Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Measurement of Circulating sF11R, ANXA5 and Total NO
2.3. Quantification of Vascular Changes
2.4. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Characteristics of the Study Population
3.2. Correlations between Plasma sF11R, ANXA5 and Other Clinical Variables
3.3. Linear Regression Analysis between Plasma sF11R, ANXA5, and Vascular Outcomes
3.4. Multiple Linear Regression Analyses between Circulating sF11R and ANXA5
3.5. Multiple Linear Regression Analyses According to Quartiles of Plasma sF11R and ANXA5
3.6. Effects of Medication Use on the Association between sF11R and ANXA5
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, R.; Jia, Y.; Chen, M.; Shuai, Z. Effects of Exenatide on Coagulation and Platelet Aggregation in Patients with Type 2 Diabetes. Drug Des. Devel. Ther. 2021, 15, 3027–3040. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Weber, N.C.; Cohn, D.M.; Hollmann, M.W.; DeVries, J.H.; Hermanides, J.; Preckel, B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J. Clin. Med. 2021, 10, 2419. [Google Scholar] [CrossRef] [PubMed]
- Bryk-Wiazania, A.H.; Undas, A. Hypofibrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc. Diabetol. 2021, 20, 191. [Google Scholar] [CrossRef]
- Kang, M.G.; Koo, B.K.; Tantry, U.S.; Kim, K.; Ahn, J.H.; Park, H.W.; Park, J.R.; Hwang, S.J.; Hwang, J.Y.; Gurbel, P.A.; et al. Association Between Thrombogenicity Indices and Coronary Microvascular Dysfunction in Patients With Acute Myocardial Infarction. JACC Basic Transl. Sci. 2021, 6, 749–761. [Google Scholar] [CrossRef]
- Kim, H.K.; Tantry, U.S.; Smith, S.C., Jr.; Jeong, M.H.; Park, S.J.; Kim, M.H.; Lim, D.S.; Shin, E.S.; Park, D.W.; Huo, Y.; et al. The East Asian Paradox: An Updated Position Statement on the Challenges to the Current Antithrombotic Strategy in Patients with Cardiovascular Disease. Thromb. Haemost. 2021, 121, 422–432. [Google Scholar] [CrossRef]
- Zakai, N.A.; McClure, L.A.; Judd, S.E.; Safford, M.M.; Folsom, A.R.; Lutsey, P.L.; Cushman, M. Racial and regional differences in venous thromboembolism in the United States in 3 cohorts. Circulation 2014, 129, 1502–1509. [Google Scholar] [CrossRef] [Green Version]
- Frydman, G.H.; Boyer, E.W.; Nazarian, R.M.; Van Cott, E.M.; Piazza, G. Coagulation Status and Venous Thromboembolism Risk in African Americans: A Potential Risk Factor in COVID-19. Clin. Appl. Thromb. Hemost. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Tessari, P.; Cecchet, D.; Cosma, A.; Vettore, M.; Coracina, A.; Millioni, R.; Iori, E.; Puricelli, L.; Avogaro, A.; Vedovato, M. Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes 2010, 59, 2152–2159. [Google Scholar] [CrossRef] [Green Version]
- Bertoluci, M.C.; Ce, G.V.; da Silva, A.M.; Wainstein, M.V.; Boff, W.; Punales, M. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes. World J. Diabetes 2015, 6, 679–692. [Google Scholar] [CrossRef]
- Assmann, T.S.; Brondani, L.A.; Boucas, A.P.; Rheinheimer, J.; de Souza, B.M.; Canani, L.H.; Bauer, A.C.; Crispim, D. Nitric oxide levels in patients with diabetes mellitus: A systematic review and meta-analysis. Nitric Oxide 2016, 61, 1–9. [Google Scholar] [CrossRef]
- Ozcelik, O.; Algul, S. Nitric oxide levels in response to the patients with different stage of diabetes. Cell Mol. Biol. 2017, 63, 49–52. [Google Scholar] [CrossRef]
- Moore, C.; Tymvios, C.; Emerson, M. Functional regulation of vascular and platelet activity during thrombosis by nitric oxide and endothelial nitric oxide synthase. Thromb. Haemost. 2010, 104, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Freedman, J.E.; Loscalzo, J. Nitric oxide and its relationship to thrombotic disorders. J. Thromb. Haemost. 2003, 1, 1183–1188. [Google Scholar] [CrossRef]
- Babinska, A.; Kedees, M.H.; Athar, H.; Ahmed, T.; Batuman, O.; Ehrlich, Y.H.; Hussain, M.M.; Kornecki, E. F11-receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: Role in inflammatory thrombosis. Thromb. Haemost. 2002, 88, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Babinska, A.; Kedees, M.H.; Athar, H.; Sobocki, T.; Sobocka, M.B.; Ahmed, T.; Ehrlich, Y.H.; Hussain, M.M.; Kornecki, E. Two regions of the human platelet F11-receptor (F11R) are critical for platelet aggregation, potentiation and adhesion. Thromb. Haemost. 2002, 87, 712–721. [Google Scholar] [CrossRef]
- Azari, B.M.; Marmur, J.D.; Salifu, M.O.; Ehrlich, Y.H.; Kornecki, E.; Babinska, A. Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines. J. Transl. Med. 2011, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Salifu, M.O.; Kolff, Q.; Murty, P.; Haria, D.M.; Zimpa, M.; Shakeel, M.; Lee, H.; Kornecki, E.; Babinska, A. Relationship between the soluble F11 receptor and markers of inflammation in hemodialysis patients. J. Investig. Med. 2007, 55, 115–119. [Google Scholar] [CrossRef]
- Ong, K.L.; Leung, R.Y.; Babinska, A.; Salifu, M.O.; Ehrlich, Y.H.; Kornecki, E.; Wong, L.Y.; Tso, A.W.; Cherny, S.S.; Sham, P.C.; et al. Elevated plasma level of soluble F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) in hypertension. Am. J. Hypertens. 2009, 22, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, A.; Frostegard, J. Annexin A5 multitasking: A potentially novel antiatherothrombotic agent? Drug News Perspect. 2007, 20, 321–326. [Google Scholar] [CrossRef]
- Galan, A.M.; van Heerde, W.L.; Escolar, G.; Ordinas, A.; Sixma, J.; de Groot, P.G. Antithrombotic action of annexin V proved as efficient as direct inhibition of tissue factor or thrombin. Eur. J. Clin. Investig. 2006, 36, 633–639. [Google Scholar] [CrossRef]
- Peng, B.; Guo, C.; Guan, H.; Liu, S.; Sun, M.Z. Annexin A5 as a potential marker in tumors. Clin. Chim. Acta 2014, 427, 42–48. [Google Scholar] [CrossRef]
- Bouter, A.; Carmeille, R.; Gounou, C.; Bouvet, F.; Degrelle, S.A.; Evain-Brion, D.; Brisson, A.R. Review: Annexin-A5 and cell membrane repair. Placenta 2015, 36 (Suppl. 1), S43–S49. [Google Scholar] [CrossRef]
- Bakar, F.; Unluturk, U.; Baskal, N.; Nebioglu, S. Annexin V expression and anti-annexin V antibodies in type 1 diabetes. J. Clin. Endocrinol. Metab. 2014, 99, 932–937. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.J.; Webb, D.J. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 554–566. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Miguelez, P.; Seigler, N.; Bass, L.; Dillard, T.A.; Harris, R.A. Assessments of endothelial function and arterial stiffness are reproducible in patients with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1977–1986. [Google Scholar] [CrossRef] [Green Version]
- Adedayo, A.; Eluwole, A.; Tedla, F.; Kremer, A.; Mastrogiovanni, N.; Khan, M.; Rosenberg, C.; Dreizen, P.; La Rosa, J.; Salciccioli, L.; et al. Association between nitrated lipoproteins and vascular function in type 2 diabetes. Front Biosci. 2021, 26, 644–663. [Google Scholar] [CrossRef]
- Kedees, M.H.; Babinska, A.; Swiatkowska, M.; Deitch, J.; Hussain, M.M.; Ehrlich, Y.H.; Kornecki, E. Expression of a recombinant protein of the platelet F11 receptor (F11R) (JAM-1/JAM-A) in insect cells: F11R is naturally phosphorylated in the extracellular domain. Platelets 2005, 16, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Cavusoglu, E.; Kornecki, E.; Sobocka, M.B.; Babinska, A.; Ehrlich, Y.H.; Chopra, V.; Yanamadala, S.; Ruwende, C.; Salifu, M.O.; Clark, L.T.; et al. Association of plasma levels of F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) with human atherosclerosis. J. Am. Coll. Cardiol. 2007, 50, 1768–1776. [Google Scholar] [CrossRef] [Green Version]
- Hiddink, L.; Dallinga-Thie, G.M.; Hovingh, G.K.; de Visser, M.C.; Peer, P.G.; Stalenhoef, A.F.; van Heerde, W.L. Annexin A5 haplotypes in familial hypercholesterolemia: Lack of association with carotid intima-media thickness and cardiovascular disease risk. Atherosclerosis 2015, 238, 195–200. [Google Scholar] [CrossRef]
- Ravassa, S.; Gonzalez, A.; Lopez, B.; Beaumont, J.; Querejeta, R.; Larman, M.; Diez, J. Upregulation of myocardial Annexin A5 in hypertensive heart disease: Association with systolic dysfunction. Eur. Heart J. 2007, 28, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhusseiny, A.H.; Al-Nimer, M.S.M.; Mohammad, F.I.; Ali Jadoo, S.A. Concomitant measurements of serum annexin A5 levels and hematological indices as markers in recent and old myocardial infarction with low ejection fraction: A preliminary study. Int. J. Cardiol. 2016, 223, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Burgmaier, M.; Reith, S.; Schurgers, L.; Kahles, F.; Marx, N.; Reutelingsperger, C. Circulating annexin A5 levels are associated with carotid intima-media thickness but not coronary plaque composition. Diab. Vasc. Dis. Res. 2017, 14, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radziwon-Balicka, A.; Lesyk, G.; Back, V.; Fong, T.; Loredo-Calderon, E.L.; Dong, B.; El-Sikhry, H.; El-Sherbeni, A.A.; El-Kadi, A.; Ogg, S.; et al. Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation. Cardiovasc. Res. 2017, 113, 1719–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.R.; Carrim, N.; Neves, M.A.; McKeown, T.; Stratton, T.W.; Coelho, R.M.; Lei, X.; Chen, P.; Xu, J.; Dai, X.; et al. Platelets and platelet adhesion molecules: Novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb. J. 2016, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Schneider, M.P.; Ott, C.; Schmidt, S.; Kistner, I.; Friedrich, S.; Schmieder, R.E. Poor glycemic control is related to increased nitric oxide activity within the renal circulation of patients with type 2 diabetes. Diabetes Care 2013, 36, 4071–4075. [Google Scholar] [CrossRef] [Green Version]
- Adela, R.; Nethi, S.K.; Bagul, P.K.; Barui, A.K.; Mattapally, S.; Kuncha, M.; Patra, C.R.; Reddy, P.N.; Banerjee, S.K. Hyperglycaemia enhances nitric oxide production in diabetes: A study from South Indian patients. PLoS ONE 2015, 10, e0125270. [Google Scholar] [CrossRef] [Green Version]
- Shiekh, G.A.; Ayub, T.; Khan, S.N.; Dar, R.; Andrabi, K.I. Reduced nitrate level in individuals with hypertension and diabetes. J. Cardiovasc. Dis. Res. 2011, 2, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Rodrigues-Krause, J.; O’Hagan, C.; De Vito, G.; Boreham, C.; Susta, D.; Newsholme, P.; Murphy, C. Differential nitric oxide levels in the blood and skeletal muscle of type 2 diabetic subjects may be consequence of adiposity: A preliminary study. Metabolism 2012, 61, 1528–1537. [Google Scholar] [CrossRef]
- Gaiz, A.; Mosawy, S.; Colson, N.; Singh, I. Thrombotic and cardiovascular risks in type two diabetes; Role of platelet hyperactivity. Biomed. Pharmacother. 2017, 94, 679–686. [Google Scholar] [CrossRef]
- Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet function in patients with diabetes mellitus: From a theoretical to a practical perspective. Int. J. Endocrinol. 2011, 2011, 742719. [Google Scholar] [CrossRef]
- Ewing, M.M.; de Vries, M.R.; Nordzell, M.; Pettersson, K.; de Boer, H.C.; van Zonneveld, A.J.; Frostegard, J.; Jukema, J.W.; Quax, P.H. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Jiao, M.; Li, J.; Zhang, Q.; Xu, X.; Li, R.; Dong, P.; Meng, C.; Li, Y.; Wang, L.; Qi, W.; et al. Identification of Four Potential Biomarkers Associated With Coronary Artery Disease in Non-diabetic Patients by Gene Co-expression Network Analysis. Front Genet. 2020, 11, 542. [Google Scholar] [CrossRef]
- Cederholm, A.; Svenungsson, E.; Jensen-Urstad, K.; Trollmo, C.; Ulfgren, A.K.; Swedenborg, J.; Fei, G.Z.; Frostegard, J. Decreased binding of annexin v to endothelial cells: A potential mechanism in atherothrombosis of patients with systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Van Tits, L.J.; van Heerde, W.L.; van der Vleuten, G.M.; de Graaf, J.; Grobbee, D.E.; van de Vijver, L.P.; Stalenhoef, A.F.; Princen, H.M. Plasma annexin A5 level relates inversely to the severity of coronary stenosis. Biochem. Biophys. Res. Commun. 2007, 356, 674–680. [Google Scholar] [CrossRef]
- Valer, P.; Paul, B.; Eugenia, B.; Camelia, B. Annexin A5 as independent predictive biomarker for subclinical atherosclerosis and endothelial dysfunction in systemic lupus erythematosus patients. Clin. Lab. 2013, 59, 359–367. [Google Scholar] [CrossRef]
- Osinski, M.; Mantaj, U.; Kedzia, M.; Gutaj, P.; Wender-Ozegowska, E. Poor glycaemic control contributes to a shift towards prothrombotic and antifibrinolytic state in pregnant women with type 1 diabetes mellitus. PLoS ONE 2020, 15, e0237843. [Google Scholar] [CrossRef]
Baseline Characteristics | Total Population (N = 125) | Well-Controlled Patients (HbA1c ≤ 6.5%) (N = 27) | Poorly-Controlled Patients (HbA1c > 6.5%) (N = 98) | p-Value |
---|---|---|---|---|
Age (years) * Mean (SD) | ||||
59.68.1 (7.80) | 59.10 (9.50) | 59.84 (7.31) | 0.347 | |
Weight (kg) Median (IQR) | ||||
83.10 (72.64–98.01) | 80.81 (74.46–92.62) | 83.32 (72.64–103.74) | 0.269 | |
Height (cm) Median (IQR) | ||||
165.10 (160.01–172.72) | 165.10 (160.00–172.72) | 165.10 (160.02–172.72) | 0.493 | |
Waist Circumference (cm) Mean (SD) | ||||
99.00 (0, 152) | 92.00 (86.36–102.00) | 101.60 (90.25–109.22) | 0.011 | |
BMI (kg/m2) Median (IQR) | ||||
29.86 (26.74–35.01) | 30.84 (27.32–32.65) | 29.71 (26.14–36.53) | 0.237 | |
Systolic BP (mmHg) Median (IQR) | ||||
130.00 (120.00–146.00) | 126.00 (115.00–132.00) | 131.50 (121.00–148.00) | 0.760 | |
Diastolic BP (mmHg) * Mean (SD) | ||||
75.69 (10.70) | 74.63 (9.54) | 75.98 (11.03) | 0.018 | |
HbA1c (%) Median (IQR) | ||||
8.06 (6.70–9.30) | 6.20 (5.80–6.30) | 8.00 (7.00–10.00) | 0.0001 | |
Diabetes duration (year) Median (IQR) | ||||
10.00 (4.25–14.75) | 6.00 (4.00–10.00) | 10.00 (5.00–15.75) | 0.001 | |
Total Cholesterol (mg/dL) Median (IQR) | ||||
169.00 (148.00–194.50) | 182.50 (156.00–202.75) | 167.00 (145.00–189.00) | 0.211 | |
LDL-c (mg/dL) Median (IQR) | ||||
90.50 (70.60–109.60) | 94.55 (80.65–123.38) | 90.50 (68.10–107.60) | 0.427 | |
HDL-c (mg/dL) * Mean (SD) | ||||
55.51 (17.80) | 58.90 (19.95) | 54.58 (17.17) | 0.510 | |
Triglycerides (mg/dL) Median (IQR) | ||||
98.00 (73.50–128.50) | 91.00 (71.00–127.00) | 101.00 (73.75–129.25) | 0.510 | |
ASCVD Score (%) Median (IQR) | ||||
19.25 (11.23–29.08) | 17.20 (7.00, 33.00) | 19.50 (12.00–28.60) | 0.295 | |
PWV (m/s) Median (IQR) | ||||
8.10 (6.55–10.20) | 7.90 (6.30–10.10) | 8.15 (6.80–10.20) | 0.943 | |
VRI * Mean (SD) | ||||
1.16 (0.50) | 1.17 (0.40) | 1.15 (0.52) | 0.778 | |
CIMT (mm) Median (IQR) | ||||
0.65 (0.56–0.73) | 0.67 (0.57–0.82) | 0.64 (0.56–0.72) | 0.657 | |
Platelet Count (×103/mL) Median (IQR) | ||||
241.50 (199.00–297.75) | 237.00 (196.00–290.00) | 246.00 (201.00–302.00) | 0.320 | |
Creatinine (mg/dL) Median (IQR) | ||||
0.89 (0.77–1.22) | 0.91 (0.82–1.23) | 0.89 (0.76–1.21) | 0.217 | |
Total Nitric oxide (µmol/L) Median (IQR) | ||||
20.09 (16.27–30.74) | 20.09 (16.37–27.78) | 20.03 (16.13–32.83) | 0.459 | |
F11R/JAM-A (pg/mL) Median (IQR) | ||||
158.8 (115.92–199.02) | 153.16 (107.25–239.74) | 159.62 (116.90–194.43) | 0.829 | |
ANXA5 (ng/mL) Median (IQR) | ||||
0.22 (0.07–0.39) | 0.32 (0.07–0.43) | 0.21 (0.07–0.33) | 0.597 | |
Insulin, n (%) | 35 (28.0) | 6 (22.2) | 19 (34.3) | 0.899 |
Sulfonylurea, n (%) | 25 (20.0) | 3 (11.1) | 16 (28.4) | 0.331 |
Metformin, n (%) | 91 (72.8) | 22 (81.5) | 37 (65.7) | 0.900 |
DPP-4 inhibitors, n (%) | 41 (32.8) | 6 (22.2) | 1 (1.8) | 0.722 |
GLP-1 agonists, n (%) | 1 (0.8) | 4 (14.8) | 8 (14.9) | 0.193 |
SGLT2 inhibitors, n (%) | 16 (12.8) | 4 (14.8) | 1 (1.5) | 0.997 |
Thiazolidinediones, n (%) | 16 (12.8) | 4 (14.8) | 8 (14.9) | 0.999 |
Alpha glucosidase inhibitors, n (%) | 1 (0.8) | 4 (14.8) | 1 (1.5) | 0.777 |
Calcium channel blockers, n (%) | 38 (30.4) | 7 (25.9) | 14 (23.9) | 0.008 |
ACE inhibitors, n (%) | 43 (34.4) | 5 (18.5) | 19 (34.3) | 0.900 |
Beta blockers, n (%) | 27 (21.6) | 4 (14.8) | 17 (29.9) | 0.067 |
Alpha2 agonists, n (%) | 2 (1.6) | 4 (14.8) | 15 (26.9) | 0.658 |
Nitrates, n (%) | 6 (4.8) | 4 (14.8) | 5 (9.0) | 0.297 |
Anti-platelets, n (%) | 37 (29.6) | 7 (25.9) | 15 (26.9) | 0.688 |
Statins, n (%) | 71 (56.8) | 15 (55.6) | 35 (61.2) | 0.219 |
PWV | VRI | CIMT | TC | LDL-c | HDL-c | TG | Total NO | ANXA5 | sF11R | |
---|---|---|---|---|---|---|---|---|---|---|
TOTAL POPULATION (N = 125) | ||||||||||
sF11R | 0.050 (0.584) | −0.201 a (0.024) | −0.049 (0.588) | −0.010 (0.911) | 0.075 (0.413) | −0.133 (0.145) | 0.095 (0.300) | −0.357 b (0.0001) | 0.250 a (0.005) | 1.000 . |
ANXA5 | 0.103 (0.264) | −0.179 a (0.049) | −0.136 (0.131) | −0.036 (0.693) | 0.052 (0.570) | −0.083 (0.364) | −0.008 (0.929) | −0.351 b (0.0001) | 1.000 . | 0.250 a (0.005) |
WELL-CONTROLLED PATIENTS, HbA1c ≤ 6.5 % (N = 27) | ||||||||||
sF11R | 0.068 (0.753) | −0.082 (0.697) | −0.018 (0.930) | 0.159 (0.437) | 0.219 (0.282) | −0.014 (0.944) | 0.093 (0.646) | −0.327 (0.096) | −0.043 (0.831) | 1.000 . |
ANXA5 | 0.306 (0.146) | −0.439 a (0.028) | 0.080 (0.692) | −0.105 (0.610) | −0.115 (0.575) | −0.105 (0.608) | 0.089 (0.660) | −0.053 (0.792) | 1.000 . | −0.043 (0.831) |
POORLY-CONTROLLED PATIENTS, HbA1c > 6.5 % (N = 98) | ||||||||||
sF11R | 0.061 (0.556) | −0.240 a (0.018) | −0.076 (0.455) | −0.053 (0.607) | 0.043 (0.679) | −0.182 (0.077) | 0.099 (0.343) | −0.363 b (0.0001) | 0.282 a (0.005) | 1.000 . |
ANXA5 | 0.075 (0.471) | −0.143 (0.161) | −0.225 a (0.026)) | −0.043 (0.677) | 0.089 (0.391) | −0.107 (0.304) | −0.043 (0.681) | −0.412 b (0.0001) | 1.000 | 0.282 a (0.005) |
Total Population | Patients with HbA1c ≤ 6.5 % | Patients with HbA1c > 6.5 % | |||||||
---|---|---|---|---|---|---|---|---|---|
Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | |
sF11R a | 0.250 | 0.0001 0.001 | 0.005 | −0.027 | −0.002 0.001 | 0.895 | 0.276 | 0.0001 0.001 | 0.006 |
sF11R b | −0.061 | −0.004 0.002 | 0.505 | 0.046 | −0.012 0.015 | 0.833 | −0.075 | −0.005 0.002 | 0.468 |
sF11R c | −0.076 | −0.001 0.0001 | 0.407 | 0.037 | −0.002 0.002 | 0.860 | −0.086 | −0.001 0.0001 | 0.402 |
sF11R d | −0.098 | 0.0001 0.0001 | 0.275 | −0.049 | −0.001 0.001 | 0.810 | −0.105 | 0.0001 0.001 | 0.302 |
sF11R e | −0.090 | −0.064 0.021 | 0.316 | −0.204 | −0.071 0.023 | 0.308 | −0.092 | −0.071 0.027 | 0.370 |
Variables | Total Population (N = 125) | Well-Controlled Patients HbA1c ≤ 6.5% (N = 27) | Poorly Controlled Patients HbA1c > 6.5% (N = 98) | ||||||
---|---|---|---|---|---|---|---|---|---|
Model I (R Square = 0.084) | Model I (R Square = 0.221) | Model I (R Square = 0.106) | |||||||
MODEL I | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value |
sF11R | 0.245 | 0.0001 0.001 | 0.006 | −0.159 | −0.002 0.001 | 0.432 | 0.266 | 0.0001 0.001 | 0.008 |
Sex | −0.044 | −0.161 0.097 | 0.624 | −0.466 | −0.471 0.024 | 0.031 | 0.027 | −0.134 0.175 | 0.790 |
Age | −0.018 | −0.009 0.007 | 0.846 | 0.148 | −0.008 0.016 | 0.473 | −0.034 | −0.012 0.009 | 0.739 |
Weight | −0.137 | −0.005 0.00 | 0.137 | 0.192 | −0.004 0.012 | 0.342 | −0.182 | −0.007 0.0001 | 0.086 |
Model II (R Square = 0.143) | Model II (R Square = 0.445) | Model II (R Square = 0.198) | |||||||
MODEL II | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value |
sF11R | 0.308 | 0.0001 0.001 | 0.003 | −0.239 | −0.033 0.001 | 0.327 | 0.355 | 0.0001 0.001 | 0.002 |
Sex | 0.050 | −0.129 0.204 | 0.654 | −0.252 | −0.479 0.205 | 0.399 | 0.134 | −0.091 0.305 | 0.286 |
Age | −0.042 | −0.013 0.008 | 0.691 | 0.348 | −0.009 0.032 | 0.238 | −0.025 | −0.014 0.012 | 0.833 |
Weight | −0.091 | −0.006 0.002 | 0.400 | 0.714 | 0.001 0.032 | 0.041 | −0.146 | −0.007 0.002 | 0.230 |
Hypertension | 0.151 | −0.057 0.373 | 0.147 | 0.027 | −0.334 0.370 | 0.912 | 0.134 | −0.114 0.425 | 0.254 |
Stroke | −0.061 | −0.075 0.040 | 0.551 | −0.182 | −0.927 0.467 | 0.486 | −0.071 | −0.081 0.042 | 0.538 |
Dyslipidemia | 0.112 | −0.088 0.300 | 0.280 | −0.037 | −0.343 0.298 | 0.882 | 0.151 | −0.084 0.408 | 0.193 |
Smoking | −0.098 | −0.268 0.106 | 0.391 | −0.232 | −0.532 0.256 | 0.460 | −0.118 | −0.325 0.116 | 0.347 |
Model III (R Square = 0.237) | Model III (R Square = 1.000) | Model III (R Square = 0.318) | |||||||
MODEL III | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value | β | 95% CI (Min) (Max) | p-value |
sF11R | 0.366 | 0.0001 0.001 | 0.007 | 0.247 | 0.001 0.001 | NS | 0.425 | 0.0001 0.001 | 0.008 |
Sex | −0.001 | −0.235 0.233 | 0.993 | −1.002 | −0.604 −0.604 | NS | 0.165 | −0.161 0.391 | 0.406 |
Age | 0.096 | −0.008 0.017 | 0.496 | 1.077 | 0.041 0.041 | NS | 0.129 | −0.010 0.022 | 0.438 |
Weight | 0.024 | −0.004 0.005 | 0.858 | −0.190 | −0.005 −0.005 | NS | −0.022 | −0.005 0.005 | 0.890 |
Hypertension | 0.177 | −0.085 0.409 | 0.193 | −1.094 | 0.839 0.839 | NS | 0.108 | −0.212 0.420 | 0.510 |
Stroke | −0.045 | −0.066 0.046 | 0.720 | −0.504 | −0.622 −0.622 | NS | −0.045 | −0.068 0.050 | 0.759 |
Dyslipidemia | 0.165 | −0.098 0.366 | 0.251 | −0.373 | −0.258 −0.258 | NS | 0.213 | −0.116 0.477 | 0.227 |
Smoking | −0.088 | −0.293 0.160 | 0.558 | 0.963 | 0.622 0.622 | NS | −0.138 | −0.373 0.153 | 0.402 |
Creatinine | −0.030 | −0.238 0.195 | 0.842 | −0.412 | −0.346 −0.346 | NS | −0.078 | −0.293 0.184 | 0.645 |
Total Cholesterol | −0.360 | −0.019 0.013 | 0.690 | −34.580 | −0.376 −0.376 | NS | 0.075 | -0.017 0.018 | 0.939 |
LDL-c | 0.267 | −0.014 0.020 | 0.735 | 30.775 | 0.369 0.369 | NS | −0.090 | −0.019 0.017 | 0.918 |
HDL-c | 0.097 | −0.016 0.020 | 0.830 | 15.155 | 0.403 0.403 | NS | −0.097 | −0.022 0.018 | 0.851 |
Triglycerides | 0.058 | −0.004 0.005 | 0.836 | 11.990 | 0.075 0.075 | NS | −0.106 | −0.006 0.004 | 0.728 |
Diabetes Duration | −0.172 | −0.018 0.004 | 0.219 | −0.572 | −0.034 −0.034 | NS | −0.160 | −0.018 0.006 | 0.302 |
Total NO | −0.081 | −0.002 0.001 | 0.524 | 0.952 | 0.034 0.034 | NS | −0.069 | −0.002 0.002 | 0.643 |
sF11R Quartiles (pg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (<115.92) N = 30 | Q2 (115.92–158.72) N = 31 | Q3 (158.72–199.02) N = 30 | Q4 (>199.02) N = 31 | |||||||||
Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | Standardized β Coefficient | 95% CI (Min) (Max) | p-Value | |
Model I | 0.008 | −0.008 0.008 | 0.968 | 0.169 | −0.004 0.011 | 0.169 | −0.048 | −0.017 0.014 | 0.819 | 0.361 | 0.0001 0.001 | 0.064 |
Model II | 0.304 | −0.006 0.019 | 0.263 | 0.198 | −0.008 0.016 | 0.492 | −0.145 | −0.027 0.017 | 0.615 | 0.539 | 0.0001 0.002 | 0.042 |
Model III | 2.214 | 0.006 0.080 | 0.034 | 0.464 | −0.034 0.051 | 0.475 | −0.764 | −0.076 0.041 | 0.415 | 0.664 | −0.015 0.018 | 0.782 |
ANXA5 Quartiles (ng/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 (<0.070) N = 28 | Q2 (0.070–0.220) N = 29 | Q3 (0.220–0.385) N = 31 | Q4 (>0.385) N = 31 | |||||||||
β Coefficient | 95% CI (Min) (Max) | p-Value | β Coefficient | 95% CI (Min) (Max) | p-Value | β Coefficient | 95% CI (Min) (Max) | p-Value | β Coefficient | 95% CI (Min) (Max) | p-Value | |
Model I | 0.014 | −2369.6 2539.0 | 0.944 | −0.146 | −679.3 323.4 | 0.471 | 0.320 | −334.0 3989.3 | 0.094 | 0.520 | 67.22 310.79 | 0.004 |
Model II | −0.106 | −3436.5 2197.8 | 0.647 | 0.112 | −727.6 995.7 | 0.740 | 0.080 | −1541.7 2307.8 | 0.677 | 0.496 | −8.32 376.59 | 0.059 |
Model III | −0.211 | −3937.3 1467.2 | 0.328 | −1.324 | −1333.5 0.051 | 0.999 | −0.229 | −1297.2 −1297.2 | 0.999 | 1.085 | 536.54 536.54 | 0.999 |
Variables | Total Population (N = 125) | Well-Controlled Patients HbA1c ≤ 6.5% (N = 27) | Poorly Controlled Patients HbA1c > 6.5% (N = 98) | ||||||
---|---|---|---|---|---|---|---|---|---|
R Square = 0.160 | R Square = 0.664 | R Square = 0.229 | |||||||
β | 95% CI (Min) (Max) | p-Value | β | 95% CI (Min) (Max) | p-Value | β | 95% CI (Min) (Max) | p-Value | |
sF11R | 0.373 | 0.0001 0.001 | 0.001 | −0.024 | −0.002 0.001 | 0.902 | 0.450 | 0.0001 0.001 | 0.001 |
Insulin | −0.094 | −0.205 0.073 | 0.348 | −0.084 | −0.296 0.395 | 0.761 | −0.095 | −0.229 0.090 | 0.387 |
Sulfonylurea | −0.010 | −0.164 0.147 | 0.917 | −0.069 | −0.433 0.328 | 0.767 | 0.047 | −0.137 0.212 | 0.670 |
Metformin | 0.024 | −0.177 0.219 | 0.833 | 0.252 | −0.339 0.975 | 0.313 | 0.030 | −0.186 0.239 | 0.805 |
DPP4 | −0.019 | −0.149 0.123 | 0.850 | −0.228 | −0.422 0.154 | 0.332 | −0.056 | −0.195 0.116 | 0.613 |
GLP-1 agonists | −0.031 | −0.767 0.555 | 0.751 | Nd | Nd | Nd | −0.031 | −0.790 0.588 | 0.771 |
Alpha-glucosidase inhibitors | −0.038 | −0.810 0.547 | 0.701 | Nd | Nd | Nd | −0.048 | −0.861 0.551 | 0.664 |
Calcium Channel blockers | −0.035 | −0.164 0.116 | 0.736 | −0.122 | −0.314 0.178 | 0.558 | 0.030 | −0.141 0.185 | 0.791 |
ACE inhibitors | −0.021 | −0.150 0.121 | 0.833 | −0.238 | −0.490 0.193 | 0.361 | 0.61 | −0.116 0.201 | 0.594 |
Beta Blockers | −0.091 | −0.253 0.114 | 0.452 | 0.731 | 0.137 0.855 | 0.011 | −0.251 | −0.408 0.015 | 0.068 |
Alpha-2 agonists | −0.119 | −0.875 0.290 | 0.321 | Nd | Nd | Nd | −0.145 | −0.951 0.285 | 0.286 |
Nitrates | 0.144 | −0.103 0.519 | 0.188 | Nd | Nd | Nd | 0.212 | −0.041 0.617 | 0.085 |
Anti-platelets | 0.011 | −0.135 0.150 | 0.918 | −0.223 | −0.378 0.128 | 0.303 | 0.075 | −0.112 0.221 | 0.516 |
Statins | 0.169 | −0.033 0.266 | 0.124 | 0.202 | −0.130 0.349 | 0.340 | 0.118 | −0.095 0.267 | 0.346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adedayo, A.; Eluwole, A.; Tedla, F.; Kremer, A.; Khan, M.; Mastrogiovanni, N.; Rosenberg, C.; Dreizen, P.; La Rosa, J.; Salciccioli, L.; et al. Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus. Biomedicines 2022, 10, 1818. https://doi.org/10.3390/biomedicines10081818
Adedayo A, Eluwole A, Tedla F, Kremer A, Khan M, Mastrogiovanni N, Rosenberg C, Dreizen P, La Rosa J, Salciccioli L, et al. Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus. Biomedicines. 2022; 10(8):1818. https://doi.org/10.3390/biomedicines10081818
Chicago/Turabian StyleAdedayo, Ajibola, Ayobami Eluwole, Fasika Tedla, Arye Kremer, Muhammad Khan, Nicole Mastrogiovanni, Carl Rosenberg, Paul Dreizen, John La Rosa, Louis Salciccioli, and et al. 2022. "Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus" Biomedicines 10, no. 8: 1818. https://doi.org/10.3390/biomedicines10081818
APA StyleAdedayo, A., Eluwole, A., Tedla, F., Kremer, A., Khan, M., Mastrogiovanni, N., Rosenberg, C., Dreizen, P., La Rosa, J., Salciccioli, L., Boutjdir, M., Banerji, M. A., Brown, C., Lazar, J., Salifu, M., & Bakillah, A. (2022). Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus. Biomedicines, 10(8), 1818. https://doi.org/10.3390/biomedicines10081818