Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Drug Treatment
2.3. Shock and Situational Reminders
2.4. Behavioral Testing
2.5. Acoustic Startle Response (ASR)
2.6. Social Preference and Social Recognition
2.7. Water T-Maze (WTM)
2.8. Forced Swim Test (FST)
2.9. Saccharin Preference Test
2.10. Western Blotting (WB)
2.11. Viral-Mediated Gene Transfer
2.12. Perfusion and Immunohistochemistry (IHC)
- Perfusion:
- GFP detection:
2.13. Experimental Design
2.14. Statistical Analysis
3. Results
3.1. Experiment 1: The Effects of URB597 on Behavior and the Expression of β-Catenin in Rats Exposed to Shock and Reminders
3.1.1. Freezing
3.1.2. Saccharin Preference
3.1.3. Acoustic Startle Response
3.1.4. Social Tests
3.1.5. Water T-Maze
3.1.6. Forced Swim Test
3.1.7. β-Catenin
3.1.8. Correlation between β-Catenin Levels and Behavior
3.2. Experiment 2: The Preventing Effects of URB597 on Behavior of Rats Exposed to Shock and Reminders Are Mediated by CB1 Receptors
3.2.1. Freezing
3.2.2. Saccharin Preference
3.2.3. Acoustic Startle Response
3.2.4. Social Tests
3.2.5. Water T-Maze
3.2.6. Forced Swim Test
3.3. Experiment 3: The Effects of NAc β-Catenin Overexpression on Behavior in Rats Exposed to Shock and Reminders
3.3.1. Verifying β-Catenin Overexpression and Accuracy of Injection
3.3.2. Freezing
3.3.3. Saccharin Preference
3.3.4. Acoustic Startle Response
3.3.5. Social Tests
3.3.6. Water T-Maze
3.3.7. Forced Swim Test
3.4. β-Catenin, mGluR5, and CB1 Receptors Regulation by Overexpressing NAc β-Catenin in Rats Exposed to Shock and Reminders
3.4.1. β-Catenin
3.4.2. mGluR5
3.4.3. CB1
3.5. Experiment 4: The Effects of NAc β-Catenin Downregulation on Behavior of Rats Exposed to Shock and Reminders and Treated with URB597
3.5.1. Verifying β-Catenin Downregulation
3.5.2. Freezing
3.5.3. Saccharin Preference
3.5.4. Acoustic Startle Response
3.5.5. Social Tests
3.5.6. Water T-Maze
3.5.7. Forced Swim Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kessler, R.C.; Sonnega, A.; Bromet, E.; Hughes, M.; Nelson, C.B. Posttraumatic Stress Disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 1995, 52, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Trezza, V.; Campolongo, P. Modeling specific phobias and posttraumatic stress disorder in rodents: The chal-lenge to convey both cognitive and emotional features. Rev. Neurosci. 2012, 23, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Burstein, O.; Shoshan, N.; Doron, R.; Akirav, I. Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Fidelman, S.; Zer-Aviv, T.M.; Lange, R.; Hillard, C.J.; Akirav, I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur. Neuropsychopharmacol. 2018, 28, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.A. The Use of a Synthetic Cannabinoid in the Management of Treatment-Resistant Nightmares in Posttraumatic Stress Disorder (PTSD). CNS Neurosci. Ther. 2009, 15, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.N.; Campolongo, P.; Yehuda, R.; Patel, S. Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2017, 43, 80–102. [Google Scholar] [CrossRef] [Green Version]
- Korem, N.; Akirav, I. Cannabinoids Prevent the Effects of a Footshock Followed by Situational Reminders on Emotional Processing. Neuropsychopharmacology 2014, 39, 2709–2722. [Google Scholar] [CrossRef] [Green Version]
- Lutz, B. The Endocannabinoid System and Extinction Learning. Mol. Neurobiol. 2007, 36, 92–101. [Google Scholar] [CrossRef]
- Morena, M.; Patel, S.; Bains, J.; Hill, M.N. Neurobiological Interactions between Stress and the Endocannabinoid System. Neuropsychopharmacology 2015, 41, 80–102. [Google Scholar] [CrossRef] [Green Version]
- Neumeister, A. The endocannabinoid system provides an avenue for evidence-based treatment development for ptsd. Depress Anxiety 2013, 30, 93–96. [Google Scholar] [CrossRef]
- Patel, S.; Hill, M.N.; Cheer, J.; Wotjak, C.T.; Holmes, A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev. 2017, 76, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Roitman, P.; Mechoulam, R.; Cooper-Kazaz, R.; Shalev, A. Preliminary, open-label, pilot study of add-on oral Δ9-tetrahydrocannabinol in chronic post-traumatic stress disorder. Clin. Drug Investig. 2014, 34, 587–591. [Google Scholar] [CrossRef]
- Sbarski, B.; Akirav, I. Cannabinoids as therapeutics for PTSD. Pharmacol. Ther. 2020, 211, 107551. [Google Scholar] [CrossRef]
- Shoshan, N.; Segev, A.; Abush, H.; Zer-Aviv, T.M.; Akirav, I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017, 27, 1093–1109. [Google Scholar] [CrossRef]
- Trezza, V.; Campolongo, P. The endocannabinoid system as a possible target to treat both the cognitive and emotional features of post-traumatic stress disorder (PTSD). Front. Behav. Neurosci. 2013, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Korem, N.; Zer-Aviv, T.M.; Abush, H.; Lange, R.; Sauber, G.; Hillard, C.J.; Akirav, I. Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology 2018, 43, 2017–2027. [Google Scholar] [CrossRef] [Green Version]
- Shoshan, N.; Akirav, I. The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event. Neurobiol. Learn. Mem. 2017, 144, 248–258. [Google Scholar] [CrossRef]
- Piomelli, D.; Tarzia, G.; Duranti, A.; Tontini, A.; Mor, M.; Compton, T.R.; Dasse, O.; Monaghan, E.P.; Parrott, J.A.; Putman, D. Pharmacological Profile of the Selective FAAH Inhibitor KDS-4103 (URB597). CNS Drug Rev. 2006, 12, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Van Esbroeck, A.C.; Janssen, A.P.; Cognetta, A.B.; Ogasawara, D.; Shpak, G.; Van Der Kroeg, M.; Kantae, V.; Baggelaar, M.P.; De Vrij, F.M.; Deng, H. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 2017, 356, 1084–1087. [Google Scholar] [CrossRef] [Green Version]
- Gould, T.D.; O’Donnell, K.C.; Picchini, A.M.; Dow, E.R.; Chen, G.; Manji, H.K. Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice. Behav. Brain Res. 2008, 189, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Maguschak, K.A.; Ressler, K.J. β-catenin is required for memory consolidation. Nat. Neurosci. 2008, 11, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, C.; Feng, J.; Sun, H.; Mazei-Robison, M.S.; Damez-Werno, D.; Scobie, K.; Bagot, R.; LaBonté, B.; Ribeiro, E.; Liu, X.; et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature 2014, 516, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, M.B.; Dias, C.; Magida, J.; Mazei-Robison, M.; Lobo, M.; Kennedy, P.; Dietz, D.; Covington, H.; Russo, S.; Neve, R. A novel role of the WNT-dishevelled-GSK3β signaling cascade in the mouse nucleus accumbens in a social defeat model of de-pression. J. Neurosci. 2011, 31, 9084–9092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlhoff, M.; Siegmund, A.; Golub, Y.; Wolf, E.; Holsboer, F.; Wotjak, C.T. AKT/GSK-3β/β-catenin signalling within hippo-campus and amygdala reflects genetically determined differences in posttraumatic stress disorder like symptoms. Neuroscience 2010, 169, 1216–1226. [Google Scholar] [CrossRef]
- Fujio, J.; Hosono, H.; Ishiguro, K.; Ikegami, S.; Fujita, S.C. Tau phosphorylation in the mouse brain during aversive conditioning. Neurochem. Int. 2007, 51, 200–208. [Google Scholar] [CrossRef]
- Korem, N.; Lange, R.; Hillard, C.J.; Akirav, I. Role of beta-catenin and endocannabinoids in the nucleus accumbens in extinction in rats exposed to shock and reminders. Neuroscience 2017, 357, 285–294. [Google Scholar] [CrossRef]
- Cuesta, S.; Funes, A.; Pacchioni, A.M. Social Isolation in Male Rats During Adolescence Inhibits the Wnt/β-Catenin Pathway in the Prefrontal Cortex and Enhances Anxiety and Cocaine-Induced Plasticity in Adulthood. Neurosci. Bull. 2020, 36, 611–624. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Habib, M.Z.; Ebeid, M.A.; Abdelraouf, S.M.; el Faramawy, Y.; Aboul-Fotouh, S.; Magdy, Y. Amisulpride alleviates chronic mild stress-induced cognitive deficits: Role of prefrontal cortex microglia and Wnt/β-catenin pathway. Eur. J. Pharmacol. 2020, 885, 173411. [Google Scholar] [CrossRef]
- de Souza, J.M.; Abd-Elrahman, K.S.; Ribeiro, F.M.; Ferguson, S.S. mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington’s disease. Mol. Brain 2020, 13, 118. [Google Scholar] [CrossRef]
- Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glu-tamate receptors: From the workbench to the bedside. Neuropharmacology 2011, 60, 1017–1041. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhou, Q.; Li, L.; Mao, R.; Wang, M.; Peng, W.; Dong, Z.; Xu, L.; Cao, J. Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus 2005, 15, 815–824. [Google Scholar] [CrossRef]
- Tatarczyńska, E.; Kłodzińska, A.; Chojnacka-Wójcik, E.; Pałucha, A.; Gasparini, F.; Kuhn, R.; Pilc, A. Potential anxiolyt-ic-and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br. J. Pharmacol. 2001, 132, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhu, Y.; Contractor, A.; Heinemann, S.F. mGluR5 Has a Critical Role in Inhibitory Learning. J. Neurosci. 2009, 29, 3676–3684. [Google Scholar] [CrossRef]
- Deschwanden, A.; Karolewicz, B.; Feyissa, A.M.; Treyer, V.; Ametamey, S.M.; Johayem, A.; Burger, C.; Auberson, Y.P.; Sovago, J.; Stockmeier, C.A.; et al. Reduced Metabotropic Glutamate Receptor 5 Density in Major Depression Determined by [11C]ABP688 PET and Postmortem Study. Am. J. Psychiatry 2011, 168, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kwon, O.; Kang, J.I.; Kwon, S.; Oh, S.; Choi, J.; Kim, C.H.; Kim, D.G. mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat. Neurosci. 2015, 18, 1017–1024. [Google Scholar] [CrossRef]
- Xu, X.; Wu, K.; Ma, X.; Wang, W.; Wang, H.; Huang, M.; Luo, L.; Su, C.; Yuan, T.; Shi, H.; et al. mGluR5-Mediated eCB Signaling in the Nucleus Accumbens Controls Vulnerability to Depressive-Like Behaviors and Pain after Chronic Social Defeat Stress. Mol. Neurobiol. 2021, 58, 4944–4958. [Google Scholar] [CrossRef]
- Alteba, S.; Portugalov, A.; Hillard, C.J.; Akirav, I. Inhibition of Fatty Acid Amide Hydrolase (FAAH) during Adolescence and Exposure to Early Life Stress may Exacerbate Depression-like Behaviors in Male and Female Rats. Neuroscience 2021, 455, 89–106. [Google Scholar] [CrossRef]
- Akirav, I.; Segev, A.; Motanis, H.; Maroun, M. D-Cycloserine into the BLA Reverses the Impairing Effects of Exposure to Stress on the Extinction of Contextual Fear, but Not Conditioned Taste Aversion. Learn. Mem. 2009, 16, 682–686. [Google Scholar]
- Fanselow, M.S. Conditional and unconditional components of post-shock freezing. Pavlov. J. Biol. Sci. 1980, 15, 177–182. [Google Scholar] [CrossRef]
- Maymon, N.; Zer-Aviv, T.M.; Sabban, E.L.; Akirav, I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology 2019, 162, 107804. [Google Scholar] [CrossRef]
- Bauminger, H.; Zaidan, H.; Akirav, I.; Gaisler-Salomon, I. Anandamide Hydrolysis Inhibition Reverses the Long-Term Behavioral and Gene Expression Alterations Induced by MK-801 in Male Rats: Differential CB1 and CB2 Receptor-Mediated Effects. Schizophr. Bull. 2022; Online ahead of print. [Google Scholar]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The Forced Swim Test as a Model of Depressive-like Behavior. J. Vis. Exp. 2015, 2, e52587. [Google Scholar] [CrossRef]
- Abush, H.; Akirav, I. Cannabinoids Ameliorate Impairments Induced by Chronic Stress to Synaptic Plasticity and Short-Term Memory. Neuropsychopharmacology 2013, 38, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Rubin, A.S.; Abush, H.; Richter-Levin, G.; Akirav, I. Cannabinoid Receptor Activation Prevents the Effects of Chronic Mild Stress on Emotional Learning and LTP in a Rat Model of Depression. Neuropsychopharmacology 2013, 39, 919–933. [Google Scholar] [CrossRef]
- Kim, H.-D.; Hesterman, J.; Call, T.; Magazu, S.; Keeley, E.; Armenta, K.; Kronman, H.; Neve, R.L.; Nestler, E.J.; Ferguson, D. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens. J. Neurosci. 2016, 36, 8441–8452. [Google Scholar] [CrossRef]
- Neve, R.L.; Neve, K.A.; Nestler, E.J.; Carlezon, W.A., Jr. Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 2005, 39, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-J.; Martin, J.A.; Mueller, L.E.; Caccamise, A.; Werner, C.T.; Neve, R.L.; Gancarz, A.M.; Li, J.-X.; Dietz, D.M. BRG1 in the Nucleus Accumbens Regulates Cocaine-Seeking Behavior. Biol. Psychiatry 2016, 80, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Gage, G.J.; Kipke, D.R.; Shain, W. Whole Animal Perfusion Fixation for Rodents. J. Vis. Exp. 2012, e3564. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.; Garro-Martínez, E.; Díaz, Á.; Castro, E.; Florensa-Zanuy, E.; Taketo, M.M.; Pazos, Á.; Pilar-Cuéllar, F. Targeting β-catenin in GLAST-expressing cells: Impact on anxiety and depression-related behavior and hippocampal proliferation. Mol. Neurobiol. 2019, 56, 553–566. [Google Scholar] [CrossRef]
- Holmes, S.E.; Girgenti, M.J.; Davis, M.T.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Southwick, S.; Duman, R.S.; Carson, R.E.; et al. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc. Natl. Acad. Sci. USA 2017, 114, 8390–8395. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tan, Q.; Dang, W.; Wang, H.; Zhang, R.; Li, Z.; Lin, H.; Liu, R. The effect of citalopram on chronic stress-induced depressive-like behavior in rats through GSK3β/β-catenin activation in the medial prefrontal cortex. Brain Res. Bull. 2012, 88, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gould, T.D.; Einat, H.; Bhat, R.; Manji, H.K. AR-A014418, a Selective GSK-3 Inhibitor, Produces Antidepressant-like Effects in the Forced Swim Test. Int. J. Neuropsychopharmacol. 2004, 7, 387–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, C.H.; Soga, T.; Parhar, I.S. Brain Beta-Catenin Signalling during Stress and Depression. Neurosignals 2018, 26, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Karege, F.; Perroud, N.; Burkhardt, S.; Fernandez, R.; Ballmann, E.; La Harpe, R.; Malafosse, A. Protein levels of β-catenin and activation state of glycogen synthase kinase-3β in major depression. A study with postmortem prefrontal cortex. J. Affect. Dis-Ord. 2012, 136, 185–188. [Google Scholar] [CrossRef]
- Trazzi, S.; Steger, M.; Mitrugno, V.M.; Bartesaghi, R.; Ciani, E. CB1 cannabinoid receptors increase neuronal precursor pro-liferation through AKT/glycogen synthase kinase-3β/β-catenin signaling. J. Biol. Chem. 2010, 285, 10098–10109. [Google Scholar] [CrossRef] [Green Version]
- Vidal, R.; Pilar-Cuellar, F.; Dos Anjos, S.; Linge, R.; Treceno, B.; Vargas, V.I.; Rodriguez-Gaztelumendi, A.; Mostany, R.; Castro, E.; Diaz, A.; et al. New Strategies in the Development of Antidepressants: Towards the Modulation of Neuroplasticity Pathways. Curr. Pharm. Des. 2011, 17, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Nestler, E.J. Role of the brain’s reward circuitry in depression: Transcriptional mechanisms. Int. Rev. Neu-Robiol. 2015, 124, 151–170. [Google Scholar]
- Di Marzo, V.; De Petrocellis, L. Why do cannabinoid receptors have more than one endogenous ligand? Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3216–3228. [Google Scholar] [CrossRef] [Green Version]
- Garro-Martínez, E.; Vidal, R.; Adell, A.; Díaz, Á.; Castro, E.; Amigó, J.; Gutiérrez-Lanza, R.; Florensa-Zanuy, E.; Gómez-Acero, L.; Taketo, M.M. β-Catenin Role in the Vulnerability/Resilience to Stress-Related Disorders Is Associated to Changes in the Serotonergic System. Mol. Neurobiol. 2020, 57, 1704–1715. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrachi Zer-Aviv, T.; Islami, L.; Hamilton, P.J.; Parise, E.M.; Nestler, E.J.; Sbarski, B.; Akirav, I. Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats. Biomedicines 2022, 10, 1789. https://doi.org/10.3390/biomedicines10081789
Mizrachi Zer-Aviv T, Islami L, Hamilton PJ, Parise EM, Nestler EJ, Sbarski B, Akirav I. Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats. Biomedicines. 2022; 10(8):1789. https://doi.org/10.3390/biomedicines10081789
Chicago/Turabian StyleMizrachi Zer-Aviv, Tomer, Larglinda Islami, Peter J. Hamilton, Eric M. Parise, Eric J. Nestler, Brenda Sbarski, and Irit Akirav. 2022. "Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats" Biomedicines 10, no. 8: 1789. https://doi.org/10.3390/biomedicines10081789
APA StyleMizrachi Zer-Aviv, T., Islami, L., Hamilton, P. J., Parise, E. M., Nestler, E. J., Sbarski, B., & Akirav, I. (2022). Enhancing Endocannabinoid Signaling via β-Catenin in the Nucleus Accumbens Attenuates PTSD- and Depression-like Behavior of Male Rats. Biomedicines, 10(8), 1789. https://doi.org/10.3390/biomedicines10081789