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Abstract: Background: The development of automated seizure detection methods using EEG signals
could be of great importance for the diagnosis and the monitoring of patients with epilepsy. These
methods are often patient-specific and require high accuracy in detecting seizures but also very low
false-positive rates. The aim of this study is to evaluate the performance of a seizure detection method
using EEG signals by investigating its performance in correctly identifying seizures and in minimizing
false alarms and to determine if it is generalizable to different patients. Methods: We tested the
method on about two hours of preictal/ictal and about ten hours of interictal EEG recordings of one
patient from the Freiburg Seizure Prediction EEG database using machine learning techniques for data
mining. Then, we tested the obtained model on six other patients of the same database. Results: The
method achieved very high performance in detecting seizures (close to 100% of correctly classified
positive elements) with a very low false-positive rate when tested on one patient. Furthermore, the
model portability or transfer analysis revealed that the method achieved good performance in one
out of six patients from the same dataset. Conclusions: This result suggests a strategy to discover
clusters of similar patients, for which it would be possible to train a general-purpose model for
seizure detection.

Keywords: data mining; electroencephalogram; epilepsy; false-alarm rate; intracranial EEG; k-nearest
neighbor; machine learning; signal processing; seizure detection

1. Introduction
1.1. Background

Epilepsy is a chronic neurological disease that affects around 50 million people world-
wide and is characterized by recurrent seizures, which are unpredictable and severely affect
the quality of life of patients [1]. Epilepsy monitoring and diagnosis is generally performed
by recording electroencephalogram (EEG) signals, either from the scalp or intracranially
(iEEG). In most cases, EEG monitoring is conducted continuously for a few days in order to
confirm the diagnosis of epilepsy and to anatomically localize the epileptic focus, especially
in patients with drug-resistant epilepsy or in those with unclear diagnosis [2]. EEG signals
acquired during long-term monitoring are visually reviewed and analyzed by epileptolo-
gists, but this work is extremely time consuming and labor intensive because of the large
amount of EEG recordings available for each patient [3–6]. Furthermore, the diagnosis of
epilepsy is a complex task that requires accurate documentation by the patient himself or
by his relatives, but this information is often incomplete and not accurate [7]. Therefore,
the development of computerized methods able to automatically detect seizures in the
EEG recordings could help clinicians during diagnosis, speeding up and even improving
the process of seizure identification. Furthermore, such methods could be included into
closed-loop intervention systems for epilepsy treatment, especially in those patients who do
not respond to antiepileptic drugs (about 30% of people with epilepsy). In this case, patients
could be alerted of an incoming seizure or few seconds after its arising, and this could
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potentially improve the quality of their life and the associated risk when they experience a
seizure. For example, in closed-loop stimulation systems, such algorithms, when a seizure
is detected, can trigger electrical stimulation in the area where the seizure is detected
and abort the seizure. This procedure is often the only option for many patients, but it is
invasive for the patient. Besides a very high sensitivity (true-positive rate) necessary to
detect all the seizures, a very low false-positive detection rate is a key achievement that
such systems should ensure in order to minimize the invasiveness for the patient, because
the higher the number of false alarms is, the higher the number of electrical stimulations
delivered is, and the more numerous the side effects for the patient are. Currently available
EEG-based online seizure detectors used in video-EEG monitoring units are associated
with an unacceptable rate of false alarms for ambulatory patients, varying between 0.1 and
5 per hour [8].

A typical seizure detection system consists of three main steps, including the pre-
processing of brain signals (band-pass filtering, denoising, artifact removal), feature extrac-
tion from the preprocessed input signal, feature selection, and classification using machine
learning or deep learning models to detect seizures. Although the performance of these
systems is influenced by the preprocessing step and by the extracted features, the improve-
ment of the performance of the classification models is the key challenge to develop very
accurate and efficient seizure detection methods. In recent years, intense research has been
conducted by various research groups, also thanks to the increasing interest in machine
learning techniques.

1.2. Related Works

Various machine learning approaches have been proposed in order to develop efficient
and reliable automated seizure detection methods, such as extreme machine learning [9,10],
recurrent Elman network [11], support vector machine [12,13], random forest [14,15], artificial
neural networks [16], linear discriminant analysis [17], and k-nearest neighbors [18,19].

In [9,10], an optimized sample entropy algorithm combined with extreme machine
learning was used to identify the EEG signals containing seizures. The authors of [11]
used three types of entropy measures and two different neural network models, recurrent
Elman network and radial basis network, to classify normal and epileptic EEGs. In [12],
fuzzy entropy and sample entropy, together with a grid optimization method, were used
to train support vector machines (SVMs). SVMs were also used in [13] in combination
with log energy entropy on band-passed EEGs. A random forest classifier was used
in [14] in combination with various features both in the frequency and time domains
extracted from previously selected EEG channels, while in [15], the same kind of classifier
was used in combination with various features from the time domain, the frequency
domain, and entropy-based features. The authors of [16] classified seizure and non-seizure
signals using extracted frequency and amplitude information passed to artificial neural
nets. Furthermore, a linear discriminant analysis classifier was used in [17] to classify
seizure and non-seizure EEGs using features extracted with a wavelet-based technique.
Finally, in [18,19] k-nearest neighbor (k-NN) algorithm was used in combination with
various features extracted from the statistical domain or from the frequency, entropy or
mathematical domain, respectively. None of these studies provided a comprehensive
analysis of the false alarms, and only few studies also analyzed the EEG signals acquired in
the interictal phase, but only the preictal and ictal phases were considered for the creation
of the seizure detection model.

1.3. Hypothesis and Specific Aims

Since the main limitations of existing seizure detection methods are the unacceptable
numbers of false alarms [8] and the high level of inter-patient heterogeneity, in this study, we
propose a seizure detection methodology based on data mining and a k-NN algorithm with
which we deeply investigated the performance of the method in terms of the quantification
of the number of false alarms. Furthermore, we conducted a portability analysis of the
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method on different patients of the same dataset in order to investigate if the method is
generalizable to different patients with different clinical characteristics. Thus, the specific
aims of this study were:

• To develop an automated seizure detection method that is able to detect seizures with
high accuracy and very low false-positive rates;

• To evaluate, qualitatively and quantitatively, the false-alarm rate on interictal data;
• To test the portability of the method by testing the model on different patients.

2. Materials and Methods

In this section, we describe all the steps and the procedures carried out in order
to achieve the research objectives, including the raw data description and the analysis
methodology design, with the details of the selected machine learning algorithm and of the
software tool used.

2.1. Methodology

The proposed approach was carried out in five main steps. First, the raw EEG data
from one patient were preprocessed by applying a 50 Hz notch filter to remove line noise
and by applying a band-pass filter to the noise-free EEG data. Then, feature extraction from
band-passed EEGs was performed, and 1080 features were extracted from each band-passed
signal. These two steps were performed using a custom-made software conceptualized,
designed, and developed by us, Training Builder (TrB) software [20], a multipurpose and
extendable software tool that allows one to analyze EEG signals using the sliding window
paradigm [21]. Afterwards, feature selection was performed using the Information Gain
and Pearson Correlation filters. Then, a machine learning approach using a k-nearest
neighbor (k-NN) algorithm was applied on preictal, ictal, and interictal EEG recordings.
Finally, the selected k-NNs were tested on the EEG recordings of five other randomly
selected patients from the same dataset to test the portability of the model to other patients.
The complete analysis pipeline is shown in Figure 1.
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Figure 1. Pipeline of data analysis: from raw data to seizure detection rules.

2.2. Dataset

The EEG data of one patient (number 17) from the Freiburg Seizure Prediction EEG
database (FSPEEG) [22], which contains the EEG recordings of 21 patients with epilepsy
acquired at a 256 Hz sampling rate, were used. For each patient, the EEG recordings were
acquired in three different time periods: during the seizure (ictal phase), just before the
ictal phase (preictal phase), and between two subsequent seizures (interictal recordings).
These EEG recordings were acquired from six EEG channels, with three being located near
the epileptic focus (“InFokus” channels) and the remaining three being located outside the
seizure focus (“OutFokus” channels). In the present study, we selected ictal and interictal
EEG data from patient number 17, because five long-lasting epileptic seizures (average
seizure duration of 86.16 s) were available.
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2.3. EEG Preprocessing

Each EEG recording was first preprocessed; then, a list of features was extracted
from the preprocessed EEGs using TrB software. First, a 50 Hz notch filter was applied to
EEG data in order to remove line noise due to signal acquisition and digital conversion.
Afterwards, a band-pass filter was applied on the noise-free EEG data in order to extract the
signal content in six different frequency bands corresponding to well-known oscillations of
brain activity, namely, (8–13) Hz (α), (13–21) Hz (β1), (21–30) Hz (β2), (30–40) Hz (low γ),
(40–70) Hz (medium γ), and (70–120) Hz (high γ). Finally, a sliding window paradigm was
applied to the noise-free, band-passed EEG data by setting two temporal parameters: L,
which represents the time length of the analysis window, and S, which is the time shift of the
window which slides on the signal. Therefore, every S seconds, the previous L seconds of
the signal were analyzed (L× 256 points, where 256 is the sampling frequency); considering
the 6 EEG channels and 6 frequency bands, L× 256× 6× 6 points were processed every S
seconds. Finally, numerous features were extracted from these EEG segments for all the
six EEG channels, the InFokus (electrode numbers 1, 2, 3) and the OutFokus (electrode
numbers 4, 5, 6). These features were both univariate, i.e., computed with respect to the
“actual” signal, and bivariate, i.e., computed with respect to two signals, the “actual” one
and another one (alternatively, the “previous” signal or the origin signal).

2.4. Feature Extraction

In the feature-extraction step, the pre-processed time-series data were analyzed by
applying the sliding window paradigm available in the TrB. The aim of this step was
to extract a set of variables (features, attributes, or characteristics) as the electrodes and
frequency bands varied in each window, that is, in each sub-series of length L seconds that
slid every S seconds. The features, shown in Table 1, were computed with the TrB tool using
a set of algorithms whose description can be found in [20]. In particular, seismic evaluators
(IDs 6–11 in Table 1) were calculated because of the analogy between earthquakes and
epileptic seizures [23,24].

Table 1. Features extracted by the Training Builder tool.

ID Name of Feature Code U/B Count

1 Kolmogorov Complexity KC U 36
2 Log Energy Entropy LE U 36
3 Lower-Limit Lempel-Ziv Complexity LL U 36
4 Upper-Limit Lempel-Ziv Complexity LU U 36
5 Shannon Entropy SH U 36
6 Averaged Period AP U 36
7 Inverted Time to Peak IP U 36
8 Peak Displacement PD U 36
9 Predominant Period PP U 36
10 Squared Grade SG U 36
11 Squared Time to Peak SP U 36
12 Hjorth Mobility HM U 36
13 Kurtosis KU U 36
14 Standard Deviation SD U 36
15 Cross Correlation Index CC B 36 MA + 36 MB
16 Conditional Entropy CE B 36 MA + 36 MB
17 Dynamic Time Warping DT B 36 MA + 36 MB
18 Euclidean Distance ED B 36 MA + 36 MB
19 Joint Entropy JE B 36 MA + 36 MB
20 Longest Common Sub-Sequence LC B 36 MA + 36 MB
21 Levenshtein Distance LD B 36 MA + 36 MB
22 Mutual Information MI B 36 MA + 36 MB

The temporal parameters of the sliding window were fixed following the studies
conducted in [25], namely, L = 2 s and S = 1 s. This means that, every second (S = 1), two
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seconds (L = 2) of the previous signal were analyzed, and from these records, the features
were calculated.

From the analysis of approximately 40 h of recordings of patient No.17 using the TrB
tool, we obtained a dataset (called D) with 136,341 instances described by 1081 calculated
features. In particular, 135,909 instances were tagged with “N” (no seizure), because they
were extracted from signals without seizures (preictal and interictal), and 432 were tagged
with “Y” (seizure), because they were extracted from signals with seizures (ictal). The
extracted features were univariate or bivariate [26]. The bivariate ones were calculated
with respect to two different methods: method A (MA), which considered a signal with the
same length but translated backwards by S seconds (previous signal) as the second signal;
method B (MB), which considered the origin (null vector) as the second signal.

Table 1 also shows the count of each feature in the dataset. Since there were 6 electrodes
(3 InFokus and 3 OutFokus) whose signals were filtered into 6 different frequency bands,
each univariate characteristic was calculated 36 times, whereas each bivariate feature
was calculated 72 times (36 using method A and 36 using method B). This resulted in
1080 features, to which the target class, “Actual YN”, was added.

2.5. The k-NN Algorithm

The learning algorithm chosen for the data-modeling phase with the aim of detecting
seizures was k-nearest neighbor (k-NN) [27]. k-NN is one of the most used machine learning
techniques for data mining, showing very high performance in many applications [28],
such as in satellite scene classification, handwritten digit identification, fraud detection,
ECG-pattern discovery, and in the detection of new COVID-19 [29] from human genome
sequences. k-NN is often successful where the classes are not linearly separable because
the decision boundary is very irregular [30].

The k-NN algorithm is very simple, and it is based on learning by analogy, whereby
a new point is classified considering its closest (k) neighboring points. It is founded on
the hypothesis that similar inputs are usually related to similar outputs. In the simplest
case where k = 1, the class of the instance that is most similar (or close) to the new point is
assigned as the output class. If k > 1, then the output class is assigned to the new vector
computing the majority of the classes of the k-nearest points (with k odd). The k number of
the nearest neighbors can be obtained following, for example, the study [31].

The algorithm computes the distances between each point in the test set and all the
points of the training set in order to obtain the nearest neighbor (NN) list. “Analogy” (or
“closeness” or “nearness”) is usually defined in terms of Euclidean distance, but other choices
are possible [32]. The general scheme of the algorithm is shown below [33] (Algorithm 1).

Algorithm 1

1. Let k be the number of the nearest neighbors. Let A be the training set and B be the test set.
2. for each b = (b, y′) ∈ B do
3. Compute d(b, a), the distance between b and every point (a, y) ∈ A
4. Select Ab ⊆ A, the set of k closest training points to b
5. y′ = argmax

t
∑

(bi ,yi)∈Ab

I(c = yi)

6. end for

Once the NN list is found, test point b is labeled based on the majority class of
its nearest neighbors (majority voting), where c in y′ is a class label; yi is the class label for
one of the nearest neighbors; and I(·) is a characteristic function that is equal to 1 if its
argument is true and 0 if its argument is false.

A very common problem of the k-NN algorithm is the so-called curse of dimensional-
ity [34]. The curse of dimensionality means that Euclidean distance is unhelpful in very
high dimensions because all points in the training set are almost equidistant to the search
point. Hence, it is advisable to preliminarily reduce the number of variables by applying,
for example, a technique for feature selection or feature extraction [35].
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Finally, it is useful to underline that no classification model is trained using the k-NN
algorithm; to classify a new instance, all its distances are calculated with all the elements of the
training set. For simplicity, the algorithms are still called classifiers or classification models.

2.6. Performance Measures

All the performance measures of a model, such as a classifier, are based on the con-
fusion matrix (CM) [33]. A very common form of CM, which we used in our work, is
shown in Figure 2. The elements tagged with “N” are the negative elements of the target
class in the dataset, and they represent, in our case study, the majority class. The elements
tagged with “Y” are the positive elements of the target class in the dataset, and they form
the minority class.
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“TN” elements are the true-negative elements of the CM, that is, the negative elements
of the dataset correctly classified as negative by the model. “TP” elements are the true-
positive elements of the CM, that is, the positive elements of the dataset correctly classified
as positive by the model. “FN” (false negative) elements are the positive elements of the
CM that are misclassified as negative by the model. Finally, “FP” (false positive) elements
are the negative elements of the CM that are misclassified as positive by the model. Sum S
of all the elements of the CM is the size (cardinality) of the dataset, that is, the number of
its elements. The classifier with the best performances has TP

P = 1 and TN
N = 1, because all

the positive elements and all the negative elements are correctly classified.
A very common performance metric is the classification accuracy (CA), which mea-

sures how good a model is at correctly predicting both positive and negative cases:

Classi f ication Accuracy = (CA) =
TP + TN

TP + TN + FP + FN
=

TP + TN
P + N

=
TP + TN

S
, (1)

The other performance metrics [33] used in this work are reported in Table 2.

Table 2. Performance metrics.

# Symbol Performance Metric Definition as What Does It Measure?

Basic Measures

1 TPR True-Positive Rate—Recall on P TP
TP+FN

How good a model is at correctly predicting
positive cases

2 TNR True-Negative Rate—Recall on N TN
TN+FP

How good a model is at correctly predicting
negative cases

3 FPR False-Positive Rate—Fall-out FP
FP+TN

Proportion of incorrectly classified negative
cases

4 PPV Positive Predictive Value—Precision on P TP
TP+FP

Proportion of correctly classified positive
cases out of total positive predictions

5 NPV Negative Predictive Value—Precision on N TN
TN+FN

Proportion of correctly classified negative
cases out of total negative predictions

Derived Measure

6 MCC Matthews Correlation Coefficient
TP·TN−FP·FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
Correlation between observed and predicted

classifications

Graphical Measure

7 AUC ROC Area Area Under the ROC Curve Area under the plot of the TPR
against the FPR
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2.7. Hold-Out Method and k-Fold Cross-Validation

The hold-out method [33] is a very common strategy in machine learning mainly
aimed at providing a useful framework for dataset splitting and designing in order to
train a model and evaluate its performance and to avoid the overfitting problem [36].
According to this strategy, the full dataset of selected features, labeled with “Y” or “N”,
was partitioned into two random disjointed sets; the first one, called training set, was used
for inducing the model by applying a learning algorithm, while the second one, called test
set, was used for testing the trained model by using performance metrics (Table 2). In most
cases, the subdivision percentages can vary.

The hold-out method is the simplest cross-validation method. k-fold cross-validation
is a resampling method and uses k different portions of the data to train and test a model
on k different iterations. According to this statistical method, the original sample was
randomly partitioned into k equally sized subsamples. Of the k subsamples, k− 1 subsets
were used as training data, and the remaining single subset was used as validation data
for testing the model. This process was then repeated k times, with each of the k subsets
used exactly once as the validation data. Moreover, in our case study, each subdivision of
the dataset was stratified, which meant that it retained the distribution of the target class.
The k results, that is, the k sets of performance obtained, could then be averaged to obtain a
single estimation that generalized the behavior of the algorithmic approach used to train
the model. In this work, k was fixed to 10.

2.8. Class Imbalance Problem

In k-NN, as well as in most machine learning algorithms, the classification perfor-
mance is significantly impacted by the unbalanced class. Data suffer the class imbalance
problem when the target class distributions are highly imbalanced. Although some authors
have pointed out that a strong class imbalance is not always a problem in learning from
data [37], the classifier-training phase is often profoundly conditioned by the majority
class (negative class); even if the models can have high accuracy (total amount of correct
classifications), when viewed more closely, they show a low TPR and low Precision for the
classification of positive elements (rare events).

Imbalance can be characterized by the imbalance ratio (IR), here calculated as the ratio
between the number of negative elements (N; majority class) and the number of positive
elements (Y; minority class) in the database. In particular, after the feature-extraction phase
(Section 2.4), full dataset D, obtained using the TrB tool, had, as said, 135,909 instances tagged
with N because they were extracted from signals without seizures and 432 instances tagged with
Y because they were extracted from signals with seizures. D had IR = #N

#Y = 135,909
432 = 314.6.

For this reason, D suffered the class imbalance problem.

3. Data Preparation

The data preparation step included the application of feature-selection algorithms
for dataset dimensionality reduction, the hold-out method for dataset splitting, and the
application of our technique for overcoming the class imbalance problem. Therefore, this
section describes all the steps to obtain the final datasets for the forthcoming modeling
phase with the k-NN algorithm for classification.

3.1. Feature Selection

The feature-selection phase was aimed at reducing the number of variables (Table 1)
that were calculated by the TrB tool by setting the temporal parameters of the sliding
window. In this step, we chose to evaluate the worth of an attribute by measuring its
Information Gain with respect to the class. In this way, we wanted to favor those variables
having a greater expected amount of information (reduction in entropy).



Biomedicines 2022, 10, 1491 8 of 21

The Information Gain (IG) [33] of an attribute X was calculated using Formula (2):

IG(Class, X) = H(Class)− H(Class|X),
H(X) = −p(x)∑ p(x) ln p(x),

(2)

where H(X) is the Shannon Entropy [38] of X.
We assigned a score, or rank, to each attribute using the IG; these scores were then sorted

in descending order, and the highest variables on the list were selected. The threshold for
IG selection was set to 0.85, so all features having an IG < 0.85 were rejected. In this way,
41 features survived. Note that the data were normalized before ranking. After this first
selection, a second filter was applied, which evaluated the worth of an attribute by measuring
the Pearson Correlation Coefficient between it and the target class. The Pearson Correlation
Coefficient (PCC), whose values always range between −1 and 1, is the covariance of the
two variables divided by the product of their standard deviations. All the features having
−0.75 < PCC < 0.75 were deleted. The applications of these two filters reduced the number
of the features from 1080 (Table 1), as calculated by the TrB tool, to 22. These were divided
into 7 categories (CE-MA, CE-MB, JE-MB, KC, LD-MA, MI-MA, and SP).

The distributions and the frequencies (in brackets) of the 22 survived features, together
with the electrode (E) number and the frequency band (B), are reported in Table 3. The sum
of the numbers in the brackets for each row of Table 3 is 22.

Table 3. Final features selected by filters.

Electrode E1 (10) E2 (8) E3 (4)
Band B40 (6) B70 (16)

Feature Name CE-MA (2) CE-MB (2) JE-MB (3) KC (3) LD-MA (3) MI-MA (4) SP (5)

The two applied filters excluded the features calculated for the OutFokus electrodes
and for frequency bands lower than 40 Hz. Moreover, most of the features selected
concerned those deriving from the information theory [20,38,39].

3.2. Test Plan

In our case study, the partitioning of the hold-out method was carried out by consider-
ing the different phases of the EEG signal. Table 4 shows the list of the datasets used in our
analysis useful to select the best k-NN. Testing the models on the IKTAL and INTERIKTAL
sets allowed us to select the best performing classifiers with respect to the detection of
seizures and the reduction in false alarms (false positives).

Table 4. Description of the sets for data analysis.

N Name Description Registration Numbers Use

1 FULL (D)

D was achieved by
preprocessing about 40 h of EEG
signals of the interictal, preictal,
and ictal phases of patient No.17
using TrB, which calculated 1080

features and the binary target
class “Actual YN”. D had

136,341 instances, 135,909 tagged
with “N” and 432 tagged with

“Y”.

52–76
98–100
109–11

114–116
122–124
131–133

This dataset was used in the
feature-selection phase by

applying filters based on the
Information Gain formula and the

Pearson Correlation index.

2 FULL_SELECTED
The features were selected,
achieving 22 final features +

“Actual YN” target class.

Disjointed sets IKTAL,
INTERIKTAL and T were obtained.
FULL_SELECTED = T ∪ IKTAL ∪

INTERIKTAL.
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Table 4. Cont.

N Name Description Registration Numbers Use

3 ORIGINAL
TRAINING (T)

Dataset with 96,135 instances,
95,798 tagged with “N” and
337 tagged with “Y”, coming

from 4 preictal, 4 ictal, and
15 interictal phases.

52–60
71–76

98–100
114–116

124
131–133

This dataset was used for model
training. The parameters of the
k-NN algorithm were chosen by

considering the 10-fold
cross-validation.

4 IKTAL

About 1.5 h of preictal phase
followed by a seizure of almost

95 s. This dataset had 5353
instances, 5258 tagged with “N”
label and 95 tagged with “Y”.

122–123

This dataset was used for testing
the selected models in order to

maximize the number of correctly
classified positive instances, thus

to detect the seizure.

5 INTERIKTAL

About 10 h of records of
interictal phase. All the 34,853

instances in this set were tagged
with “N”.

61–70
This dataset was used for testing
the models in order to reduce the

number of false positives.

3.3. Optimized Matthews Undersampling Technique

As specified in Section 2.8, the complete dataset D of patient No.17 had IR = #N
#Y =

135,909
432 = 314.6. If the sets for the tests (IKTAL and INTERIKTAL) were separated from

the complete dataset, then remaining set T (T = D− (IKTAL ∪ INTERIKTAL)) had an
IR = #N

#Y = 95,798
337 = 284.3.

In the literature, several techniques have been proposed to deal with the problem
of learning from imbalance datasets; mainly, they are based on training data resampling
algorithms [40,41], but also on cost-sensitive approaches or on ensemble methods [42]. In
our study, in order to overcome the class imbalance problem, a random undersampling
strategy, which we called Optimized Matthews Undersampling (OMU) method, was
applied to resample the T set. In particular, this strategy is based on n = 10 different
random undersamplings Ti of T, where each set Ti always has the same (all) 337 records
as the minority class (tagged with “Y”), whilst the majority class of each Ti has 337× IR
(IR = 1, 2, 5, 10, 20, 25, 50, 100) records (tagged with “N”). Moreover, if Ti and Tj are
two different undersampled sets of T (i, j = 1, . . . , 10 and i 6= j), Ti and Tj may also have
elements of the majority class in common because of the random extractions. This method
is useful for trying to minimize the loss of information of the majority class, which can
often be a side effect of the “simple” undersampling method.

In order to choose the final balanced training set, Ti (i = 1, . . . , 10), 10 different k-NNs
with k = 1 (each of them obtained for a different Ti) were 10-fold cross-validated, and the Ti
for which the 1-NN had the highest Matthews Correlation Coefficient (MCC) (Table 2) was
selected. The MCC, that is, the correlation coefficient between the observed and predicted
binary classifications, was fixed, because several authors [43–45] have pointed out that in
the case of unbalanced datasets, the MCC is the best choice for the selection of the classifier.
Table 5 reports the values of the MCC of the selected training sets. In particular, for each
IR, its maximum values are shown.

Table 5. MCC s of the 9 selected training sets. Each MCC was calculated as a maximum of 10 MCC
values, and each of these was obtained by a 1 -NN trained on a different IR -undersampled set of T.

IR 1 2 5 10 20 25 50 100 284.3
MCC 0.949 0.951 0.955 0.954 0.955 0.954 0.936 0.925 0.865

In order to recap, OMU was applied to T 8 times (one for each IR) obtaining 8 different
training sets. To these 8 sets, set T was added (T preserves the original imbalance ratio,
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IR = 284.3). Table 5 also shows the MCC of the 1-NN trained on the T set (IR = 284.3)
that had the lowest MCC value.

4. Results

The outcomes of data classification depend on the selection of parameters of the k-NN
algorithm and, in our case, on the k parameter and on the IR value, which are related
to how the training data were prepared. In this section, we use the symbol NN(IR, k)
to indicate that the k-NN algorithm was applied starting from the dataset with the IR
(imbalance ratio) and considering the k-nearest neighbors (the k parameter varied in
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 27}). The k-NN results are reported considering the k-fold
cross-validation (k = 10) and the tests on the ictal and interictal phases.

4.1. Performance by 10-Fold Cross-Validation

The 10-fold cross-validation guided us in selecting the best models (i.e., the optimal hy-
perparameter set of the k-NN algorithm), providing a criterion for comparing the calculated
performance metrics.

In the figures in the current section, but also in the figures in Section 4.2, each curve
refers to a different training set obtained by setting a different imbalance ratio (IR) in the
OMU technique (Section 3.3). Figure 3, Figure 4, and Figure 5 describe, respectively, the
trends of Recall on Y, Precision on Y, and Recall on N as the k number of the nearest
neighbors varied.
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Figure 3. Recall–IR on Y (TPR) as k varied.

The curves show that IR and k had an impact on the performance of the classifiers,
as expected. In particular, the lower the IR was, the more the k-NN was able to correctly
classify the examples belonging to the positive class (Figure 3) and thus the more it was
able to detect records that contained seizures. Dually, the higher the IR was, the higher the
correct classification of negative instances was (Figure 5), i.e., the more the k-NN was able
to correctly classify the records tagged with N. Moreover, Recall on Y (TPR) had a very
low variability as k varied, except for the curves of IR = Original = 284.3 and IR = 100,
whilst Recall on N (TNR) was almost always constant as k > 1 varied, except for the curve
of IR = 1, which showed a wider variability of the metric for every k.
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In order to obtain a compromise among all these situations and to select the best
classification models, we fixed some ad hoc thresholds for the analyzed performance
metrics. Considering a threshold of 0.92 for Recall on Y (Figure 3), the model that exceeded
it was NN(IR, k), with IR ≤ 25 and k ≥ 1. Then, considering a threshold of 0.95 for
Precision on Y (Figure 4), the survived models were:

• NN(IR, k), with IR ≤ 5, k ≥ 1;
• NN(IR, k), with 10 ≤ IR ≤ 25, k ≥ 3.

Furthermore, considering a threshold of 0.998 for the TNR (Figure 5), the resulting
models were:

• NN(IR, k), with IR = 100, Original, k ≥ 1;
• NN(IR, k), with IR = 25, 50, k ≥ 3;
• NN(IR, k), with IR = 20, 5 ≤ k ≤ 19.
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Moreover, the results shown were consistent with the MCC values shown in Table 5
for k = 1.

Finally, in order to recap, in Figure 6, we show as green cells all the 10-fold cross-
validated models that met all the above-mentioned performance criteria.
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4.2. Performance on IKTAL and INTERIKTAL Tests

All NN(IR, k)s were compared using the performance measures calculated on the
IKTAL and INTERIKTAL sets. In particular, the best models selected by 10-fold cross-
validation (Figure 6) were tested on these two independent sets.

The IKTAL set was formed by recording No. 122, containing only the preictal phase,
and recording No. 123, containing an ictal phase that lasted about 94 s, after a short phase of
continuation of the preictal phase. The INTERIKTAL set was formed by 10 h of registrations
whose samples were all tagged with N.

The curves in Figures 7 and 8 show that the IR and k also had an impact on the results
of these new tests.
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The best models, tested on IKTAL and evaluated with respect to Recall (TPR), were
those obtained by considering the sets with the lowest IR; the more balanced the training
set was, the higher Recall on IKTAL was. Moreover, the TPR varied very little as k varied,
especially for low values of IR. Furthermore, Recall on N (TNR) reached the value of 1
(about 100% of correctly classified negatives) for each k > 1 and for each IR > 5. From
the curves in Figure 7, very high performance was achieved by NN(IR, k), for each k, if
IR ≤ 20. These obtained rules further reduced the number of green cells in Figure 6.

The test on the INTERIKTAL set was carried out considering the total number of
false-positive (FP) elements (Figure 8). A model with a lower number of FP elements
was preferred, in order to avoid false detections as much as possible. From the curves
in Figure 8, we deduced that the higher the IR was, the lower the number of negative
elements wrongly classified as positive by the models was. This rule confirmed what was
achieved in the other tests. However, all k-NNs had a very low number of FP elements
when tested on INTERIKTAL. The maximum number of FP elements was 446 and was
obtained by NN(1, 1). Moreover, by quantifying the obtained rule by which, as the IR
increased, the FP number decreased in INTERIKTAL recordings, NN(284.3, 19), whose
training set preserved the original unbalanced class distribution, only had 10 false positives.

Putting together the rule obtained in the IKTAL set, i.e., that IR ≤ 20, and the one
obtained in the INTERIKTAL set, i.e., to have the highest IR, the optimal model could be
obtained along the green curve (FP20) in Figure 8, that is, for a k in [5,19] that minimized the
number of FP elements. For k = 5, 7, 9, NN(20, k) only had 38, 39, and 39 false positives,
respectively. Finally, we decided to choose k = 7 because NN(20, 7) had the highest Recall
(TPR) on the IKTAL set.

4.3. The Final Model

The performances of all k-NNs were compared as the two parameters IR and k varied.
Since the IR varied in 9 ways and k in 11 ways, we had IR ∗ k = 9 ∗ 11 = 99 different
k-NNs, each of which was tested three times (by 10-fold cross-validation, and on the IKTAL
and INTERIKTAL sets). The 297 (99 k-NNs ∗3 tests) results were compared considering
their confusion matrices, Recall values on Y and on N, Precision values, and AUCs, whilst
the performances of the k-NNs on INTERIKTAL were compared by only considering the
FP elements.

As mentioned in Section 4.2, the final model chosen was model NN(20, 7). Figure 9 re-
ports all the performances of the selected model with respect to the 10-fold cross-validation,
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to the IKTAL set useful for the detection of seizures, and to the INTERIKTAL set useful
for an optimal quantification of FP elements. Moreover, the confusion matrices are also
reported. Obviously, since the INTERIKTAL test file only had negative elements, the
performance metrics could not be calculated on it. Figure 9 also shows the very high per-
formance of the selected model, both for the detection of seizures and for the reduction in
FP elements. NN(20, 7) was chosen trying to find the best trade-off among the high-lined
results of Sections 4.1 and 4.2. The objective pursued was, therefore, to have the maximum
possible number of true positives in the IKTAL phase, trying to limit as much as possible
the FP elements in all the analyzed phases, especially in the INTERIKTAL one, in order to
avoid the detection of unreal seizures.
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Therefore, the best classifier showed a very low FP number and a very high TP
number. In particular, in the IKTAL phase, the final model had FP = 0 and TPR = 93.68%
(only six FN elements). Moreover, NN(20, 7) only had 39 false-positive elements, which
emerged during the test on the INTERIKTAL set.

4.4. Error Analysis

In order to understand the results achieved by the NN(20, 7) model in the detection
of seizures, an error analysis was also performed. Figure 10 shows the trend over time
of the Kolmogorov Complexity (KC; in E1, B40) of the IKTAL file (we chose the KC for
graphic reasons only). The preictal phase is shown in green, the ictal phase in red. Every
point refers to a second of registration (L = 2 and S = 1). Points classified by NN(20, 7) as
negative elements are indicated with a small circle, while those classified as positive are
indicated with a larger circle. Moreover, Figure 10 also shows a detail of IKTAL registration
in the box, in which six positive points classified as negative (FN elements) by the model
can be seen. Four out of these six classification errors were at the beginning of the ictal
period, and this can be interpreted as a 4 s delay of the method in detecting the seizure.
This mistake could be due to a somewhat fuzzy start of the seizure. However, more likely,
it may also be due to the tagging of the incipit of the crisis, which is very subjective and
highly depends on the epileptologist that manually marks the seizures in the EEG traces.

The remaining two classification errors, also consecutive, were positioned at seconds
No.21 and No.22 of the seizure, when the seizure was already ongoing. Therefore, it can be
concluded that the seizure was correctly detected by NN(20, 7).

Figure 11 describes the trend over a time of 10 h of interictal recordings, where,
obviously, there were no elements tagged with Y. In total, 39 false-positive elements (large
circles) were classified by NN(20, 7).
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In the lateral box of Figure 11, the detail of the agglomeration of 15 of the 39 points
erroneously classified as positive is shown, and the list of the time points where they were
detected is shown in Figure 12. These 15 points, but also the remaining points in the graph,
were not consecutive, and, at most, there were two consecutive points. These errors were
almost always located at the spikes of the Kolmogorov Complexity curve.
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Finally, we tried to inspect the signal from E1 in frequency band B40 in order to
understand where these false positives came from, with a particular focus on the time
period in which the model detected a “cluster” of consecutive or semi-consecutive false
positives (see Figure 11). We found that the signal in that time period was most likely
affected by artifacts, as shown in Figure 13.
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4.5. Portability Analysis

In order to test if the NN(20, 7) chosen for the seizure detection of patient No.17 could
be used to detect the seizures of other patients, a portability analysis (intended as a study
of the conditions, or limitations, for the transfer, or exportability, of the learning model
from one patient to a new one) [46] of the selected model was conducted. For this purpose,
we tested the model by using test sets obtained from six other patients (Nos. 3, 4, 11, 13, 19,
and 21), randomly selected from the FSPEEG database.

The raw data of the preictal, ictal, and interictal signals of these new patients were
processed in the same way as those of patient No.17. For the sake of clarity, no specific
feature selection was performed on these patients, but the calculated features were reduced
using the selection rules obtained from patient No.17, obtaining the same 22 final features.

The model trained on patient No.17 failed to correctly detect seizures in patients 3, 11, 13,
19, and 21, although each patient responded differently to NN(20, 7) (Table 6). Furthermore,
the tests carried out showed a high number of false positives in the interictal periods of
these five patients. On the other hand, one patient (No.4) seemed to respond quite well to
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NN(20, 7). Therefore, the seizures of patient No.4 were successfully detected by the k-NN
algorithm, using IR = 20 and k = 7, although, also in this case, the classifier showed a high
FP number (12,484 elements wrongly classified as positive on 99,011 negative elements).

Table 6. Results of NN(20, 7) on other patients.

PAT No. of Seizures No. of Instances Origin Average Seizure Duration (s) AUC Recall on P Recall on N

17 5 136,341 Temporal 86.16 - - -
3 5 108,836 Frontal 92.66 0.8411 0.5991 0.9826
4 4 99,363 Temporal 87.39 0.9835 0.9831 0.8739

11 3 103,520 Parietal 195.86 0.5992 0.0633 0.9992
13 2 95,127 Temporal/Occipital 158.28 0.5715 0.0221 0.9871
19 3 120,819 Frontal 12.54 0.5838 0.1672 1.0000
21 5 124,774 Temporal 89.09 0.5000 0.0000 0.9990

5. Discussion

In this paper, we propose an EEG-based automated seizure detection method, trying
to investigate, qualitatively and quantitatively, its performance in terms of classification
accuracy and, in particular, in terms of the number of false alarms, in order to understand
how to reduce them. Our results show that, with our method, it is possible to recognize
epileptic seizures while avoiding or dramatically minimizing the number of false alarms.

These results are at the same level as or at even higher level than those obtained with
the application of more complex techniques, such as support vector machines or artificial
neural networks [39], used for seizure detection.

In our study, the selection of two parameters assumed a key role:

• IR relates to the class imbalance ratio. To overcome the problem of the unbalanced
class, the elements of the majority class in the training set were undersampled by a
procedure that we called OMU (Section 3.3). The more balanced the training set (cor-
responding to a decrease in IR values) was, the more positive elements were correctly
classified. This also corresponded to an increase in the number of false positives;

• k, an internal parameter of the k-NN algorithm, represents the number of the nearest
neighbors to be considered for the classification. A similar rule to that of the IR
was also found for k, so there was a relationship between them; the more k and IR
increased, the more the correct classifications of the negative elements increased, but
the more correctly classified positive elements decreased.

One of the findings of k-NNs was that, once the value of k was fixed, the number of
true positives increased as IR decreased. Therefore, the more balanced the training set was,
the more k-NN correctly classified the positive examples of IKTAL, but also the greater the
number of false positives was, and the lower the number of true negatives was.

The feature-selection step also played an important role in our study for the
following reasons:

• It eliminated any redundancy of the variables. For example, the Joint Entropy (JE) and
the Conditional Entropy (CE) calculated with respect to method B (in which the second
signal was the null vector) were equal to the Shannon Entropy (SH). This equivalence
is noticeable in their mathematical formulation and was discovered thanks to the PCC
(for these features, the PCC is equal to 1). Moreover, some other extracted variables
could be closely cross-related;

• It produced new knowledge or confirmed old knowledge. The three OutFokus elec-
trodes (E4, E5, E6) were discarded by the feature selection filters, and only the InFokus
electrodes computed in bands B40 (40–70 Hz) and B70 (70–120 Hz) survived the analy-
sis. The selected features mainly came from the information theory (CE, JE, KC, and
MI), while the others from the Seismic Evaluators category (SP) and the Distance-based
category (LD);

• It improved, in some cases, the performances of the models compared with other
methods where more features are analyzed by learning algorithms [39,40].
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The number of false positives of the model was very low, but if we consider that it
never classified more than two consecutive seconds as false positives, it is reasonable to
assume that the number of false alarms was zero, since it is very rare to find a seizure which
lasts less than two seconds [47]. Furthermore, since the minimum duration of the seizures
of patient No.17 was 51 s, we can reasonably assume that no false seizures were detected by
the selected k-NN. In this way, a threshold-based rule (in seconds) could be derived from
the model in such a way that if the model detected a seizure lasting less than the threshold,
then there was no real seizure in the EEG signal. In this study, we could set the threshold to
3 s, but a more conservative rule could also be considered to find a threshold that could be
consistent across different patients.

Furthermore, the inspection of the original signal in order to understand how it was in
the specific time points where we found the false positives revealed that the original signal
in those time periods was most likely affected by artifacts, as shown in Figure 13. Thus, we
think that adding an artifact-removal step in the preprocessing phase could reduce or even
eliminate the number of false alarms.

We also investigated the possibility of applying the achieved detection model to other
patients from the FSPEEG database. We found that, with the exception of a single patient
(No.4), the model showed worse performance on other patients, demonstrating that our
model is not exportable. Furthermore, even in patient No.4, despite the fact that the model
showed a very high ability of correctly identifying the seizures (98.3% of correctly classified
positive elements), an increase in the number of false positives was found. However,
these two patients showed some common characteristics, and this result gives us reason to
explore clusters of similar patients, for which it would be possible to train a unique model.
This similarity shown by these two patients could be investigated more deeply from a
clinical and / or neurological point of view. For example, an immediate consideration is that
both patients had the same type of seizures (Temporal), and the average seizure duration
was very similar. These findings push us to perform further research, by calculating, for
example, the similarities among patients through an analysis of complexity metrics [48,49].
Moreover, the performance of the model on other patients was highly influenced by the
feature-selection phase, which was conducted on patient No.17, so it was very patient
specific. In addition, in order to perform a less restrictive feature-selection phase, it could
certainly be very useful to conduct a preliminary study to discover groups of similar
patients in order to be able to only export the detection model to patients belonging to the
same cluster.

6. Conclusions, Study Limitation, and Future Works

The proposed model for seizure detection showed excellent results in detecting
seizures, providing a very low false-positive rate during the interictal phase when tested
on one patient. However, these results were not confirmed, except for one patient, when
this model was tested on six other patients. Of course, this was mainly due to the fact that
the model was trained on one specific patient; thus, the rules extracted for that patient were
not exportable across all the patients. This limits the generalization ability of the model,
making it difficult to be applied to different patients. This limitation could be addressed
in the future by training the model using a group of patients who show some similar
neurological characteristics (for example, the type of epilepsy or the average duration of
seizures). As the performances of machine learning approaches increase as the available
data increase, future tests could include a larger number of patients, thus a larger number of
seizures. Furthermore, future works could include the application of clustering techniques
in order to find similar patients, for whom it would be possible to train unique and general
models. Another important contribution of this work is the analysis of the number of false
alarms, which is a critical index for assessing an automated seizure detection method. Our
qualitative analysis showed that the model never produced more than two seconds of
“misdetected” seizures and that the false positives detected by the model were most likely
due to the presence of artifacts in the signal; therefore, in the future, we aim to also include
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in the preprocessing step an artifact-removal technique, which could probably reduce or,
ideally, zero the number of false alarms. In conclusion, although the proposed method
could be considered patient specific, the availability of larger datasets, and the use of clus-
tering techniques and of additional preprocessing steps could improve the generalization
ability of the method, making it feasible to be applied to different kinds of patients and
different types of epilepsy.
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