Tumor Budding Is an Independent Prognostic Factor in Pancreatic Adenocarcinoma and It Positively Correlates with PD-L1 Expression on Tumor Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Histopathology and Immunohistochemistry
2.3. Statistics
3. Results
3.1. Characteristics of the Study Group
3.2. Expression of Immune Checkpoint Receptors in Pancreatic Cancer Cells and Immune Cells
3.3. Immune Checkpoint Receptors and Markers of Systemic Inflammation
3.4. Immune Checkpoint Receptors and Thrombosis
3.5. Immune Checkpoint Receptors and Budding
3.6. Univariate Survival Analysis
Immune Checkpoint Receptors
3.7. Other Analyzed Variables
3.8. Multivariate Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, T.; Hammel, P.; Hebbar, M.; Abdelghani, M.B.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. Bachet, FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Brehm, C.U.; Gress, T.M.; Buchholz, M.; Alhamwe, B.A.; von Strandmann, E.; Slater, E.P.; Bartsch, J.W.; Bauer, C.; Lauth, M. The Immune Microenvironment in Pancreatic Cancer. Int. J. Mol. Sci. 2020, 21, 7307. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Zhou, Y.; Zhang, M.; Chen, J.; Xiang, Y. VISTA expression is associated with a favorable prognosis in patients with high-grade serous ovarian cancer. Cancer Immunol. Immunother. 2020, 69, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Yu, P.-C.; Long, D.; Liao, X.-L.; Zhang, S.; You, X.-M.; Zhong, J.-H.; Li, L.-Q. Prognostic value of PD-L1 expression in patients with primary solid tumors. Oncotarget 2018, 9, 5058–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blando, J.; Sharma, A.; Higa, M.G.; Zhao, H.; Vence, L.; Yadav, S.S.; Kim, J.; Sepulveda, A.M.; Sharp, M.; Maitra, A.; et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 1692–1697. [Google Scholar] [CrossRef] [Green Version]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Wigginton, Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Xiong, G.; Cao, Z.; Yang, G.; Zheng, S.; Song, X.; You, L.; Zheng, L.; Zhang, T.; Zhao, Y. PD-1/PD-L1 and immunotherapy for pancreatic cancer. Cancer Lett. 2017, 407, 57–65. [Google Scholar] [CrossRef]
- Zlobec, I.; Berger, M.D.; Lugli, A. Tumour budding and its clinical implications in gastrointestinal cancers. Br. J. Cancer 2020, 123, 700–708. [Google Scholar] [CrossRef]
- Choi, J.U.; Lee, N.K.; Seo, H.; Chung, S.W.; Al-Hilal, T.A.; Park, S.J.; Kweon, S.; Min, N.; Kim, S.K.; Ahn, S.; et al. Anticoagulation therapy promotes the tumor immune-microenvironment and potentiates the efficacy of immunotherapy by alleviating hypoxia. J. Immunother. Cancer 2021, 9, e002332. [Google Scholar] [CrossRef]
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; el Zimaity, H.; Fléjou, J.-F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using “ggplot2”. R Package Version 0.4.8. Available online: https://Cran.r-Project.Org/Web/Packages/Survminer/ (accessed on 1 April 2022).
- Xiao, N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for “ggplot2”. R Packag. Version 2.7. Available online: https://cran.r-project.org/web/packages/ggsci/vignettes/ggsci.html (accessed on 1 April 2022).
- Pham, T.N.D.; Shields, M.A.; Spaulding, C.; Principe, D.R.; Li, B.; Underwood, P.W.; Trevino, J.G.; Bentrem, D.J.; Munshi, H.G. Preclinical Models of Pancreatic Ductal Adenocarcinoma and Their Utility in Immunotherapy Studies. Cancers 2021, 13, 440. [Google Scholar] [CrossRef]
- Luheshi, N.M.; Coates-Ulrichsen, J.; Harper, J.; Mullins, S.; Sulikowski, M.G.; Martin, P.; Brown, L.; Lewis, A.; Davies, G.; Morrow, M.; et al. Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model. Oncotarget 2016, 7, 18508–18520. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Li, J.; Wang, H.; Chiu, Y.; Kingsley, C.V.; Fry, D.; Delaney, S.N.; Wei, S.C.; Zhang, J.; Maitra, A.; et al. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer. Gastroenterology 2020, 159, 306–319.e12. [Google Scholar] [CrossRef]
- Padrón, L.J.; Maurer, D.M.; O’Hara, M.H.; O’Reilly, E.M.; Wolff, R.A.; Wainberg, Z.A.; Ko, A.H.; Fisher, G.; Rahma, O.; Lyman, J.P.; et al. Vonderheide, Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: Clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 2022, 28, 1167–1177. [Google Scholar] [CrossRef]
- Byers, J.T.; Paniccia, A.; Kaplan, J.; Koenig, M.; Kahn, N.; Wilson, L.; Chen, L.; Schulick, R.D.; Edil, B.H.; Zhu, Y. Expression of the Novel Costimulatory Molecule B7-H5 in Pancreatic Cancer. Ann. Surg. Oncol. 2015, 22, 1574–1579. [Google Scholar] [CrossRef]
- Yum, J.-E.I.; Hong, Y.-K. Terminating Cancer by Blocking VISTA as a Novel Immunotherapy: Hasta la vista, baby. Front. Oncol. 2021, 11, 658488. [Google Scholar] [CrossRef]
- Hou, Z.; Pan, Y.; Fei, Q.; Lin, Y.; Zhou, Y.; Liu, Y.; Guan, H.; Yu, X.; Lin, X.; Lu, F.; et al. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 517–531. [Google Scholar] [CrossRef]
- Lenzo, F.L.; Kato, S.; Pabla, S.; DePietro, P.; Nesline, M.K.; Conroy, J.M.; Burgher, B.; Glenn, S.T.; Kuvshinoff, B.; Kurzrock, R.; et al. Immune profiling and immunotherapeutic targets in pancreatic cancer. Ann. Transl. Med. 2021, 9, 119. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Chen, W.; Putra, J.; Suriawinata, A.A.; Schenk, A.D.; Miller, H.E.; Guleria, I.; Barth, R.J.; Huang, Y.H.; et al. Immune-Checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. USA 2015, 112, 6682–6687. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xie, X.; Xuan, C.; Li, T.; Wang, L.; Teng, L.; Liu, J. High-Density Infiltration of V-domain Immunoglobulin Suppressor of T-cell Activation Up-regulated Immune Cells in Human Pancreatic Cancer. Pancreas 2018, 47, 725–731. [Google Scholar] [CrossRef]
- Popp, F.; Capino, I.; Bartels, J.; Damanakis, A.; Li, J.; Datta, R.; Löser, H.; Zhao, Y.; Quaas, A.; Lohneis, P.; et al. Expression of Immune Checkpoint Regulators IDO, VISTA, LAG3, and TIM3 in Resected Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 2689. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Yan, Z.; Ma, J.; Zhu, F.; Huo, J. Prognostic value of PD-L1 expression in patients with pancreatic cancer. Medicine 2019, 98, e14006. [Google Scholar] [CrossRef]
- Thakur, N.; Paik, K.Y.; Hwang, G.; Chong, Y. High Expression of PD-L1 Is Associated with Better Survival in Pancreatic/Periampullary Cancers and Correlates with Epithelial to Mesenchymal Transition. Diagnostics 2021, 11, 597. [Google Scholar] [CrossRef]
- Karamitopoulou, E.; Andreou, A.; de Mortanges, A.P.; Tinguely, M.; Gloor, B.; Perren, A. PD-1/PD-L1–Associated Immunoarchitectural Patterns Stratify Pancreatic Cancer Patients into Prognostic/Predictive Subgroups. Cancer Immunol. Res. 2021, 9, 1439–1450. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhan, H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020, 468, 72–81. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, Y.; Li, J.; Zheng, X.; Zhou, Q.; Turner, A.; Wu, C.; Lu, B.; Jiang, J. PD-L1 Expression Promotes Epithelial to Mesenchymal Transition in Human Esophageal Cancer. Cell. Physiol. Biochem. 2017, 42, 2267–2280. [Google Scholar] [CrossRef] [Green Version]
- Sadozai, H.; Acharjee, A.; Gruber, T.; Gloor, B.; Karamitopoulou, E. Pancreatic Cancers with High Grade Tumor Budding Exhibit Hallmarks of Diminished Anti-Tumor Immunity. Cancers 2021, 13, 1090. [Google Scholar] [CrossRef]
- Guil-Luna, S.; Mena, R.; Navarrete-Sirvent, C.; López-Sánchez, L.M.; Khouadri, K.; Toledano-Fonseca, M.; Mantrana, A.; Guler, I.; Villar, C.; Díaz, C.; et al. Association of Tumor Budding With Immune Evasion Pathways in Primary Colorectal Cancer and Patient-Derived Xenografts. Front. Med. 2020, 7, 264. [Google Scholar] [CrossRef]
- Petrova, E.; Zielinski, V.; Bolm, L.; Schreiber, C.; Knief, J.; Thorns, C.; Bronsert, P.; Timme-Bronsert, S.; Bausch, D.; Perner, S.; et al. Tumor budding as a prognostic factor in pancreatic ductal adenocarcinoma. Virchows Arch. 2020, 476, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Chouat, E.; Zehani, A.; Chelly, I.; Njima, M.; Maghrebi, H.; Bani, M.A.; Njim, L.; Zakhama, A.; Haouet, S.; Kchir, N. Tumor budding is a prognostic factor linked to epithelial mesenchymal transition in pancreatic ductal adenocarcinoma. Study report and literature review. Pancreatology 2018, 18, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Karamitopoulou, E.; Zlobec, I.; Born, D.; Kondi-Pafiti, A.; Lykoudis, P.; Mellou, A.; Gennatas, K.; Gloor, B.; Lugli, A. Tumour budding is a strong and independent prognostic factor in pancreatic cancer. Eur. J. Cancer. 2013, 49, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Pęksa, R.; Kunc, M.; Popęda, M.; Piątek, M.; Bieńkowski, M.; Żok, J.; Starzyńska, A.; Perdyan, A.; Sowa, M.; Duchnowska, R.; et al. Combined Assessment of Immune Checkpoint Regulator VISTA on Tumor-Associated Immune Cells and Platelet-to-Lymphocyte Ratio Identifies Advanced Germ Cell Tumors with Higher Risk of Unfavorable Outcomes. Cancers 2021, 13, 1750. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Hu, T.; Wang, Y.; Wang, H.; Xu, L.; Cui, N. Neutrophil–Lymphocyte ratio (NLR) was associated with prognosis and immunomodulatory in patients with pancreatic ductal adenocarcinoma (PDAC). Biosci. Rep. 2020, 40, BSR20201190. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Bang, J.-H.; Nam, A.-R.; Park, J.E.; Jin, M.H.; Bang, Y.-J.; Oh, D.-Y. Prognostic implications of soluble programmed death-ligand 1 and its dynamics during chemotherapy in unresectable pancreatic cancer. Sci. Rep. 2019, 9, 11131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Re, M.; Vivaldi, C.; Rofi, E.; Salani, F.; Crucitta, S.; Catanese, S.; Fontanelli, L.; Massa, V.; Cucchiara, F.; Fornaro, L.; et al. Gemcitabine Plus Nab-Paclitaxel Induces PD-L1 mRNA Expression in Plasma-Derived Microvesicles in Pancreatic Cancer. Cancers 2021, 13, 3738. [Google Scholar] [CrossRef]
- Nukui, A.; Kamai, T.; Arai, K.; Kijima, T.; Kobayashi, M.; Narimatsu, T.; Kambara, T.; Yuki, H.; Betsunoh, H.; Abe, H.; et al. Association of cancer progression with elevated expression of programmed cell death protein 1 ligand 1 by upper tract urothelial carcinoma and increased tumor-infiltrating lymphocyte density. Cancer Immunol. Immunother. 2020, 69, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Petrova, M.P.; Eneva, M.I.; Arabadjiev, J.I.; Conev, N.V.; Dimitrova, E.G.; Koynov, K.D.; Karanikolova, T.S.; Valev, S.S.; Gencheva, R.B.; Zhbantov, G.A.; et al. Neutrophil to lymphocyte ratio as a potential predictive marker for treatment with pembrolizumab as a second line treatment in patients with non-small cell lung cancer. Biosci. Trends 2020, 14, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ertl, H.C.J. Starved and Asphyxiated: How Can CD8+ T Cells within a Tumor Microenvironment Prevent Tumor Progression. Front. Immunol. 2016, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Han, T.; Wang, Z.; Jiang, S. Role and mechanism of programmed death-ligand 1 in hypoxia-induced liver cancer immune escape (Review). Oncol. Lett. 2020, 19, 2595–2601. [Google Scholar] [CrossRef] [Green Version]
- Lequeux, A.; Noman, M.Z.; Xiao, M.; Sauvage, D.; van Moer, K.; Viry, E.; Bocci, I.; Hasmim, M.; Bosseler, M.; Berchem, G.; et al. Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Lett. 2019, 458, 13–20. [Google Scholar] [CrossRef]
- Doedens, A.L.; Phan, A.T.; Stradner, M.H.; Fujimoto, J.K.; Nguyen, J.V.; Yang, E.; Johnson, R.S.; Goldrath, A.W. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 2013, 14, 1173–1182. [Google Scholar] [CrossRef] [Green Version]
- Haist, M.; Stege, H.; Pemler, S.; Heinz, J.; Fleischer, M.I.; Graf, C.; Ruf, W.; Loquai, C.; Grabbe, S. Anticoagulation with Factor Xa Inhibitors Is Associated with Improved Overall Response and Progression-Free Survival in Patients with Metastatic Malignant Melanoma Receiving Immune Checkpoint Inhibitors—A Retrospective, Real-World Cohort Study. Cancers 2021, 13, 5103. [Google Scholar] [CrossRef]
Feature | N | % | |
---|---|---|---|
Sex | Male | 51 | 48% |
Female | 56 | 52% | |
Tumor location | Head | 89 | 83% |
Corpus/Tail | 15 | 14% | |
Other | 3 | 3% | |
Grade (WHO) | 1 | 16 | 15% |
2 | 44 | 41% | |
3 | 47 | 44% | |
pT | 1 | 10 | 9% |
2 | 59 | 55% | |
3 | 37 | 35% | |
4 | 1 | 1% | |
pN | 0 | 23 | 21% |
1 | 49 | 46% | |
2 | 35 | 33% | |
R | 0 | 49 | 46% |
1 | 43 | 40% | |
2 | 15 | 14% | |
PNI | 0 | 8 | 7% |
1 | 99 | 93% | |
LVI | 0 | 14 | 13% |
1 | 93 | 87% | |
Death | 0 | 14 | 13% |
1 | 93 | 87% |
Marker | Median | IQR | |
---|---|---|---|
Prior to sugery | NLR | 2.49 | 1.86–3.81 |
PLR | 155 | 124–229 | |
MLR | 0.33 | 0.23–0.47 | |
After surgery | NLR | 11.7 | 7.66–18.54 |
PLR | 241 | 149–351 | |
MLR | 0.65 | 0.36–0.71 | |
Ratio prior/after | NLR | 0.24 | 0.15–0.40 |
PLR | 0.76 | 0.55–1.06 | |
MLR | 0.63 | 0.42–0.97 |
Thrombosis | PD-L1 on TAICs | p | PD-L1 on TCs | p | |||
---|---|---|---|---|---|---|---|
Low | High | Low | High | ||||
Tumor | 0 | 20 (33) | 25 (53) | 0.039 | 27 (41) | 18 (44) | 0.760 |
1 | 40 (67) | 22 (47) | 39 (59) | 23 (56) | |||
Periphery | 0 | 35 (58) | 35 (74) | 0.082 | 43 (65) | 27 (66) | 0.941 |
1 | 25 (42) | 12 (26) | 23 (35) | 14 (34) | |||
Any | 0 | 6 (10) | 20 (43) | <0.001 | 15 (23) | 11 (27) | 0.630 |
1 | 54 (90) | 27 (57) | 51 (77) | 30 (73) |
Feature | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
T | 0.989 | 0.64–1.52 | 0.958 | |||
N | 1.33 | 0.80–2.22 | 0.261 | |||
N ratio | 1.79 | 1.06–3.03 | 0.028 | |||
Stage | 1.09 | 0.70–1.71 | 0.688 | |||
Grade | 1.65 | 1.09–2.50 | 0.017 | |||
Buds (≤5 vs. >5) | 2.87 | 1.75–4.68 | <0.001 | 2.87 | 1.75–4.68 | <0.001 |
NLR | 1.97 | 0.94–4.10 | 0.071 | |||
PLR | 1.82 | 1.14–2.92 | 0.011 | |||
MLR | 2.42 | 1.35–4.33 | 0.002 | |||
PD-L1 on TAICs | 0.56 | 0.37–0.85 | 0.007 | |||
PD-L1 on TCs | 1.53 | 1.01–2.33 | 0.042 | |||
VISTA on TAICs | 0.51 | 0.33–0.81 | 0.004 | |||
Tumor thrombosis | 1.08 | 0.71–1.63 | 0.710 | |||
Peripheral thrombosis | 0.96 | 0.63–1.49 | 0.883 | |||
Any thrombosis | 0.77 | 0.47–1.26 | 0.307 |
Features | |||||||
---|---|---|---|---|---|---|---|
Budding | |||||||
PD-L1 on TCs | PD-L1 on TCs | ||||||
PD-L1 on TAICs | PD-L1 on TAICs | ||||||
VISTA on TAICs | VISTA on TAICs | ||||||
PLR | PLR | ||||||
MLR | MLR | ||||||
Tumor thrombosis | Tumor thrombosis | ||||||
Overall survival |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pęksa, R.; Kunc, M.; Czapiewski, P.; Piątek, M.; Hać, S.; Radecka, B.; Biernat, W. Tumor Budding Is an Independent Prognostic Factor in Pancreatic Adenocarcinoma and It Positively Correlates with PD-L1 Expression on Tumor Cells. Biomedicines 2022, 10, 1761. https://doi.org/10.3390/biomedicines10071761
Pęksa R, Kunc M, Czapiewski P, Piątek M, Hać S, Radecka B, Biernat W. Tumor Budding Is an Independent Prognostic Factor in Pancreatic Adenocarcinoma and It Positively Correlates with PD-L1 Expression on Tumor Cells. Biomedicines. 2022; 10(7):1761. https://doi.org/10.3390/biomedicines10071761
Chicago/Turabian StylePęksa, Rafał, Michał Kunc, Piotr Czapiewski, Michał Piątek, Stanisław Hać, Barbara Radecka, and Wojciech Biernat. 2022. "Tumor Budding Is an Independent Prognostic Factor in Pancreatic Adenocarcinoma and It Positively Correlates with PD-L1 Expression on Tumor Cells" Biomedicines 10, no. 7: 1761. https://doi.org/10.3390/biomedicines10071761
APA StylePęksa, R., Kunc, M., Czapiewski, P., Piątek, M., Hać, S., Radecka, B., & Biernat, W. (2022). Tumor Budding Is an Independent Prognostic Factor in Pancreatic Adenocarcinoma and It Positively Correlates with PD-L1 Expression on Tumor Cells. Biomedicines, 10(7), 1761. https://doi.org/10.3390/biomedicines10071761