Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects
Abstract
:1. Introduction
2. Biosynthesis of Fg, Fibrinogen-like 1 (FGL1), and Fibrinogen-like 2 (FGL2) Proteins
3. Disorders Associated with Plasma Levels of Fg
Fibrinogen Hindering Autoimmune Cell Reaction
4. Fibrinogen Signaling
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
CSF | Cerebrospinal fluid |
COPD | Chronic Obstructive Pulmonary Disease |
CRP | C-reactive protein |
DIC | Disseminated intravascular coagulation |
FG | Fibrinogen |
FGA | Fg alpha chain |
FGB | Fg beta chain |
FGG | Fg gamma chain |
FGL1 | Fg-like protein 1 |
FGL2 | Fg-like protein 2 |
FpB | Fibrinopeptide B |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
HFg | Hyperfibrinogenemia |
IL-6 | Interleukin-6 |
LAG3 | Lymphocyte-activation gene |
MS | Multiple sclerosis |
PMN | Polymorphonuclear neutrophils |
RA | Rheumatoid arthritis |
STM | short-term memory |
SLE | Systemic lupus erythematosus |
TBI | Traumatic brain injury |
References
- Mosesson, M.W. Fibrinogen and fibrin structure and functions. J. Thromb. Haemost. 2005, 3, 1894–1904. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Castell, J.; Gómez-Lechón, M.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P. Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzani, C.; Mantovani, G.; Salvagno, G.L.; Baldiotti, E.; Ruzzenente, A.; Iacono, C.; Lippi, G.; Guglielmi, A. Elevated fibrinogen plasma level is not an independent predictor of poor prognosis in a large cohort of Western patients undergoing surgery for colorectal cancer. World J. Gastroenterol. 2016, 22, 9994–10001. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Pan, S.; Cooke, K.; Moyes, K.W.; Bronner, M.P.; Goodlett, D.R.; Aebersold, R.; Brentnall, T.A. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis. Pancreas 2007, 34, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Peshkova, A.D.; Evdokimova, T.A.; Sibgatullin, T.B.; Ataullakhanov, F.I.; Litvinov, R.I.; Weisel, J.W. Accelerated Spatial Fibrin Growth and Impaired Contraction of Blood Clots in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 9434. [Google Scholar] [CrossRef]
- Ames, P.R.; Alves, J.; Pap, A.F.; Ramos, P.; Khamashta, M.A.; Hughes, G.R. Fibrinogen in systemic lupus erythematosus: More than an acute phase reactant? J. Rheumatol. 2000, 27, 1190–1195. [Google Scholar]
- van Oijen, M.; Witteman, J.C.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M.B. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke 2005, 36, 2637–2641. [Google Scholar] [CrossRef] [Green Version]
- Hay, J.R.; Johnson, V.E.; Young, A.M.; Smith, D.H.; Stewart, W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J. Neuropathol. Exp. Neurol. 2015, 74, 1147–1157. [Google Scholar]
- Kossmann, T.; Hans, V.H.; Imhof, H.G.; Stocker, R.; Grob, P.; Trentz, O.; Morganti-Kossmann, C. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 1995, 4, 311–317. [Google Scholar] [CrossRef]
- Muradashvili, N.; Benton, R.L.; Saatman, K.E.; Tyagi, S.C.; Lominadze, D. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metab. Brain Dis. 2015, 30, 411–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannel, W.B.; D’Agostino, R.B.; Wilson, P.W.F.; Belanger, A.J.; Gagnon, D.R. Diabetes, fibrinogen, and risk of cardiovascular disease: The Framingham experience. Am. Heart J. 1990, 120, 672–676. [Google Scholar] [CrossRef]
- Kerlin, B.; Cooley, B.C.; Isermann, B.H.; Hernandez, I.; Sood, R.; Zogg, M.; Hendrickson, S.B.; Mosesson, M.W.; Lord, S.; Weiler, H. Cause-effect relation between hyperfibrinogenemia and vascular disease. Blood 2004, 103, 1728–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, I.A.; Eastham, R.; Elwood, P.C.; Etherington, M.; O’Brien, J.R.; Sweetnam, P.M. Haemostatic factors associated with ischaemic heart disease in men aged 45 to 64 years. The Speedwell study. Br. Heart J. 1982, 47, 490–494. [Google Scholar] [CrossRef] [Green Version]
- del Zoppo, G.J.; Levy, D.E.; Wasiewski, W.W.; Pancioli, A.M.; Demchuk, A.M.; Trammel, J.; Demaerschalk, B.M.; Kaste, M.; Albers, G.W.; Ringelstein, E.B. Hyperfibrinogenemia and functional outcome from acute ischemic stroke. Stroke 2009, 40, 1687–1691. [Google Scholar] [CrossRef] [Green Version]
- Letcher, R.L.; Chien, S.; Pickering, T.G.; Sealey, J.E.; Laragh, J.H. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. Am. J. Med. 1981, 70, 1195–1202. [Google Scholar] [CrossRef]
- Letcher, R.L.; Chien, S.; Pickering, T.G.; Laragh, J.H. Elevated blood viscosity in patients with borderline essential hypertension. Hypertension 1983, 5, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Lominadze, D.; Joshua, I.G.; Schuschke, D.A. Increased erythrocyte aggregation in spontaneously hypertensive rats. Am. J. Hypertens 1998, 11, 784–789. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Lowe, G.D.O.; Woodward, M.; Tunstall-Pedoe, H. Fibrinogen in relation to personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease, and family history: The Scottish Heart Health Study. Br. Heart J. 2007, 69, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Sawamura, A.; Gando, S.; Kubota, N.; Uegaki, S.; Shimojima, H.; Sugano, M.; Ieko, M. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery 2011, 149, 221–230. [Google Scholar] [CrossRef]
- Redman, C.M.; Xia, H.U.I. Fibrinogen biosynthesis. Ann. N. Y. Acad. Sci. 2001, 936, 480–495. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Mulvihill, E.R.; Farrell, D.H.; Chung, D.W.; Davie, E.W. Biosynthesis of human fibrinogen. Subunit interactions and potential intermediates in the assembly. J. Biol. Chem. 1993, 268, 8919–8926. [Google Scholar] [CrossRef]
- Acharya, S.S.; Dimichele, D.M. Rare inherited disorders of fibrinogen. Haemophilia 2008, 14, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Arai, S.; Nagaya, H.; Mizuguchi, J.; Wada, I. Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells. PLoS ONE 2013, 8, e74580. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, R.; Danishefsky, K.J. Studies on the assembly and secretion of fibrinogen. J. Biol. Chem. 1991, 266, 6578–6585. [Google Scholar] [CrossRef]
- Castillo, V.; Oñate, M.; Woehlbier, U.; Rozas, P.; Andreu, C.; Medinas, D.; Valdés, P.; Osorio, F.; Mercado, G.; Vidal, R.L.; et al. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration. PLoS ONE 2015, 10, e0136620. [Google Scholar] [CrossRef]
- Bonifacino, J.S.; Weissman, A.M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 1998, 14, 19–57. [Google Scholar] [CrossRef]
- Vu, D.; Di Sanza, C.; Caille, D.; de Moerloose, P.; Scheib, H.; Meda, P.; Neerman-Arbez, M. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum. Mol. Genet. 2005, 14, 3271–3280. [Google Scholar] [CrossRef]
- Suh, T.T.; Holmback, K.; Jensen, N.J.; Daugherty, C.C.; Small, K.; Simon, D.I.; Potter, S.; Degen, J.L. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 1995, 9, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Sher, B.; Kudryk, B.; Redman, C.M. Fibrinogen precursors. Order of assembly of fibrinogen chains. J. Biol. Chem. 1984, 259, 10574–10581. [Google Scholar] [CrossRef]
- Farrell, D.H.; Mulvihill, E.R.; Huang, S.M.; Chung, D.W.; Davie, E.W. Recombinant human fibrinogen and sulfation of the gamma’ chain. Biochemistry 1991, 30, 9414–9420. [Google Scholar] [CrossRef] [PubMed]
- Guadiz, G.; Sporn, L.A.; Simpson-Haidaris, P.J. Thrombin cleavage-independent deposition of fibrinogen in extracellular matrices. Blood 1997, 90, 2644–2653. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk, B.; Simpson-Haidaris, P.J. Fibrinogen assembly, secretion, and deposition into extracellular matrix by MCF-7 human breast carcinoma cells. Cancer Res. 2000, 60, 2033–2039. [Google Scholar] [PubMed]
- Haidaris, P.J.; Courtney, M.A. Tissue-specific and ubiquitous expression of fibrinogen gamma-chain mRNA. Blood Coagul. Fibrinol. 1990, 1, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Golanov, E.V.; Sharpe, M.A.; Regnier-Golanov, A.S.; Del Zoppo, G.J.; Baskin, D.S.; Britz, G.W. Fibrinogen Chains Intrinsic to the Brain. Front. Neurosci. 2019, 13, 541. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, T.W.; Swarup, V.P.; Kuberan, B.; Tresco, P.A.; Hlady, V. Astrocytes specifically remove surface-adsorbed fibrinogen and locally express chondroitin sulfate proteoglycans. Acta Biomater. 2013, 9, 7200–7208. [Google Scholar] [CrossRef] [Green Version]
- Sulimai, N.; Brown, J.; Lominadze, D. Fibrinogen Interaction with Astrocyte ICAM-1 and PrPC Results in the Generation of ROS and Neuronal Death. Int. J. Mol. Sci. 2021, 22, 2391. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, M.; Wang, R.; Li, H. Fibrinogen-like protein 1 (FGL1): The next immune checkpoint target. J. Hematol. Oncol. 2021, 14, 147. [Google Scholar] [CrossRef]
- Liu, Z.; Ukomadu, C. Fibrinogen-like protein 1, a hepatocyte derived protein is an acute phase reactant. Biochem. Biophys. Res. Commun. 2008, 365, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Hooper, W.C. Physiological functions and clinical implications of fibrinogen-like 2: A review. World J. Clin. Infect. Dis. 2013, 3, 37–46. [Google Scholar] [CrossRef]
- Rychlik, D.F.; Chien, E.K.; Wolff, D.; Phillippe, S.; Phillippe, M. Cloning and tissue expression of the tissue prothrombinase Fgl-2 in the Sprague-Dawley rat. J. Soc. Gynecol. Investig. 2003, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- De Maat, M.P.M. Effects of diet, drugs, and genes on plasma fibrinogen levels. Ann. N. Y. Acad. Sci. 2001, 936, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Green, F.R. Fibrinogen polymorphisms and atherothrombotic disease. Ann. N. Y. Acad. Sci. 2001, 936, 549–559. [Google Scholar] [CrossRef]
- Williams, P.T. Quantile-specific heritability of plasma fibrinogen concentrations. PLoS ONE 2022, 17, e0262395. [Google Scholar] [CrossRef]
- Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [Google Scholar] [CrossRef] [PubMed]
- de Moerloose, P.; Casini, A.; Neerman-Arbez, M. Congenital fibrinogen disorders: An update. Semin. Thromb. Hemost. 2013, 39, 585–595. [Google Scholar] [PubMed] [Green Version]
- Mumford, A.D.; Ackroyd, S.; Alikhan, R.; Bowles, L.; Chowdary, P.; Grainger, J.; Mainwaring, J.; Mathias, M.; O’Connell, N.; Committee, B. Guideline for the diagnosis and management of the rare coagulation disorders: A United Kingdom Haemophilia Centre Doctors’ Organization guideline on behalf of the British Committee for Standards in Haematology. Br. J. Haematol. 2014, 167, 304–326. [Google Scholar] [CrossRef]
- Peyvandi, F.; Di Michele, D.; Bolton-Maggs, P.H.; Lee, C.A.; Tripodi, A.; Srivastava, A. Classification of rare bleeding disorders (RBDs) based on the association between coagulant factor activity and clinical bleeding severity. J. Thromb. Haemost. 2012, 10, 1938–1943. [Google Scholar] [CrossRef]
- Asselta, R.; Paraboschi, E.M.; Duga, S. Hereditary Hypofibrinogenemia with Hepatic Storage. Int. J. Mol. Sci. 2020, 21, 7830. [Google Scholar] [CrossRef]
- Tziomalos, K.; Vakalopoulou, S.; Perifanis, V.; Garipidou, V. Treatment of congenital fibrinogen deficiency: Overview and recent findings. Vasc. Health Risk Manag. 2009, 5, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Peyvandi, F.; Duga, S.; Akhavan, S.; Mannucci, P.M. Rare coagulation deficiencies. Haemophilia 2002, 8, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Asselta, R.; Zolkova, J.; Brunclikova, M.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Congenital Afibrinogenemia and Hypofibrinogenemia: Laboratory and Genetic Testing in Rare Bleeding Disorders with Life-Threatening Clinical Manifestations and Challenging Management. Diagnostics 2021, 11, 2140. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.J.; Nakashima, M.O.; Kottke-Marchant, K. 2-Hemostasis and Thrombosis. In Hematopathology, 3rd ed.; Hsi, E.D., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 57–105.e104. [Google Scholar]
- Casini, A.; Neerman-Arbez, M.; Ariëns, R.A.; de Moerloose, P. Dysfibrinogenemia: From molecular anomalies to clinical manifestations and management. J. Thromb. Haemost. 2015, 13, 909–919. [Google Scholar] [CrossRef]
- Hayes, T. Dysfibrinogenemia and Thrombosis. Arch. Pathol. Lab. Med. 2002, 126, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.O.; Fellowes, A.P.; George, P.M. Molecular mechanisms of hypo- and afibrinogenemia. Ann. N. Y. Acad. Sci. 2001, 936, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Hayıroğlu, M.İ.; Çınar, T.; Tekkeşin, A.İ. Fibrinogen and D-dimer variances and anticoagulation recommendations in COVID-19: Current literature review. Rev. Da Assoc. Med. Bras. 2020, 66, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Korte, W.; Poon, M.C.; Iorio, A.; Makris, M. Thrombosis in Inherited Fibrinogen Disorders. Transfus Med. Hemother 2017, 44, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Hagemo, J.S.; Stanworth, S.; Juffermans, N.P.; Brohi, K.; Cohen, M.J.; Johansson, P.I.; Røislien, J.; Eken, T.; Næss, P.A.; Gaarder, C. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: A multicentre observational study. Crit. Care 2014, 18, R52. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Schmidt, R.; Niederkorn, K.; Horner, S.; Becsagh, P.; Reinhart, B.; Schumacher, M.; Weinrauch, V.; Kostner, G.M. Beta-fibrinogen gene polymorphism (C148→T) is associated with carotid atherosclerosis: Results of the Austrian Stroke Prevention Study. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Wypasek, E.; Stepien, E.; Kot, M.; Plicner, D.; Kapelak, B.; Sadowski, J.; Undas, A. Fibrinogen Beta-Chain-C148T Polymorphism is Associated with Increased Fibrinogen, C-Reactive Protein, and Interleukin-6 in Patients Undergoing Coronary Artery Bypass Grafting. Inflammation 2012, 35, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Kaptoge, S.; White, I.R.; Thompson, S.G.; Wood, A.M.; Lewington, S.; Lowe, G.D.; Danesh, J. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: Individual participant meta-analysis of 154,211 adults in 31 prospective studies: The fibrinogen studies collaboration. Am. J. Epidemiol. 2007, 166, 867–879. [Google Scholar] [PubMed]
- Zierk, J.; Ganslandt, T.; Rauh, M.; Metzler, M.; Strasser, E. Data mining of reference intervals for coagulation screening tests in adult patients. Clin. Chim Acta 2019, 499, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Marquis, K.; Maltais, F.; Duguay, V.; Bezeau, A.-M.; LeBlanc, P.; Jobin, J.; Poirier, P. The Metabolic Syndrome in Patients With Chronic Obstructive Pulmonary Disease. J. Cardiopulm. Rehabil. Prev. 2005, 25, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Mannino, D.M.; Tal-Singer, R.; Lomas, D.A.; Vestbo, J.; Graham Barr, R.; Tetzlaff, K.; Lowings, M.; Rennard, S.I.; Snyder, J.; Goldman, M.; et al. Plasma Fibrinogen as a Biomarker for Mortality and Hospitalized Exacerbations in People with COPD. Chronic Obstr. Pulm. Dis. 2015, 2, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Namkoong, H.; Kim, H.K.; Kim, S.; Hwang, D.W.; Na, H.R.; Ha, S.-A.; Kim, J.-R.; Kim, J.W. Fibrinogen gamma-A chain precursor in CSF: A candidate biomarker for Alzheimer’s disease. BMC Neurol. 2007, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, K.; Ota, M.; Sasayama, D.; Yoshida, S.; Matsumura, R.; Miyakawa, T.; Yokota, Y.; Yamaguchi, S.; Noda, T.; Teraishi, T.; et al. Increased cerebrospinal fluid fibrinogen in major depressive disorder. Sci. Rep. 2015, 5, 11412. [Google Scholar] [CrossRef]
- Abbott, N.J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem. Int. 2004, 45, 545–552. [Google Scholar] [CrossRef]
- Shetty, A.K.; Zanirati, G. The Interstitial System of the Brain in Health and Disease. Aging Dis. 2020, 11, 200–211. [Google Scholar]
- Brinker, T.; Stopa, E.; Morrison, J.; Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.P.; Darbousset, R.; Schoenwaelder, S.M. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019, 133, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Yamashita, H.; Kitayama, J.; Kanno, N.; Yatomi, Y.; Nagawa, H. Hyperfibrinogenemia is associated with lymphatic as well as hematogenous metastasis and worse clinical outcome in T2 gastric cancer. BMC Cancer 2006, 6, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polterauer, S.; Seebacher, V.; Hefler-Frischmuth, K.; Grimm, C.; Heinze, G.; Tempfer, C.; Reinthaller, A.; Hefler, L. Fibrinogen plasma levels are an independent prognostic parameter in patients with cervical cancer. Am. J. Obs. Gynecol. 2009, 200, e641–e647. [Google Scholar] [CrossRef] [PubMed]
- Pichler, M.; Hutterer, G.C.; Stojakovic, T.; Mannweiler, S.; Pummer, K.; Zigeuner, R. High plasma fibrinogen level represents an independent negative prognostic factor regarding cancer-specific, metastasis-free, as well as overall survival in a European cohort of non-metastatic renal cell carcinoma patients. Br. J. Cancer 2013, 109, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Long, Q. Elevated serum plasma fibrinogen is associated with advanced tumor stage and poor survival in hepatocellular carcinoma patients. Medicine 2017, 96, e6694. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Ponczek, M.B. The role of fibrinogen, fibrin and fibrin(ogen) degradation products (FDPs) in tumor progression. Contemp. Oncol. 2013, 17, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.; Zhang, Y.; Cui, X.; Wang, S.; Gao, S.; Wang, Y.; Liu, Y.; Bae, J.H.; Yang, W.H.; et al. Fibrinogen Alpha Chain Knockout Promotes Tumor Growth and Metastasis through Integrin-AKT Signaling Pathway in Lung Cancer. Mol. Cancer Res. 2020, 18, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Suehiro, K.; Gailit, J.; Plow, E.F. Fibrinogen is a ligand for integrin alpha beta 5 beta1 on endothelial cells. J. Biol. Chem. 1997, 272, 5360–5366. [Google Scholar] [CrossRef] [Green Version]
- Dirix, L.Y.; Salgado, R.; Weytjens, R.; Colpaert, C.; Benoy, I.; Huget, P.; van Dam, P.; Prové, A.; Lemmens, J.; Vermeulen, P. Plasma fibrin D-dimer levels correlate with tumour volume, progression rate and survival in patients with metastatic breast cancer. Br. J. Cancer 2002, 86, 389–395. [Google Scholar] [CrossRef]
- Jennewein, C.; Tran, N.; Paulus, P.; Ellinghaus, P.; Eble, J.A.; Zacharowski, K. Novel Aspects of Fibrin(ogen) Fragments during Inflammation. Mol. Med. 2011, 17, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Senior, R.M.; Skogen, W.F.; Griffin, G.L.; Wilner, G.D. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J. Clin. Investig. 1986, 77, 1014–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, P.J. Fibrin degradation products: A review of structures found in vitro and in vivo. Ann. N. Y. Acad. Sci. 2001, 936, 594–610. [Google Scholar] [CrossRef] [PubMed]
- Landin, K.; Tengborn, L.; Smith, U. Elevated fibrinogen and plasminogen activator inhibitor (PAI-1) in hypertension are related to metabolic risk factors for cardiovascular disease. J. Intern. Med. 1990, 227, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Canteli, M.; Paul, J.; Norris, E.H.; Bronstein, R.; Ahn, H.J.; Zamolodchikov, D.; Bhuvanendran, S.; Fenz, K.M.; Strickland, S. Fibrinogen and β-Amyloid association alters thrombosis and fibrinolysis: A possible contributing factor to Alzheimer’s Disease. Neuron 2010, 66, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Foerster, K.; Helmy, A.; Zhu, Y.; Khattar, R.; Adeyi, O.A.; Wong, K.M.; Shalev, I.; Clark, D.A.; Wong, P.-Y.; Heathcote, E.J.; et al. The novel immunoregulatory molecule FGL2: A potential biomarker for severity of chronic hepatitis C virus infection. J. Hepatol. 2010, 53, 608–615. [Google Scholar] [CrossRef]
- Li, C.; Fung, L.S.; Chung, S.; Crow, A.; Myers-Mason, N.; Phillips, M.J.; Leibowitz, J.L.; Cole, E.; Ottaway, C.A.; Levy, G. Monoclonal antiprothrombinase (3D4.3) prevents mortality from murine hepatitis virus (MHV-3) infection. J. Exp. Med. 1992, 176, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.K.; Mureb, D.; Murab, S.; Rosenfeldt, L.; Francisco, B.; Cantrell, R.; Karns, R.; Romick-Rosendale, L.; Watanabe-Chailland, M.; Mast, J.; et al. Fibrinogen activates focal adhesion kinase (FAK) promoting colorectal adenocarcinoma growth. J. Thromb. Haemost. 2021, 19, 2480–2494. [Google Scholar] [CrossRef]
- Muradashvili, N.; Tyagi, N.; Tyagi, R.; Munjal, C.; Lominadze, D. Fibrinogen alters mouse brain endothelial cell layer integrity affecting vascular endothelial cadherin. Biochem. Biophys. Res. Commun. 2011, 413, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Patibandla, P.K.; Tyagi, N.; Dean, W.L.; Tyagi, S.C.; Roberts, A.M.; Lominadze, D. Fibrinogen induces alterations of endothelial cell tight junction proteins. J. Cell. Physiol. 2009, 221, 195–203. [Google Scholar] [CrossRef]
- Tyagi, N.; Roberts, A.M.; Dean, W.L.; Tyagi, S.C.; Lominadze, D. Fibrinogen induces endothelial cell permeability. Mol. Cell. Biochem. 2008, 307, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muradashvili, N.; Benton, R.; Tyagi, R.; Tyagi, S.; Lominadze, D. Elevated level of fibrinogen increases caveolae formation; Role of matrix metalloproteinase-9. Cell Biochem. Biophys. 2014, 69, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muradashvili, N.; Qipshidze, N.; Munjal, C.; Givvimani, S.; Benton, R.L.; Roberts, A.M.; Tyagi, S.C.; Lominadze, D. Fibrinogen-induced increased pial venular permeability in mice. J. Cereb Blood Flow Metab. 2012, 32, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Muradashvili, N.; Tyagi, R.; Lominadze, D. A dual-tracer method for differentiating transendothelial transport from paracellular leakage in vivo and in vitro. Front. Physiol. 2012, 3, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Muradashvili, N.; Tyagi, R.; Tyagi, N.; Tyagi, S.C.; Lominadze, D. Cerebrovascular disorders caused by hyperfibrinogenemia. J. Physiol. 2016, 594, 5941–5957. [Google Scholar] [CrossRef]
- Jenkins, D.R.; Craner, M.J.; Esiri, M.M.; DeLuca, G.C. The contribution of fibrinogen to inflammation and neuronal density in human traumatic brain injury. J. Neurotrauma 2018, 35, 2259–2271. [Google Scholar] [CrossRef]
- Muradashvili, N.; Tyagi, S.C.; Lominadze, D. Localization of fibrinogen in the vasculo-astrocyte interface after cortical contusion injury in mice. Brain Sci. 2017, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulimai, N.; Brown, J.; Lominadze, D. The Effects of Fibrinogen’s Interactions with Its Neuronal Receptors, Intercellular Adhesion Molecule-1 and Cellular Prion Protein. Biomolecules 2021, 11, 1381. [Google Scholar] [CrossRef]
- Muradashvili, N.; Tyagi, R.; Metreveli, N.; Tyagi, S.C.; Lominadze, D. Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia. J. Cereb Blood Flow Metab. 2014, 34, 1472–1482. [Google Scholar] [CrossRef] [Green Version]
- Sulimai, N.; Lominadze, D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol. Neurobiol. 2020, 57, 4692–4703. [Google Scholar] [CrossRef]
- Clark, V.D.; Layson, A.; Charkviani, M.; Muradashvili, N.; Lominadze, D. Hyperfibrinogenemia-mediated astrocyte activation. Brain Res. 2018, 1699, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Charkviani, M.; Muradashvili, N.; Sulimai, N.H.; Lominadze, D. Fibrinogen—Cellular Prion Protein Complex Formation on Astrocytes. J. Neurophysiol. 2020, 124, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Muradashvili, N.; Charkviani, M.; Sulimai, N.; Tyagi, N.; Crosby, J.; Lominadze, D. Effects of fibrinogen synthesis inhibition on vascular cognitive impairment during traumatic brain injury in mice. Brain Res. 2020, 1751, 147208. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Tang, G.; Ryan, T.J.; Malik, A.B. Fibrinogen degradation product fragment D induces endothelial cell detachment by activation of cell-mediated fibrinolysis. J. Clin. Investig. 1992, 90, 2508–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, S.L.; Oksenberg, J.R. The Neurobiology of Multiple Sclerosis: Genes, Inflammation, and Neurodegeneration. Neuron 2006, 52, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Miranda Acuña, J.; Hidalgo de la Cruz, M.; Ros, A.L.; Tapia, S.P.; Martínez Ginés, M.L.; de Andrés Frutos, C.D. Elevated plasma fibrinogen levels in multiple sclerosis patients during relapse. Mult. Scler. Relat. Disord. 2017, 18, 157–160. [Google Scholar] [CrossRef]
- Davalos, D.; Kyu Ryu, J.; Merlini, M.; Baeten, K.M.; Le Moan, N.; Petersen, M.A.; Deerinck, T.J.; Smirnoff, D.S.; Bedard, C.; Hakozaki, H.; et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 2012, 3, 1227. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.K.; Petersen, M.A.; Murray, S.G.; Baeten, K.M.; Meyer-Franke, A.; Chan, J.P.; Vagena, E.; Bedard, C.; Machado, M.R.; Rios Coronado, P.E.; et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat. Commun. 2015, 6, 8164. [Google Scholar] [CrossRef]
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic materials for wound healing applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef]
- Macrae, F.L.; Duval, C.; Papareddy, P.; Baker, S.R.; Yuldasheva, N.; Kearney, K.J.; McPherson, H.R.; Asquith, N.; Konings, J.; Casini, A.; et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J. Clin. Investig. 2018, 128, 3356–3368. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, B.; Egyud, L.G. Thiol-induced crosslinking of human blood proteins: Implications for tumor immunity. Bioorg. Med. Chem. Lett. 1992, 2, 919–924. [Google Scholar] [CrossRef]
- Lipinski, B.; Pretorius, E. Novel pathway of iron-induced blood coagulation: Implications for diabetes mellitus and its complications. Pol. Arch. Med. Wewn. 2012, 122, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, E.; Lipinski, B. The Role of Iron-Induced Fibrin in the Pathogenesis of Alzheimer’s Disease and the Protective Role of Magnesium. Front. Hum. Neurosci. 2013, 7, 735. [Google Scholar]
- Lipinski, B. Iron-induced parafibrin formation in tumors fosters immune evasion. Oncoimmunology 2014, 3, e28539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, S.; Shen, J.; Jiao, Y.; Liu, Y.; Zhang, C.; Wei, M.; Hao, S.; Zeng, X. Platelets and fibrinogen facilitate each other in protecting tumor cells from natural killer cytotoxicity. Cancer Sci. 2009, 100, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front. Immunol. 2022, 12, 785091. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sanmamed, M.F.; Datar, I.; Su, T.T.; Ji, L.; Sun, J.; Chen, L.; Chen, Y.; Zhu, G.; Yin, W.; et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 2019, 176, 334–347.e312. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-G.; Liu, Y.; Chen, F. Soluble fibrinogen like protein 2 (sFGL2), the novel effector molecule for immunoregulation. Oncotarget 2017, 8, 3711–3723. [Google Scholar] [CrossRef] [Green Version]
- Shalev, I.; Wong, K.M.; Foerster, K.; Zhu, Y.; Chan, C.; Maknojia, A.; Zhang, J.; Ma, X.-Z.; Yang, X.C.; Gao, J.F.; et al. The novel CD4+CD25+ regulatory T cell effector molecule fibrinogen-like protein 2 contributes to the outcome of murine fulminant viral hepatitis. Hepatology 2009, 49, 387–397. [Google Scholar] [CrossRef]
- Shalev, I.; Liu, H.; Koscik, C.; Bartczak, A.; Javadi, M.; Wong, K.M.; Maknojia, A.; He, W.; Liu, M.F.; Diao, J.; et al. Targeted deletion of fgl2 leads to impaired regulatory T cell activity and development of autoimmune glomerulonephritis. J. Immunol. 2008, 180, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.W.; Kay, L.S.; Khadaroo, R.G.; Chan, M.W.; Lakatoo, S.; Young, K.J.; Zhang, L.; Gorczynski, R.M.; Cattral, M.; Rotstein, O.; et al. Soluble fibrinogen-like protein 2/fibroleukin exhibits immunosuppressive properties: Suppressing T cell proliferation and inhibiting maturation of bone marrow-derived dendritic cells. J. Immunol. 2003, 170, 4036–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, L.M.; Hernandez, R.D.; Pacheco, N.L.; Torres Ceja, B.; Hossain, M.; Olsen, M.L. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. eLife 2019, 8, e44667. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.; Cordiglieri, C.; Melli, G.; Newcombe, J.; Krumbholz, M.; Parada, L.; Medico, E.; Hohlfeld, R.; Meinl, E.; Farina, C. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J. Exp. Med. 2012, 209, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Masamune, A.; Kikuta, K.; Watanabe, T.; Satoh, K.; Hirota, M.; Hamada, S.; Shimosegawa, T. Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut 2009, 58, 550. [Google Scholar] [CrossRef] [PubMed]
- Muradashvili, N.; Lominadze, D. Role of fibrinogen in cerebrovascular dysfunction after traumatic brain injury. Brain Inj. 2013, 27, 1508–1515. [Google Scholar] [CrossRef] [Green Version]
- Muradashvili, N.; Tyagi, S.C.; Lominadze, D. Role of Fibrinogen in Vascular Cognitive Impairment in Traumatic Brain Injury. In Traumatic Brain Injury; Gorbunov, N.V., Long, J.B., Eds.; IntechOpen: London, UK, 2018; pp. 105–119. [Google Scholar]
- Nonaka, M.; Chen, X.-H.; Pierce, J.E.S.; Leoni, M.J.; McIntosh, T.K.; Wolf, J.A.; Smith, D.H. Prolonged Activation of NF-κB Following Traumatic Brain Injury in Rats. J. Neurotrauma 1999, 16, 1023–1034. [Google Scholar] [CrossRef]
- Mitra, S.K.; Hanson, D.A.; Schlaepfer, D.D. Focal adhesion kinase: In command and control of cell motility. Nat. Rev. Mol. Cell Biol. 2005, 6, 56–68. [Google Scholar] [CrossRef]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. 2012, 34, 43–62. [Google Scholar] [CrossRef]
- Fiala, M.; Liu, Q.N.; Sayre, J.; Pop, V.; Brahmandam, V.; Graves, M.C.; Vinters, H.V. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur. J. Clin. Investig. 2002, 32, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhang, H.; Zhang, S.; Fan, X.; Liu, X. Plasma fibrinogen is associated with cognitive decline and risk for dementia in patients with mild cognitive impairment. Int. J. Clin. Pract. 2008, 62, 1070–1075. [Google Scholar] [CrossRef]
Protein/Chain | Disease | Protein Level or Condition | Role in Pathology and/or Outcome | References |
---|---|---|---|---|
Fg | Colon cancer | ↑ | Biomarker. Low survival. | [4] |
Fg | Gastric cancer | ↑ | Biomarker. ↑ lymph node and liver metastasis, ↓ clinical outcome. | [73] |
Fg | Cervical cancer | ↑ | Biomarker. Low survival. | [74] |
Fg | Renal cell carcinoma | ↑ | Biomarker. Low survival. | [75] |
Fg | Hepatocellular carcinoma | ↑ | Biomarker. Low survival. | [76] |
Fg and D-dimer | Breast cancer | ↑, ↑ | Biomarker. Accelerated tumor growth and low survival. | [81] |
Fg and D-dimer | DIC | ↓, ↑ | Biomarker. Low survival. | [57] |
Fg | RA | ↑ | Biomarker. Hypercoagulation and inflammation. | [6] |
Fg | SLE | ↑ | Biomarker. ↑ Atherothrombosis. | [7] |
Fg | TBI | ↑ | ↑ cerebrovascular permeability. | [11,96] |
Fg | TBI | ↑ | Extravascular deposition of Fg, ↑ neuronal death, ↓ STM. | [98] |
Fg | TBI | ↑ | ↑ extravascular formation of Fg/fibrin containing protein complexes. | [9,11,96] |
Fg | AD | ↑ | ↑ perivascular formation of Fg/fibrin containing protein complexes | [131] |
Fg | AD | ↑ | ↑ risk of AD and dementia | [8,132] |
Fg | COPD | ↑ | Biomarker. ↑ risk of death. | [65] |
FGA precursor protein | AD | ↑ in CSF | Biomarker. Mild cognitive impairment and dementia. | [66] |
FGA precursor protein | Liver cancer | ↑ in CSF | Biomarker. ↑ survival rate. | [78] |
FGA | Human lung adenocarcinoma | ↑ | Cell apoptosis, inhibits tumor growth and metastasis. | [79] |
FGB | Polymorphism of FGB promoter | ↑ | ↑ plasma Fg. ↑ risk of atherothrombosis. | [43,60] |
FGB | In patients undergoing coronary artery bypass grafting | FGB-C148T polymorphism | Results in preoperative HFg and postoperative ↑ CRP, ↑ IL-6. | [61] |
FGG | Hereditary hypofibrinogenemia with hepatic storage | Mutation location in exons 8 and 9 of the FGG gene | Protein aggregation in the endoplasmic reticulum, liver diseases of variable severity. | [49] |
FGL1 | Acute inflammation | ↑ | Acute phase reactant | [38,39] |
FGL1 | Cancer (in general) | ↑ | Immunosuppressor through binding to LAG3. Poor prognosis. | [118] |
FGL2 | HBV orHCV | ↑ | Correlates with viral loading, degree of liver inflammation and disease severity. | [40,87] |
FGL2 | HBV orHCV | ↑ | Immunosuppressive activities | [120] |
FGL2 | Autoimmune glomerulonephritis | ↓ | Autoimmune glomerulonephritis with age | [121] |
FpB | Inflammation | ↑ | ↑ chemotaxis of PMN and fibroblast. | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulimai, N.H.; Brown, J.; Lominadze, D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022, 10, 1712. https://doi.org/10.3390/biomedicines10071712
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines. 2022; 10(7):1712. https://doi.org/10.3390/biomedicines10071712
Chicago/Turabian StyleSulimai, Nurul H., Jason Brown, and David Lominadze. 2022. "Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects" Biomedicines 10, no. 7: 1712. https://doi.org/10.3390/biomedicines10071712
APA StyleSulimai, N. H., Brown, J., & Lominadze, D. (2022). Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines, 10(7), 1712. https://doi.org/10.3390/biomedicines10071712