Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Tissue Collection
2.2. Sample Preparation
2.3. LC–MS/MS Analysis
2.4. Data Analysis and Retrieval of Differentially Expressed Proteins
2.5. Gene Ontology and Pathway Analysis
2.6. Histological Analysis
3. Results
3.1. Mitochondrial Functionality Is Progressively Affected by L-NAME
3.2. Two Weeks of L-NAME Treatment Implicates Altered G-Protein-Coupled-Receptor Signaling in the Nerve Synapse and Associated Presence of Seizures and Altered Emotional Behavior
3.3. Eight Weeks of L-NAME Treatment Is Associated with Cerebral Actin Depolymerization
3.4. Sixteen Weeks of L-NAME Treatment Is Associated with Ribosomal Dysfunction and Tauopathy
3.5. Histopathological Analysis Reveals an Increased Presence of Neuronal Intracytoplasmic Inclusions after Sixteen Weeks of L-NAME Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Uniprot ID | Protein ID | Protein Name | Log Fold Change | PAdj |
P10637 | Mapt | Microtubule-associated protein tau | −0.481 | 0.000184 |
Q6IRU5 | Cltb | Clathrin light chain B | −0.365 | 0.000381 |
Q3TFQ1 | Spryd7 | SPRY domain-containing protein 7 | −1.94 | 0.000381 |
Q9Z1P6 | Ndufa7 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 | −0.565 | 0.000381 |
Q61033 | Tmpo | Lamina-associated polypeptide 2, isoforms beta/delta/epsilon/gamma | −1.29 | 0.00106 |
P33173 | Kif1a | Kinesin-like protein KIF1A | −0.449 | 0.00259 |
Q8JZU2 | Slc25a1 | Tricarboxylate transport protein, mitochondrial | −1.51 | 0.00289 |
P63213 | Gng2 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 | −0.482 | 0.00423 |
P56393 | Cox7b | Cytochrome c oxidase subunit 7B, mitochondrial | −1.06 | 0.00423 |
P07356 | Anxa2 | Annexin A2 | 0.694 | 0.00429 |
Q8VDM4 | Psmd2 | 26S proteasome non-ATPase regulatory subunit 2 | −0.521 | 0.00439 |
P15327 | Bpgm | Bisphosphoglycerate mutase | 3.63 | 0.00439 |
Q60870 | Reep5 | Receptor expression-enhancing protein 5 | −1.33 | 0.00537 |
Q6NS82 | Retreg2 | Reticulophagy regulator 2 | −0.698 | 0.00642 |
P15209 | Ntrk2 | BDNF/NT-3 growth factors receptor | −0.552 | 0.00661 |
P22315 | Fech | Ferrochelatase, mitochondrial | 1.25 | 0.00661 |
Q8BFU3 | Rnf214 | RING finger protein 214 | −1.28 | 0.00661 |
Q99MN9 | Pccb | Propionyl-CoA carboxylase beta chain, mitochondrial | −0.526 | 0.00661 |
P04444 | Hbb-bh1 | Hemoglobin subunit beta-H1 | −1.16 | 0.00671 |
Q61548 | Snap91 | Clathrin coat assembly protein AP180 | −0.434 | 0.00671 |
Q62418 | Dbnl | Drebrin-like protein | −0.436 | 0.00682 |
Q99LT0 | Dpy30 | Protein dpy-30 homolog | −0.565 | 0.00682 |
Q8R191 | Syngr3 | Synaptogyrin-3 | −0.877 | 0.00722 |
P62242 | Rps8 | 40S ribosomal protein S8 | −0.506 | 0.00722 |
P55821 | Stmn2 | Stathmin-2 | −0.829 | 0.00888 |
Q9ERE7 | Mesd | LRP chaperone MESD | −0.627 | 0.00928 |
Q8BJU0 | Sgta | Small glutamine-rich tetratricopeptide repeat-containing protein alpha | −0.53 | 0.00977 |
Q9JKV1 | Adrm1 | Proteasomal ubiquitin receptor ADRM1 | −1.03 | 0.0102 |
Q922J3 | Clip1 | CAP-Gly domain-containing linker protein 1 | −1.31 | 0.0123 |
P48678 | Lmna | Prelamin-A/C | −0.507 | 0.0124 |
Q6ZQ58 | Larp1 | La-related protein 1 | −1.45 | 0.013 |
P21279 | Gnaq | Guanine nucleotide-binding protein G(q) subunit alpha | −0.43 | 0.013 |
Q8C5R8 | Prps1l1 | Ribose-phosphate diphosphokinase | −1.15 | 0.013 |
Q8VD37 | Sgip1 | SH3-containing GRB2-like protein 3-interacting protein 1 | −0.41 | 0.013 |
Q8BSZ2 | Ap3s2 | AP-3 complex subunit sigma-2 | −0.939 | 0.013 |
Q9D1J3 | Sarnp | SAP domain-containing ribonucleoprotein | −0.921 | 0.013 |
Q8C854 | Myef2 | Myelin expression factor 2 | −0.636 | 0.013 |
Q9WUM4 | Coro1c | Coronin-1C | −0.383 | 0.0131 |
P62267 | Rps23 | 40S ribosomal protein S23 | −2.34 | 0.0138 |
P61089 | Ube2n | Ubiquitin-conjugating enzyme E2 N | −0.461 | 0.0138 |
Q9QUR8 | Sema7a | Semaphorin-7A | −1.96 | 0.0147 |
P11983 | Tcp1 | T-complex protein 1 subunit alpha | −0.319 | 0.0163 |
Q3V3R1 | Mthfd1l | Monofunctional C1-tetrahydrofolate synthase, mitochondrial | −0.435 | 0.0163 |
P26645 | Marcks | Myristoylated alanine-rich C-kinase substrate | −0.596 | 0.0165 |
Q9D883 | U2af1 | Splicing factor U2AF 26 kDa subunit | −0.851 | 0.0173 |
O88485 | Dync1i1 | Cytoplasmic dynein 1 intermediate chain 1 | −0.675 | 0.0179 |
Q9CY58 | Serbp1 | Plasminogen activator inhibitor 1 RNA-binding protein | −0.785 | 0.0179 |
Q9Z2W9 | Gria3 | Glutamate receptor 3 | −0.809 | 0.0179 |
P61027 | Rab10 | Ras-related protein Rab-10 | −0.458 | 0.0179 |
Q8CCT4 | Tceal5 | Transcription elongation factor A protein-like 5 | −0.761 | 0.0179 |
Q9JKS5 | Habp4 | Intracellular hyaluronan-binding protein 4 | −2.23 | 0.0179 |
Q9Z2D6 | Mecp2 | Methyl-CpG-binding protein 2 | −0.618 | 0.0179 |
Q8VHW2 | Cacng8 | Voltage-dependent calcium channel gamma-8 subunit | −1.85 | 0.0189 |
O89086 | Rbm3 | RNA-binding protein 3 | −0.591 | 0.0191 |
P27661 | H2ax | Histone H2AX | −0.859 | 0.02 |
Q9QYX7 | Pclo | Protein piccolo | −0.591 | 0.0203 |
O09117 | Sypl1 | Synaptophysin-like protein 1 | −0.807 | 0.0226 |
Q9DAK9 | Phpt1 | 14 kDa phosphohistidine phosphatase | −0.747 | 0.023 |
Q91XV3 | Basp1 | Brain acid soluble protein 1 | −0.591 | 0.0232 |
Q9Z2X1 | Hnrnpf | Heterogeneous nuclear ribonucleoprotein F | −0.972 | 0.0232 |
Q9EPN1 | Nbea | Neurobeachin | −1 | 0.0232 |
Q99KB8 | Hagh | Hydroxyacylglutathione hydrolase, mitochondrial | −0.79 | 0.0232 |
Q8BLK3 | Lsamp | Limbic system-associated membrane protein | −0.447 | 0.0232 |
Q91VR8 | Brk1 | Protein BRICK1 | −0.636 | 0.0232 |
P11438 | Lamp1 | Lysosome-associated membrane glycoprotein 1 | −2.77 | 0.0232 |
P63030 | Mpc1 | Mitochondrial pyruvate carrier 1 | 0.583 | 0.0232 |
Q8BGU5 | Ccny | Cyclin-Y | −1.66 | 0.0232 |
Q8R5C5 | Actr1b | Beta-centractin | −0.567 | 0.0232 |
Q9CXY6 | Ilf2 | Interleukin enhancer-binding factor 2 | −0.553 | 0.0232 |
F8VQC1 | Srp72 | Signal recognition particle subunit SRP72 | −1.29 | 0.0232 |
O88384 | Vti1b | Vesicle transport through interaction with t-SNAREs homolog 1B | −1.05 | 0.0237 |
Q6PFD5 | Dlgap3 | Disks large-associated protein 3 | −0.663 | 0.024 |
Q6ZWU9 | Rps27 | Ubiquitin-40S ribosomal protein S27a | −0.748 | 0.0245 |
F6ZDS4 | Tpr | Nucleoprotein TPR | −0.979 | 0.0253 |
Q9WUM3 | Coro1b | Coronin-1B | −0.43 | 0.0253 |
Q9CPT4 | Mydgf | Myeloid-derived growth factor | −1.1 | 0.0255 |
Q8BGY7 | Fam210a | Protein FAM210A | −0.831 | 0.0261 |
Q9CR00 | Psmd9 | 26S proteasome non-ATPase regulatory subunit 9 | −0.754 | 0.0261 |
Q9D7H3 | RtcA | RNA 3′-terminal phosphate cyclase | −0.973 | 0.0261 |
P61294 | Rab6b | Ras-related protein Rab-6B | −1.08 | 0.0267 |
Q9CZM2 | Rpl15 | 60S ribosomal protein L15 | −0.517 | 0.028 |
P62082 | Rps7 | 40S ribosomal protein S7 | −0.621 | 0.029 |
Q80T41 | Gabbr2 | Gamma-aminobutyric acid type B receptor subunit 2 | −0.738 | 0.0298 |
Q6PH08 | Erc2 | ERC protein 2 | −0.73 | 0.0298 |
P06837 | Gap43 | Neuromodulin | −0.683 | 0.0316 |
Q3UGC7 | Eif3j1 | Eukaryotic translation initiation factor 3 subunit J-A | −0.633 | 0.0316 |
P56382 | Atp5f1e | ATP synthase subunit epsilon, mitochondrial | −0.57 | 0.0344 |
Q8VEK0 | Tmem30a | Cell cycle control protein 50A | −0.599 | 0.0365 |
O55022 | Pgrmc1 | Membrane-associated progesterone receptor component 1 | −0.401 | 0.0379 |
Q9CR51 | Atp6v1g1 | V-type proton ATPase subunit G 1 | −0.707 | 0.0379 |
P61021 | Rab5b | Ras-related protein Rab-5B | −0.71 | 0.0379 |
P48453 | Ppp3cb | Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform | −0.57 | 0.0379 |
Q8BIG7 | Comtd1 | Catechol O-methyltransferase domain-containing protein 1 | −0.846 | 0.0392 |
Q80UP3 | Dgkz | Diacylglycerol kinase zeta | −1.7 | 0.0393 |
Q8BSL7 | Arf2 | ADP-ribosylation factor-like protein 2-binding protein | −0.953 | 0.0393 |
P62073 | Timm10 | Mitochondrial import inner membrane translocase subunit Tim10 | −0.789 | 0.0401 |
P83882 | Rpl36a | 60S ribosomal protein L36a | −1.05 | 0.0401 |
P70175 | Dlg3 | Disks large homolog 3 | −0.62 | 0.0406 |
O88533 | Ddc | Aromatic-L-amino-acid decarboxylase | −1.15 | 0.0431 |
Q5SVL6 | Rap1gap2 | Rap1 GTPase-activating protein 2 | −1.14 | 0.0431 |
Q61792 | Lasp1 | LIM and SH3 domain protein 1 | −0.772 | 0.0438 |
P61514 | Rpl37a | 60S ribosomal protein L37a | −1.52 | 0.0454 |
P28667 | Marcksl1 | MARCKS-related protein | −0.745 | 0.0454 |
Q3UHB8 | Ccdc177 | Coiled-coil domain-containing protein 177 | −1.31 | 0.0454 |
Q8BTM8 | Flna | Filamin-A | −0.876 | 0.0454 |
P13707 | Gpd1 | Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic | −0.529 | 0.0454 |
Q6ZWY8 | Tmsb10 | Thymosin beta-10 | −2.83 | 0.0454 |
Q61699 | Hsph1 | Heat shock protein 105 kDa | −0.333 | 0.0454 |
P62918 | Rpl8 | 60S ribosomal protein L8 | −0.457 | 0.0454 |
Q8BMG7 | Rab3gap2 | Rab3 GTPase-activating protein non-catalytic subunit | −1.59 | 0.0455 |
Q5XJY5 | Arcn1 | Coatomer subunit delta | −0.864 | 0.0455 |
Q9ERR1 | Ndel1 | Nuclear distribution protein nudE-like 1 | −1.32 | 0.0463 |
Q9QZD9 | Eif3i | Eukaryotic translation initiation factor 3 subunit I | −0.682 | 0.0465 |
O70492 | Snx3 | Sorting nexin-3 | −0.575 | 0.0465 |
P61222 | Abce1 | ATP-binding cassette sub-family E member 1 | −0.705 | 0.0478 |
O55091 | Impact | Protein IMPACT | −0.575 | 0.0481 |
P15532 | Nme1 | Nucleoside diphosphate kinase A | −0.62 | 0.0481 |
O70456 | Sfn | 14-3-3 protein sigma | −1.02 | 0.0481 |
B0V2N1 | Ptprs | Receptor-type tyrosine-protein phosphatase S | −0.667 | 0.0497 |
Q9WV55 | Vapa | Vesicle-associated membrane protein-associated protein A | −0.631 | 0.0497 |
References
- Lamattina, L.; García-Mata, C.; Graziano, M.; Pagnussat, G. Nitric Oxide: The Versatility of an Extensive Signal Molecule. Annu. Rev. Plant Biol. 2003, 54, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Kartawy, M.; Amal, H. The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol. 2020, 34, 101567. [Google Scholar] [CrossRef] [PubMed]
- Doherty, G.H. Nitric oxide in neurodegeneration: Potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 2011, 27, 366–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, M.C.; Soong, T.W. Nitric Oxide, Iron and Neurodegeneration. Front. Neurosci. 2019, 13, 114. [Google Scholar] [CrossRef] [Green Version]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris, C.; Papageorgiou, N.; Stefanadis, C. The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef]
- Bauer, V.; Sotníková, R. Nitric oxide—The endothelium-derived relaxing factor and its role in endothelial functions. Gen. Physiol. Biophys. 2010, 29, 319–340. [Google Scholar] [CrossRef]
- Roselló-Lletí, E.; Carnicer, R.; Tarazón, E.; Ortega, A.; Gil-Cayuela, C.; Lago, F.; González-Juanatey, J.R.; Portolés, M.; Rivera, M. Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance. Sci. Rep. 2016, 6, 24060. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, R.M.; Minhas, K.M.; Raju, S.V.; Barouch, L.A.; Pitz, E.; Schuleri, K.H.; Vandegaer, K.; Li, D.; Hare, J.M. Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: Role of nitroso-redox equilibrium. Circulation 2005, 112, 3415–3422. [Google Scholar] [CrossRef] [Green Version]
- Dawson, D.; Lygate, C.A.; Zhang, M.-H.; Hulbert, K.; Neubauer, S.; Casadei, B. nNOS Gene Deletion Exacerbates Pathological Left Ventricular Remodeling and Functional Deterioration After Myocardial Infarction. Circulation 2005, 112, 3729–3737. [Google Scholar] [CrossRef] [Green Version]
- Dixit, R. Nitric Oxide Synthase Promoter Variant in Coronary Artery Disease. Am. Hear. J. 2021, 242, 149. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, B.; Du, L.; Guo, Y. Nitric oxide donor andrographolide enhances humoral and cell-mediated immune responses. Cell. Mol. Biol. 2020, 66, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Sherikar, A.; Dhavale, R.; Bhatia, M. Investigation of anti-inflammatory, nitric oxide donating, vasorelaxation and ulcerogenic activities of 1, 3-diphenylprop-2-en-1-one derivatives in animal models. Clin. Exp. Pharmacol. Physiol. 2019, 46, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Sakuma, K.; Komatsu, T.; Cao, X.; Aimoto, M.; Nagasawa, Y.; Shimizu, K.; Takahashi, M.; Hori, Y.; Shirai, K.; et al. Physiological role of nitric oxide for regulation of arterial stiffness in anesthetized rabbits. J. Pharmacol. Sci. 2019, 139, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, M.; Simonet, S.; Ragonnet, C.; Sansilvestri-Morel, P.; Clavreul, N.; Vayssettes-Courchay, C.; Verbeuren, T.J. Chronic Reduction of Nitric Oxide Level in Adult Spontaneously Hypertensive Rats Induces Aortic Stiffness Similar to Old Spontaneously Hypertensive Rats. J. Vasc. Res. 2012, 49, 309–318. [Google Scholar] [CrossRef]
- Stefano, G.B.; Esch, T.; Ptacek, R.; Kream, R.M. Dysregulation of Nitric Oxide Signaling in Microglia: Multiple Points of Functional Convergence in the Complex Pathophysiology of Alzheimer Disease. Med. Sci. Monit. 2020, 26, e927739-1–e927739-4. [Google Scholar] [CrossRef] [PubMed]
- Gulati, K.; Ray, A. Alzheimer’s Disease: A Contextual Link with Nitric Oxide Synthase. Curr. Mol. Med. 2020, 20, 505–515. [Google Scholar] [CrossRef]
- Iulita, M.F.; Noriega de la Colina, A.; Girouard, H. Arterial stiffness, cognitive impairment and dementia: Confounding factor or real risk? J. Neurochem. 2018, 144, 527–548. [Google Scholar] [CrossRef] [Green Version]
- van Sloten, T.T.; Protogerou, A.D.; Henry, R.M.; Schram, M.T.; Launer, L.J.; Stehouwer, C.D. Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2015, 53, 121–130. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.F.; Safar, M.E. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005, 46, 200–204. [Google Scholar] [CrossRef]
- Hendrickx, J.O.; Martinet, W.; Van Dam, D.; De Meyer, G.R.Y. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer’s Disease. Front. Mol. Biosci. 2021, 8, 185. [Google Scholar] [CrossRef]
- Hendrickx, J.O.; De Moudt, S.; Calus, E.; De Deyn, P.P.; Van Dam, D.; De Meyer, G.R.Y. Long-Term Pharmacological Inhibition of the Activity of All NOS Isoforms Rather Than Genetic Knock-Out of Endothelial NOS Leads to Impaired Spatial Learning and Memory in C57BL/6 Mice. Biomedicines 2021, 9, 1905. [Google Scholar] [CrossRef] [PubMed]
- Nagano, K.; Ishida, J.; Unno, M.; Matsukura, T.; Fukamizu, A. Apelin elevates blood pressure in ICR mice with L-NAME-induced endothelial dysfunction. Mol. Med. Rep. 2013, 7, 1371–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, O.; Tsutsui, M.; Morishita, T.; Tanimoto, A.; Horiuchi, M.; Tasaki, H.; Huang, P.L.; Sasaguri, Y.; Yanagihara, N.; Nakashima, Y. Long-term treatment with Nω-nitro-L-arginine methyl ester causes arteriosclerotic coronary lesions in endothelial nitric oxide synthase-deficient mice. Circulation 2002, 106, 1729–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. The ARRIVE Guidelines: Animal Research: Reporting In Vivo Experiments. ReqartoCom. 2010. Available online: https://www.elsevier.com/__data/promis_misc/622936arrive_guidelines.pdf (accessed on 5 June 2022).
- Underwood, W.; Anthony, R.; Cartner, S.; Corey, D.; Grandin, T.; Greenacre, C.; Gwaltney-Brant, S.; McCrackin, M.A.; Meyer, R.; Miller, D.; et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2013; Volume 30, p. 2020-01. [Google Scholar]
- Chiva, C.; Olivella, R.; Borràs, E.; Espadas, G.; Pastor, O.; Solé, A.; Sabidó, E. QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories. PLoS ONE 2018, 13, e0189209. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M. The KEGG database. Novartis Found. Symp. 2002, 247, 91–101. [Google Scholar]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef]
- Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al. WikiPathways: A multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 2018, 46, D661–D667. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uniprot. UniProtKB—Q6ZWY8 (TYB10_MOUSE). Available online: https://www.uniprot.org/uniprot/Q6ZWY8 (accessed on 4 December 2021).
- Catania, E.H.; Pimenta, A.; Levitt, P. Genetic deletion of Lsamp causes exaggerated behavioral activation in novel environments. Behav. Brain Res. 2008, 188, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Goeminne, L.E.; Gevaert, K.; Clement, L. Peptide-level robust ridge regression improves estimation, sensitivity, and specificity in data-dependent quantitative label-free shotgun proteomics. Mol. Cell. Proteom. 2016, 15, 657–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeminne, L.J.E.; Sticker, A.; Martens, L.; Gevaert, K.; Clement, L. MSqRob Takes the Missing Hurdle: Uniting Intensity- and Count-Based Proteomics. Anal. Chem. 2020, 92, 6278–6287. [Google Scholar] [CrossRef] [PubMed]
- Sticker, A.; Goeminne, L.; Martens, L.; Clement, L. Robust Summarization and Inference in Proteome-wide Label-free Quantification. Mol. Cell. Proteom. 2020, 19, 1209–1219. [Google Scholar] [CrossRef] [Green Version]
- Habekost, M.; Qvist, P.; Denham, M.; Holm, I.E.; Jørgensen, A.L. Directly Reprogrammed Neurons Express MAPT and APP Splice Variants Pertinent to Ageing and Neurodegeneration. Mol. Neurobiol. 2021, 58, 2075–2087. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Shiva, S.; Brookes, P.S.; Patel, R.P.; Anderson, P.G.; Darley-Usmar, V.M. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2001, 98, 7212–7217. [Google Scholar] [CrossRef] [Green Version]
- Bolaños, J.P.; Almeida, A.; Stewart, V.; Peuchen, S.; Land, J.M.; Clark, J.B.; Heales, S.J. Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem. 1997, 68, 2227–2240. [Google Scholar] [CrossRef]
- Almeida, A.; Bolaños, J.P. A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J. Neurochem. 2001, 77, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Laranjinha, J.; Nunes, C.; Ledo, A.; Lourenço, C.; Rocha, B.; Barbosa, R.M. The Peculiar Facets of Nitric Oxide as a Cellular Messenger: From Disease-Associated Signaling to the Regulation of Brain Bioenergetics and Neurovascular Coupling. Neurochem. Res. 2021, 46, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Innos, J.; Koido, K.; Philips, M.-A.; Vasar, E. Limbic system associated membrane protein as a potential target for neuropsychiatric disorders. Front. Pharmacol. 2013, 4, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Zhang, W.; Rondard, P.; Pin, J.-P.; Liu, J. Complex GABAB receptor complexes: How to generate multiple functionally distinct units from a single receptor. Front. Pharmacol. 2014, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular structure and physiological functions of GABAB receptors. Physiol. Rev. 2004, 84, 835–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, F.H.; Jones, K.A.; Kaupmann, K.; Bettler, B. GABAB receptors—The first 7TM heterodimers. Trends Pharmacol. Sci. 1999, 20, 396–399. [Google Scholar] [CrossRef]
- Jayakumar, A.; Sujatha, R.; Paul, V.; Asokan, C.; Govindasamy, S. Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in rat brain cerebral cortex. Brain Res. 1999, 837, 229–235. [Google Scholar] [CrossRef]
- Treiman, D.M. GABAergic Mechanisms in Epilepsy. Epilepsia 2001, 42, 8–12. [Google Scholar] [CrossRef]
- Vlachou, S. GABAB Receptors and Cognitive Processing in Health and Disease. In Behavioral Neurobiology of GABAB Receptor Function; Springer: Berlin/Heidelberg, Germany, 2021; pp. 291–329. [Google Scholar]
- Neumann, A.; Küçükali, F.; Bos, I.; Vos, S.J.; Engelborghs, S.; De Pooter, T.; Joris, G.; De Rijk, P.; De Roeck, E.; Tsolaki, M.; et al. Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer’s disease CSF profile of neuronal injury and inflammation. Mol. Psychiatry 2022, 27, 1990–1999. [Google Scholar] [CrossRef]
- Williams, C.A. The behavioral phenotype of the Angelman syndrome. Am. J. Med. Genet. C 2010, 154C, 432–437. [Google Scholar] [CrossRef]
- Judson, M.C.; Wallace, M.; Sidorov, M.S.; Burette, A.C.; Gu, B.; van Woerden, G.M.; King, I.; Han, J.E.; Zylka, M.J.; Elgersma, Y.; et al. GABAergic Neuron-Specific Loss of Ube3a Causes Angelman Syndrome-Like EEG Abnormalities and Enhances Seizure Susceptibility. Neuron 2016, 90, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Thibert, R.L.; Larson, A.M.; Hsieh, D.T.; Raby, A.R.; Thiele, E.A. Neurologic Manifestations of Angelman Syndrome. Pediatr. Neurol. 2013, 48, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Stryker, M.P. Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc. Natl. Acad. Sci. USA 2010, 107, 5611–5616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.; Burette, A.C.; Weinberg, R.; Philpot, B.D. Maternal Loss of Ube3a Produces an Excitatory/Inhibitory Imbalance through Neuron Type-Specific Synaptic Defects. Neuron 2012, 74, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Condon, K.H.; Ho, J.; Robinson, C.; Hanus, C.; Ehlers, M.D. The Angelman Syndrome Protein Ube3a/E6AP Is Required for Golgi Acidification and Surface Protein Sialylation. J. Neurosci. 2013, 33, 3799–3814. [Google Scholar] [CrossRef] [Green Version]
- Schnaar, R.L.; Gerardy-Schahn, R.; Hildebrandt, H. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiol. Rev. 2014, 94, 461–518. [Google Scholar] [CrossRef] [Green Version]
- Bucher, M.; Fanutza, T.; Mikhaylova, M. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton 2020, 77, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.-H.; Xu, L.; Rensing, N.R.; Sinatra, P.M.; Rothman, S.M.; Wong, M. Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J. Neurosci. 2007, 27, 11604–11613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-F.; Xiong, T.-Q.; Tan, B.-H.; Song, Y.; Li, S.-L.; Yang, L.-B.; Li, Y.-C. Pilocarpine-induced epilepsy is associated with actin cytoskeleton reorganization in the mossy fiber-CA3 synapses. Epilepsy Res. 2014, 108, 379–389. [Google Scholar] [CrossRef]
- Yang, N.; Li, Y.-C.; Xiong, T.-Q.; Chen, L.-M.; Zhai, Y.; Liang, J.-M.; Hao, Y.-P.; Ma, D.-H.; Zhang, Y.-F. Dexamethasone ameliorates the damage of hippocampal filamentous actin cytoskeleton but is not sufficient to cease epileptogenesis in pilocarpine induced epileptic mice. Epilepsy Res. 2019, 154, 26–33. [Google Scholar] [CrossRef]
- Fu, H.; Subramanian, R.R.; Masters, S.C. 14-3-3 proteins: Structure, function, and regulation. Ann. Rev. Pharmacol. Toxicol. 2000, 40, 617–647. [Google Scholar] [CrossRef]
- Iqbal, K.; Liu, F.; Gong, C.-X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol. 2016, 12, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-W.; Shao, E.; Mucke, L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021, 371, eabb8255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, F.; Wang, D.; Li, C.; Fu, Y.; He, W.; Zhang, J. Tau pathology in Parkinson’s disease. Front. Neurol. 2018, 9, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, S.A.; Katusic, Z.S. Loss of Endothelial Nitric Oxide Synthase Promotes p25 Generation and Tau Phosphorylation in a Murine Model of Alzheimer’s Disease. Circ. Res. 2016, 119, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Colton, C.A.; Vitek, M.P.; Wink, D.A.; Xu, Q.; Cantillana, V.; Previti, M.L.; Van Nostrand, W.E.; Weinberg, J.B.; Dawson, H. NO synthase 2 (NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2006, 103, 12867–12872. [Google Scholar] [CrossRef] [Green Version]
- Puvenna, V.; Engeler, M.; Banjara, M.; Brennan, C.; Schreiber, P.; Dadas, A.; Bahrami, A.; Solanki, J.; Bandyopadhyay, A.; Morris, J.K.; et al. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016, 1630, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shen, Y.; Shultz, S.R.; Nguyen, A.; Hovens, C.; Adlard, P.A.; Bush, A.I.; Chan, J.; Kwan, P.; O’Brien, T.J.; et al. Accelerated kindling epileptogenesis in Tg4510 tau transgenic mice, but not in tau knockout mice. Epilepsia 2017, 58, e136–e141. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-J.; Zheng, P.; Wright, D.; Dezsi, G.; Braine, E.; Nguyen, T.; Corcoran, N.M.; Johnston, L.A.; Hovens, C.; Mayo, J.N.; et al. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 2016, 139, 1919–1938. [Google Scholar] [CrossRef] [Green Version]
- Devos, S.L.; Goncharoff, D.K.; Chen, G.; Kebodeaux, C.S.; Yamada, K.; Stewart, F.R.; Schuler, D.R.; Maloney, S.E.; Wozniak, D.F.; Rigo, F.; et al. Antisense Reduction of Tau in Adult Mice Protects against Seizures. J. Neurosci. 2013, 33, 12887–12897. [Google Scholar] [CrossRef] [Green Version]
- Holth, J.K.; Bomben, V.C.; Reed, J.G.; Inoue, T.; Younkin, L.; Younkin, S.G.; Pautler, R.G.; Botas, J.; Noebels, J.L. Tau Loss Attenuates Neuronal Network Hyperexcitability in Mouse and Drosophila Genetic Models of Epilepsy. J. Neurosci. 2013, 33, 1651–1659. [Google Scholar] [CrossRef]
- Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The Importance of Tau Phosphorylation for Neurodegenerative Diseases. Front. Neurol. 2013, 4, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimojo, M.; Takuwa, H.; Takado, Y.; Tokunaga, M.; Tsukamoto, S.; Minatohara, K.; Ono, M.; Seki, C.; Maeda, J.; Urushihata, T.; et al. Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model. J. Neurosci. 2020, 40, 3491–3501. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Markesbery, W.R.; Chen, Q.; Li, F.; Keller, J.N. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci. 2005, 25, 9171–9175. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.A.; Hamm, M.J.; Meier, S.E.; Weiss, B.E.; Nation, G.K.; Chishti, E.A.; Arango, J.P.; Chen, J.; Zhu, H.; Blalock, E.M.; et al. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol. 2019, 137, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.; Radford, H.; Peretti, D.; Steinert, J.R.; Verity, N.; Martin, M.G.; Halliday, M.; Morgan, J.; Dinsdale, D.; Ortori, C.A.; et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 2012, 485, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Ash, P.E.; Vanderweyde, T.E.; Youmans, K.L.; Apicco, D.; Wolozin, B. Pathological stress granules in Alzheimer’s disease. Brain Res. 2014, 1584, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Abisambra, J.F.; Jinwal, U.K.; Blair, L.J.; O’Leary, J.C.; Li, Q.; Brady, S.; Wang, L.; Guidi, C.E.; Zhang, B.; Nordhues, B.A.; et al. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation. J. Neurosci. 2013, 33, 9498–9507. [Google Scholar] [CrossRef] [Green Version]
- Meier, S.; Bell, M.; Lyons, D.N.; Rodriguez-Rivera, J.; Ingram, A.; Fontaine, S.N.; Mechas, E.; Chen, J.; Wolozin, B.; LeVine, H.; et al. Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis. J. Neurosci. 2016, 36, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Fulga, T.A.; Elson-Schwab, I.; Khurana, V.; Steinhilb, M.L.; Spires-Jones, T.; Hyman, B.T.; Feany, M. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 2007, 9, 139–148. [Google Scholar] [CrossRef]
- Montaser, A.B.; Järvinen, J.; Löffler, S.; Huttunen, J.; Auriola, S.; Lehtonen, M.; Jalkanen, A.; Huttunen, K.M. L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood–Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chem. Neurosci. 2020, 11, 4301–4315. [Google Scholar] [CrossRef]
- Majzúnová, M.; Pakanová, Z.; Kvasnička, P.; Bališ, P.; Čačányiová, S.; Dovinová, I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J. Biomed. Sci. 2017, 24, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, S.; Leopold, E.; Schmidt, K.; Brunner, F.; Mayer, B. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): Requirement for bioactivation to the free acid, NG-nitro-L-arginine. Br. J. Pharmacol. 1996, 118, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Reif, D.; McCreedy, S. N-Nitro-L-arginine and N-Monomethyl-L-arginine Exhibit a Different Pattern of Inactivation Toward the Three Nitric Oxide Synthases. Arch. Biochem. Biophys. 1995, 320, 170–176. [Google Scholar] [CrossRef] [PubMed]
Uniprot ID | Protein ID | Protein Name | PAdj |
---|---|---|---|
P62073 | Timm10 | Mitochondrial import inner membrane translocase subunit Tim10 | 0.00328269 |
Q6ZWY8 | Tmsb10 | Thymosin beta-10 | 0.03230452 |
Q8BLK3 | Lsamp | Limbic system-associated membrane protein | 0.03230452 |
Uniprot ID | Protein ID | Protein Name | Log Fold Change | PAdj |
---|---|---|---|---|
O08759 | Ube3a | Ubiquitin-protein ligase E3A | −3.67 | 0.0013 |
Q9WV18 | Gabbr1 | Gamma-aminobutyric acid type B receptor subunit 1 | 1.19 | 0.00919 |
E9QAM5 | Helz2 | Helicase with zinc finger domain 2 | −2.11 | 0.00979 |
P53996 | Cnbp | CCHC-type zinc finger nucleic acid binding protein | −3.19 | 0.0182 |
Q91WK2 | Eif3h | Eukaryotic translation initiation factor 3 subunit H | 4.62 | 0.0266 |
O35737 | Hnrnph1 | Heterogeneous nuclear ribonucleoprotein H | 0.833 | 0.0266 |
P16858 | Gapdh | Glyceraldehyde-3-phosphate dehydrogenase | 0.961 | 0.0333 |
Q9DBL1 | Acadsb | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial | 0.916 | 0.0333 |
P60710 | Actb | Actin, cytoplasmic 1 | 0.907 | 0.0394 |
Name | Adjusted p-Value | |
---|---|---|
1 | absence seizures (MP:0003216) | 0.001854 |
2 | audiogenic seizures (MP:0001496) | 0.001854 |
3 | abnormal emotion/affect behavior (MP:0002572) | 0.003941 |
4 | abnormal liver size (MP:0004848) | 0.02861 |
5 | decreased prostate gland weight (MP:0004962) | 0.02861 |
6 | increased circulating prolactin level (MP:0005124) | 0.02861 |
7 | abnormal inhibitory postsynaptic potential (MP:0002911) | 0.02861 |
8 | decreased embryonic neuroepithelial cell proliferation (MP:0012706) | 0.02861 |
9 | abnormal cephalic neural fold morphology (MP:0011259) | 0.02861 |
10 | abnormal gas homeostasis (MP:0003948) | 0.02861 |
Uniprot ID | Protein ID | Protein Name | Log Fold Change | PAdj |
---|---|---|---|---|
Q6ZWY8 | Tmsb10 | Thymosin beta-10 | 2.70 | 0.00294 |
Name | PAdj | |
---|---|---|
1 | abnormal synaptic vesicle number MP:0004792 | 0.00006251 |
2 | abnormal axon extension MP:0003651 | 0.0006462 |
3 | decreased body weight MP:0001262 | 0.001084 |
4 | abnormal miniature excitatory postsynaptic currents MP:0004753 | 0.005056 |
5 | abnormal synapse morphology MP:0009538 | 0.005056 |
6 | abnormal neurotransmitter level MP:0002204 | 0.005056 |
7 | hyperactivity MP:0001399 | 0.01120 |
8 | abnormal innervation MP:0002184 | 0.03494 |
9 | abnormal barrel cortex morphology MP:0003989 | 0.04765 |
10 | abnormal hippocampus physiology MP:0012006 | 0.04765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendrickx, J.O.; Adams, C.; Sieben, A.; Laukens, K.; Van Dam, D.; De Meyer, G.R.Y. Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022, 10, 1772. https://doi.org/10.3390/biomedicines10081772
Hendrickx JO, Adams C, Sieben A, Laukens K, Van Dam D, De Meyer GRY. Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines. 2022; 10(8):1772. https://doi.org/10.3390/biomedicines10081772
Chicago/Turabian StyleHendrickx, Jhana O., Charlotte Adams, Anne Sieben, Kris Laukens, Debby Van Dam, and Guido R. Y. De Meyer. 2022. "Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy" Biomedicines 10, no. 8: 1772. https://doi.org/10.3390/biomedicines10081772
APA StyleHendrickx, J. O., Adams, C., Sieben, A., Laukens, K., Van Dam, D., & De Meyer, G. R. Y. (2022). Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines, 10(8), 1772. https://doi.org/10.3390/biomedicines10081772