Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Demographics
2.2. EEG Examinations and Epoch Selection
2.3. EEG Data Processing
2.4. Functional Connectivity
2.5. Analysis Based on Graph Theory
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics and EEG Findings
3.2. Functional Connection Strength Based on the PLVs
3.3. EEG Functional Connectivity Findings Using Graph Theory Analysis
3.4. Correlations between Age of Onset, Seizure Frequency, and EEG Functional Connectivity
4. Discussion
4.1. Neuronal Synchrony, Global Efficiency, Clustering Coefficient, and Nodal Strength Were Higher in BECTS Children with or without Clinical Seizures
4.2. Betweenness Centrality Was Lower in BECTS Children with Seizures, but Not in Those without Seizures
4.3. Higher Connection Strength (Edge) in BECTS with or without Seizures Compared to Controls
4.4. Age of Onset Is Positively Associated with EEG Functional Connectivity
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parisi, P.; Paolino, M.C.; Raucci, U.; Ferretti, A.; Villa, M.P.; Trenite, D.K. “Atypical forms” of benign epilepsy with centrotemporal spikes (BECTS): How to diagnose and guide these children. A practical/scientific approach. Epilepsy Behav. 2017, 75, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Weglage, J.; Demsky, A.; Pietsch, M.; Kurlemann, G. Neuropsychological, intellectual, and behavioral findings in patients with centrotemporal spikes with and without seizures. Dev. Med. Child Neurol. 1997, 39, 646–651. [Google Scholar] [CrossRef] [Green Version]
- Kessi, M.; Yan, F.; Pan, L.; Chen, B.; Olatoutou, E.; Li, D.; He, F.; Rugambwa, T.; Yang, L.; Peng, J.; et al. Treatment for the Benign Childhood Epilepsy With Centrotemporal Spikes: A Monocentric Study. Front. Neurol. 2021, 12, 670958. [Google Scholar] [CrossRef]
- Neri, M.L.; Guimarães, C.A.; Oliveira, E.P.; Duran, M.H.; Medeiros, L.L.; Montenegro, M.A.; Boscariol, M.; Guerreiro, M.M. Neuropsychological assessment of children with rolandic epilepsy: Executive functions. Epilepsy Behav. 2012, 24, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Prince, D.A. Physiological mechanisms of focal epileptogenesis. Epilepsia 1985, 26 (Suppl. 1), S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.L.; Wong, P.K. Topographical analysis of the centrotemporal discharges in benign rolandic epilepsy of childhood. Epilepsia 1984, 25, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.L.; Hung, K.L. Topographic mapping and clinical analysis of benign childhood epilepsy with centrotemporal spikes. Brain Dev. 1998, 20, 27–32. [Google Scholar] [CrossRef]
- Royer, J.; Bernhardt, B.C.; Larivière, S.; Gleichgerrcht, E.; Vorderwülbecke, B.J.; Vulliémoz, S.; Bonilha, L. Epilepsy and brain network hubs. Epilepsia 2022, 63, 537–550. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Stam, C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014, 15, 683–695. [Google Scholar] [CrossRef]
- Parker, C.S.; Clayden, J.D.; Cardoso, M.J.; Rodionov, R.; Duncan, J.S.; Scott, C.; Diehl, B.; Ourselin, S. Structural and effective connectivity in focal epilepsy. Neuroimag. Clin. 2017, 17, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, B.; Puskás, S.; Spisák, T.; Lajtos, I.; Opposits, G.; Besenyei, M.; Hollódy, K.; Fogarasi, A.; Kovács, N.Z.; Fekete, I.; et al. Increased resting-state EEG functional connectivity in benign childhood epilepsy with centro-temporal spikes. Seizure 2016, 35, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Makeig, S.; Jung, T.P.; Bell, A.J.; Ghahremani, D.; Sejnowski, T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 1997, 94, 10979–10984. [Google Scholar] [CrossRef] [Green Version]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Genovese, C.R.; Lazar, N.A.; Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002, 15, 870–878. [Google Scholar] [CrossRef] [Green Version]
- van Klink, N.E.; van 't Klooster, M.A.; Leijten, F.S.; Jacobs, J.; Braun, K.P.; Zijlmans, M. Ripples on rolandic spikes: A marker of epilepsy severity. Epilepsia 2016, 57, 1179–1189. [Google Scholar] [CrossRef]
- Song, J.; Nair, V.A.; Gaggl, W.; Prabhakaran, V. Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis. Brain Connect. 2015, 5, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douw, L.; de Groot, M.; van Dellen, E.; Heimans, J.J.; Ronner, H.E.; Stam, C.J.; Reijneveld, J.C. 'Functional connectivity' is a sensitive predictor of epilepsy diagnosis after the first seizure. PLoS ONE 2010, 5, e10839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douw, L.; van Dellen, E.; de Groot, M.; Heimans, J.J.; Klein, M.; Stam, C.J.; Reijneveld, J.C. Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci. 2010, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Quraan, M.A.; McCormick, C.; Cohn, M.; Valiante, T.A.; McAndrews, M.P. Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics. PLoS ONE 2013, 8, e68609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghantasala, R.; Holmes, G.L. Benign Rolandic epilepsy: Widespread increases in connectivity in a focal epilepsy syndrome. Epileptic Disord. 2019, 21, 567–578. [Google Scholar] [PubMed]
- Supekar, K.; Uddin, L.Q.; Khouzam, A.; Phillips, J.; Gaillard, W.D.; Kenworthy, L.E.; Yerys, B.E.; Vaidya, C.J.; Menon, V. Brain hyperconnectivity in children with autism and its links to social deficits. Cell. Rep. 2013, 5, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Adebimpe, A.; Aarabi, A.; Bourel-Ponchel, E.; Mahmoudzadeh, M.; Wallois, F. Functional Brain Dysfunction in Patients with Benign Childhood Epilepsy as Revealed by Graph Theory. PLoS ONE 2015, 10, e0139228. [Google Scholar] [CrossRef]
- Choi, H.S.; Chung, Y.G.; Choi, S.A.; Ahn, S.; Kim, H.; Yoon, S.; Hwang, H.; Kim, K.J. Electroencephalographic Resting-State Functional Connectivity of Benign Epilepsy with Centrotemporal Spikes. J. Clin. Neurol. 2019, 15, 211–220. [Google Scholar] [CrossRef]
- Adebimpe, A.; Aarabi, A.; Bourel-Ponchel, E.; Mahmoudzadeh, M.; Wallois, F. EEG Resting State Functional Connectivity Analysis in Children with Benign Epilepsy with Centrotemporal Spikes. Front. Neurosci. 2016, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- van Diessen, E.; Zweiphenning, W.J.; Jansen, F.E.; Stam, C.J.; Braun, K.P.; Otte, W.M. Brain Network Organization in Focal Epilepsy: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e114606. [Google Scholar] [CrossRef] [Green Version]
- Laiou, P.; Avramidis, E.; Lopes, M.A.; Abela, E.; Müller, M.; Akman, O.E.; Richardson, M.P.; Rummel, C.; Schindler, K.; Goodfellow, M. Quantification and Selection of Ictogenic Zones in Epilepsy Surgery. Front. Neurol. 2019, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Su, T.Y.; Hung, P.L.; Chen, C.; Lin, Y.J.; Peng, S.J. Graph Theory-Based Electroencephalographic Connectivity and Its Association with Ketogenic Diet Effectiveness in Epileptic Children. Nutrients 2021, 13, 2186. [Google Scholar] [CrossRef] [PubMed]
- Bettus, G.; Ranjeva, J.P.; Wendling, F.; Bénar, C.G.; Confort-Gouny, S.; Régis, J.; Chauvel, P.; Cozzone, P.J.; Lemieux, L.; Bartolomei, F.; et al. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations. PLoS ONE 2011, 6, e20071. [Google Scholar] [CrossRef] [PubMed]
- Doucet, G.E.; Sharan, A.; Pustina, D.; Skidmore, C.; Sperling, M.R.; Tracy, J.I. Early and late age of seizure onset have a differential impact on brain resting-state organization in temporal lobe epilepsy. Brain Topogr. 2015, 28, 113–126. [Google Scholar] [CrossRef]
- Davis, P.E.; Kapur, K.; Filip-Dhima, R.; Trowbridge, S.K.; Little, E.; Wilson, A.; Leuchter, A.; Bebin, E.M.; Krueger, D.; Northrup, H.; et al. Tuberous Sclerosis Autism Centers of Excellence Research Network Increased electroencephalography connectivity precedes epileptic spasm onset in infants with tuberous sclerosis complex. Epilepsia 2019, 60, 1721–1732. [Google Scholar] [CrossRef]
- Smith, R.J.; Hu, D.K.; Shrey, D.W.; Rajaraman, R.; Hussain, S.A.; Lopour, B.A. Computational characteristics of interictal EEG as objective markers of epileptic spasms. Epilepsy Res. 2021, 176, 106704. [Google Scholar] [CrossRef]
Controls | BECT with Seizures (no. of Patients) | BECT without Seizures (no. of Patients) | p Value | |
---|---|---|---|---|
Patient number | 20 | 31 | 21 | |
Gender (male%) | 12 (60.0%) | 19 (61.3%) | 11 (52.4%) | 0.802 (Chi-square) |
Age at EEG (years old, mean ± SD) | 8.65 ± 2.82 | 8.45 ± 2.59 years (range 4.0–12.1) | 8.59 ± 2.46 years (range 5.1–14) | 0.962 (ANOVA, f = 0.04) |
Age of onset (years old, mean ± SD) | – | 7.33 ± 2.10 years (range 3.8–11) | 8.08 ± 2.65 years (range 4.0–14.0) (other symptoms) | 0.262 (t-test, t = −1.134) |
Family history of epilepsy or febrile seizures | – | 5 | 0 | |
Febrile seizures history | 0 | 7 (22.5%) | 0 | |
Seizure frequency before EEG | – | 2.90 ± 1.68 | - | |
Focal to FBCT | – | 5 (16.1%) | 0 | |
Comorbidities | ||||
ADHD/ADD | 16 (48.4%) | 9 (42.9%) | ||
History of developmental delay | 4 (12.9%) | 4 (19.0%) | ||
Enuresis | 1 (3.2%) | 1 (4.8%) | ||
Tic disorder/Tourette disease | 1 (3.2%) | 7 (33.3%) | ||
Learning disability | 1 (3.2%) | 2 (9.5%) | ||
ASD trait | 1 (3.2%) | 1 (4.8%) | ||
Headache/dizziness | 3 (9.7%) | 8 (38.1%) | ||
EEG foci | ||||
Right | 13 (41.9%) | 4 (19.0%) | N.S. | |
Left | 8 (25.8%) | 5 (23.8%) | N.S. | |
Bilateral | 10 (32.2%) | 12 (57.1%) | N.S. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-L.; Wang, C.-C.; Lee, F.-C.; Peng, S.-J.; Chang, H.; Tseng, S.-H. Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures. Biomedicines 2022, 10, 1553. https://doi.org/10.3390/biomedicines10071553
Tsai M-L, Wang C-C, Lee F-C, Peng S-J, Chang H, Tseng S-H. Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures. Biomedicines. 2022; 10(7):1553. https://doi.org/10.3390/biomedicines10071553
Chicago/Turabian StyleTsai, Min-Lan, Chuang-Chin Wang, Feng-Chin Lee, Syu-Jyun Peng, Hsi Chang, and Sung-Hui Tseng. 2022. "Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures" Biomedicines 10, no. 7: 1553. https://doi.org/10.3390/biomedicines10071553
APA StyleTsai, M. -L., Wang, C. -C., Lee, F. -C., Peng, S. -J., Chang, H., & Tseng, S. -H. (2022). Resting-State EEG Functional Connectivity in Children with Rolandic Spikes with or without Clinical Seizures. Biomedicines, 10(7), 1553. https://doi.org/10.3390/biomedicines10071553