |
MEP | 9 (22.0%) | 29 (26.1%) | 0.84 (0.37, 1.93) | 0.679 | 0.49 (0.14, 1.67) | 0.255 |
MiBP | 11 (26.8%) | 27 (24.3%) | 1.14 (0.48, 2.69) | 0.768 | 0.73 (0.22, 2.40) | 0.599 |
MnBP | 10 (24.4%) | 28 (25.2%) | 0.96 (0.43, 2.13) | 0.920 | 0.30 (0.07, 1.32) | 0.111 |
MEHP | 9 (22.0%) | 29 (26.1%) | 0.82 (0.35, 1.97) | 0.663 | 0.38 (0.10, 1.44) | 0.153 |
MEHHP | 8 (19.5%) | 30 (27.0%) | 0.63 (0.26, 1.52) | 0.303 | 0.30 (0.74, 1.23) | 0.096 |
MEOHP | 13 (31.7%) | 25 (22.5%) | 1.57 (0.70, 3.55) | 0.276 | 0.56 (0.15, 2.08) | 0.389 |
MECPP | 11 (26.8%) | 27 (24.3%) | 1.11 (0.49, 2.50) | 0.807 | 0.50 (0.13, 1.94) | 0.315 |
MCMHP | 9 (22.0%) | 29 (26.1%) | 0.78 (0.32, 1.89) | 0.583 | 0.29 (0.07, 1.28) | 0.102 |
ΣDEHP | 9 (22.0%) | 29 (26.1%) | 0.79 (0.34, 1.87) | 0.593 | 0.11 (0.09, 1.27) | 0.107 |
ΣDBP | 11 (26.8%) | 27 (24.3%) | 1.14 (0.50, 2.60) | 0.750 | 0.51 (0.11, 2.33) | 0.383 |
Above LOD | ||||||
MBzP | 25(61.0%) | 65(58.6%) | 1.11(0.53, 2.31) | 0.781 | 0.85(0.32, 2.26) | 0.740 |
MiNP | 18(43.9%) | 56(50.5%) | 0.82(0.40, 1.68) | 0.581 | 0.25(0.20, 1.53) | 0.251 |
Oxidative/Nitrosative Stress Biomarkers | Case (n = 41) | Control (n = 104) | cOR 95%CI | p Value | aOR 95%CI | p Value |
---|---|---|---|---|---|---|
Above 75th percentile | ||||||
8-OHdG | 8 (19.5%) | 28 (26.9%) | 0.67 (0.27, 1.67) | 0.389 | 0.90 (0.29, 2.81) | 0.853 |
8-NO2Gua | 8 (19.5%) | 28 (26.9%) | 0.63 (0.24, 1.60) | 0.328 | 1.07 (0.29, 4.01) | 0.917 |
HNE-MA | 10 (24.4%) | 26 (25.0%) | 1.00 (0.45, 2.25) | 0.995 | 0.96 (0.34, 2.68) | 0.930 |
8-IsoPF2α | 11 (26.8%) | 25 (24.0%) | 1.20 (0.52, 2.75) | 0.667 | 1.78 (0.61, 5.23) | 0.291 |
MDA | 11 (26.8%) | 25 (24.0%) | 1.15 (0.50, 2.63) | 0.747 | 0.98 (0.28, 3.44) | 0.978 |
Odds Ratio | 8-OHdG | 8-NO2Gua | HNE-MA | 8-IsoPF2α | MDA | |||||
---|---|---|---|---|---|---|---|---|---|---|
aOR | 95%CI | aOR | 95%CI | aOR | 95%CI | aOR | 95%CI | aOR | 95%CI | |
MMP | 3.40 | (1.30, 8.89) | 2.66 | (1.03, 6.92) | 0.83 | (0.29, 2.40) | 4.04 | (1.51, 10.8) | 0.92 | (0.32, 2.66) |
MEP | 1.71 | (0.65, 4.50) | 1.14 | (0.42, 3.09) | 0.60 | (0.20, 1.76) | 1.76 | (0.67, 4.64) | 0.93 | (0.33, 2.64 |
MiBP | 3.49 | (1.33, 9.20) | 2.22 | (0.85, 5.83) | 0.45 | (0.14, 1.42) | 2.96 | (1.13, 7.79) | 1.63 | (0.60, 4.41) |
MnBP | 3.02 | (1.08, 8.47) | 0.73 | (0.25, 2.17) | 0.22 | (0.06, 0.85) | 0.94 | (0.32, 2.74) | 1.58 | (0.56, 4.44) |
MBzP | 1.44 | (0.53, 3.90) | 2.28 | (0.83, 6.22) | 0.70 | (0.24, 2.07) | 2.12 | (0.81, 5.58) | 1.26 | (0.44, 3.62) |
MEHP | 2.66 | (1.05, 6.72) | 1.57 | (0.60, 4.11) | 1.75 | (0.68, 4.48) | 1.16 | (0.44, 3.07) | 1.21 | (0.43, 3.39) |
MEHHP | 2.82 | (1.04, 7.69) | 1.19 | (0.43, 3.29) | 0.57 | (0.18, 1.78) | 1.45 | (0.51, 4.09) | 0.72 | (0.24, 2.20) |
MEOHP | 2.17 | (0.82, 5.74) | 0.78 | (0.28, 2.24) | 0.59 | (0.19, 1.82) | 1.80 | (0.67, 4.82) | 1.13 | (0.40, 3.21) |
MECPP | 2.90 | (1.08, 7.80) | 1.40 | (0.51, 3.84) | 0.77 | (0.26, 2.29) | 2.17 | (0.81, 5.84) | 1.34 | (0.47, 3.78) |
MCMHP | 3.87 | (1.40, 10.7) | 1.71 | (0.61, 4.84) | 1.03 | (0.35, 3.03) | 2.38 | (0.86, 6.57) | 0.72 | (0.22, 2.32) |
MiNP | 2.79 | (1.10, 7.06) | 1.45 | (0.55, 3.84) | 1.46 | (0.56, 3.80) | 1.16 | (0.44, 3.09) | 1.14 | (0.41, 3.16) |
ΣDBP | 2.25 | (0.84, 6.02) | 1.39 | (0.52, 3.76) | 0.30 | (0.09, 1.07) | 1.72 | (0.64, 4.63) | 1.81 | (0.67, 4.89) |
ΣDEHP | 3.44 | (1.31, 9.02) | 2.13 | (0.81, 5.60) | 1.89 | (0.71, 5.08) | 1.94 | (0.72, 5.19) | 1.25 | (0.44, 3.55) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.-W.; Chen, H.-C.; Hu, H.-Z.; Chang, W.-T.; Huang, P.-C.; Wang, I.-J. Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines 2022, 10, 1438. https://doi.org/10.3390/biomedicines10061438
Chang J-W, Chen H-C, Hu H-Z, Chang W-T, Huang P-C, Wang I-J. Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines. 2022; 10(6):1438. https://doi.org/10.3390/biomedicines10061438
Chicago/Turabian StyleChang, Jung-Wei, Hsin-Chang Chen, Heng-Zhao Hu, Wan-Ting Chang, Po-Chin Huang, and I-Jen Wang. 2022. "Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching" Biomedicines 10, no. 6: 1438. https://doi.org/10.3390/biomedicines10061438
APA StyleChang, J. -W., Chen, H. -C., Hu, H. -Z., Chang, W. -T., Huang, P. -C., & Wang, I. -J. (2022). Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines, 10(6), 1438. https://doi.org/10.3390/biomedicines10061438