Predictive Value of HbA1c and Metabolic Syndrome for Renal Outcome in Non-Diabetic CKD Stage 1–4 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Measurements
2.2. Outcomes
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Components of MetS in Participants
3.3. Relationship between Clinical and Biochemical Variables and HbA1c
3.4. HbA1c Level and Its Association with Clinical Outcomes with or without MetS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Færch, K.; Alssema, M.; Mela, D.J.; Borg, R.; Vistisen, D. Relative contributions of preprandial and postprandial glucose exposures, glycemic variability, and non-glycemic factors to HbA (1c) in individuals with and without diabetes. Nutr. Diabetes 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Warren, B.; Pankow, J.S.; Matsushita, K.; Punjabi, N.M.; Daya, N.R.; Grams, M.; Woodward, M.; Selvin, E. Comparative prognostic performance of definitions of prediabetes: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017, 5, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Vistisen, D.; Witte, D.R.; Brunner, E.J.; Kivimäki, M.; Tabák, A.; Jørgensen, M.E.; Færch, K. Risk of Cardiovascular Disease and Death in Individuals with Prediabetes Defined by Different Criteria: The Whitehall II Study. Diabetes Care 2018, 41, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plantinga, L.C.; Crews, D.C.; Coresh, J.; Miller, E.R.; Saran, R.; Yee, J.; Hedgeman, E.; Pavkov, M.; Eberhardt, M.S.; Williams, D.E.; et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Abraham, T.M.; Fox, C.S. Implications of rising prediabetes prevalence. Diabetes Care 2013, 36, 2139–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echouffo-Tcheugui, J.B.; Narayan, K.M.V.; Weisman, D.; Golden, S.H.; Jaar, B. Association between prediabetes and risk of chronic kidney disease: A systematic review and meta-analysis. Diabet. Med. 2016, 33, 1615–1624. [Google Scholar] [CrossRef]
- Markus, M.R.P.; Ittermann, T.; Baumeister, S.E.; Huth, C.; Thorand, B.; Herder, C.; Roden, M.; Siewert-Markus, U.; Rathmann, W.; Koenig, W.; et al. Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: The KORA (Cooperative Health Research in the Augsburg Region) F4-Study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 234–242. [Google Scholar] [CrossRef]
- Koshi, T.; Sagesaka, H.; Sato, Y.; Hirabayashi, K.; Koike, H.; Yamauchi, K.; Nishimura, R.; Noda, M.; Yamashita, K.; Aizawa, T. Elevated haemoglobin A1c but not fasting plasma glucose conveys risk of chronic kidney disease in non-diabetic individuals. Diabetes Res. Clin. Pract. 2018, 146, 233–239. [Google Scholar] [CrossRef]
- Selvin, E.; Steffes, M.W.; Zhu, H.; Matsushita, K.; Wagenknecht, L.; Pankow, J.; Coresh, J.; Brancati, F.L. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010, 362, 800–811. [Google Scholar] [CrossRef]
- Selvin, E.; Ning, Y.; Steffes, M.W.; Bash, L.D.; Klein, R.; Wong, T.Y.; Astor, B.C.; Sharrett, A.R.; Brancati, F.L.; Coresh, J. Glycated hemoglobin and the risk of kidney disease and retinopathy in adults with and without diabetes. Diabetes 2011, 60, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Trivin, C.; Metzger, M.; Haymann, J.-P.; Boffa, J.-J.; Flamant, M.; Vrtovsnik, F.; Houillier, P.; Stengel, B.; Thervet, E. Glycated Hemoglobin Level and Mortality in a Nondiabetic Population with CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Wahba, I.M.; Mak, R.H. Obesity and obesity-initiated metabolic syndrome: Mechanistic links to chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 550–562. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, P.A.; Ruilope, L.M. Insulin resistance, hyperinsulinemia, and renal injury: Mechanisms and implications. Am. J. Nephrol. 2006, 26, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Pozzoni, P.; Del Vecchio, L. Renal manifestations in the metabolic syndrome. J. Am. Soc. Nephrol. 2006, 17 (Suppl. 2), S81–S85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Yang, Z.; Wang, S.; Sun, F.; Zhan, S. The associations of metabolic syndrome with incident hypertension, type 2 diabetes mellitus and chronic kidney disease: A cohort study. Endocrine 2018, 60, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Akase, T.; Ninomiya, D.; Kumagi, T.; Kikuchi, A. Metabolic syndrome is a predictor of decreased renal function among community-dwelling middle-aged and elderly Japanese. Int. Urol. Nephrol. 2019, 51, 2285–2294. [Google Scholar] [CrossRef]
- Huh, J.H.; Yadav, D.; Kim, J.S.; Son, J.-W.; Choi, E.; Kim, S.H.; Shin, C.; Sung, K.-C.; Kim, J.Y. An association of metabolic syndrome and chronic kidney disease from a 10-year prospective cohort study. Metabolism 2017, 67, 54–61. [Google Scholar] [CrossRef]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Sung, K.C.; Rhee, E.J. Glycated haemoglobin as a predictor for metabolic syndrome in non-diabetic Korean adults. Diabet. Med. 2007, 24, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Ryoo, J.-H.; Chung, P.-W.; Oh, C.-M.; Choi, J.-M.; Park, S.K. Association of fasting glucose and glycated hemoglobin with the long-term risk of incident metabolic syndrome: Korean Genome and Epidemiology Study (KoGES). Acta Diabetol. 2019, 56, 551–559. [Google Scholar] [CrossRef]
- Kuo, I.-C.; Lin, H.Y.-H.; Niu, S.-W.; Hwang, D.-Y.; Lee, J.-J.; Tsai, J.-C.; Hung-Chun, C.; Hwang, S.-J.; Chen, H.-C. Glycated Hemoglobin and Outcomes in Patients with Advanced Diabetic Chronic Kidney Disease. Sci. Rep. 2016, 6, 20028. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.-C.; Chiu, Y.-W.; Kuo, M.-C.; Lin, M.-Y.; Lee, J.-J.; Hwang, S.-J.; Chang, J.-M.; Hung, C.-C.; Chen, H.-C. U-Shaped Association between Waist-to-Hip Ratio and All-Cause Mortality in Stage 3-5 Chronic Kidney Disease Patients with Body Mass Index Paradox. J. Pers. Med. 2021, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Amparo, F.C.; Kamimura, M.A.; Molnar, M.Z.; Cuppari, L.; Lindholm, B.; Amodeo, C.; Carrero, J.J.; Cordeiro, A.C. Diagnostic validation and prognostic significance of the Malnutrition-Inflammation Score in nondialyzed chronic kidney disease patients. Nephrol. Dial. Transplant. 2015, 30, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Son, D.-H.; Lee, H.S.; Lee, Y.-J.; Lee, J.-H.; Han, J.-H. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Sobia, F.; Niazi, N.K.; Manzoor, S.M.; Fazal, N.; Ahmad, F. Metabolic clustering of risk factors: Evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol. Metab. Syndr. 2018, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Romero, F.; Villalobos-Molina, R.; Jiménez-Flores, J.R.; Simental-Mendia, L.E.; Méndez-Cruz, R.; Murguía-Romero, M.; Rodríguez-Morán, M. Fasting Triglycerides and Glucose Index as a Diagnostic Test for Insulin Resistance in Young Adults. Arch. Med. Res. 2016, 47, 382–387. [Google Scholar] [CrossRef]
- Rahhal, M.-N.; Gharaibeh, N.E.; Rahimi, L.; Ismail-Beigi, F. Disturbances in Insulin-Glucose Metabolism in Patients with Advanced Renal Disease With and Without Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 4949–4966. [Google Scholar] [CrossRef]
- De Cosmo, S.; Menzaghi, C.; Prudente, S.; Trischitta, V. Role of insulin resistance in kidney dysfunction: Insights into the mechanism and epidemiological evidence. Nephrol. Dial. Transplant. 2013, 28, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Townsend, R.R.; Anderson, A.H.; Chen, J.; Gadebegku, C.A.; Feldman, H.I.; Fink, J.C.; Go, A.S.; Joffe, M.; Nessel, L.A.; Ojo, A.; et al. Metabolic syndrome, components, and cardiovascular disease prevalence in chronic kidney disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Nephrol. 2011, 33, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.; Armstrong, K.; Campbell, S.B.; Mudge, D.; Hawley, C.; Coombes, J.; Prins, J.; Isbel, N.M. Metabolic syndrome in severe chronic kidney disease: Prevalence, predictors, prognostic significance and effects of risk factor modification. Nephrology 2007, 12, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Barbagallo, M. The biology of the metabolic syndrome and aging. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 5–11. [Google Scholar] [CrossRef]
- Kurella, M.; Lo, J.C.; Chertow, G.M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 2005, 16, 2134–2140. [Google Scholar] [CrossRef]
- Luk, A.O.; So, W.Y.; Ma, R.C.; Kong, A.P.; Ozaki, R.; Ng, V.S.; Yu, L.W.; Lau, W.W.; Yang, X.; Chow, F.C.; et al. Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with type 2 diabetes: A 5-year prospective analysis of the Hong Kong Diabetes Registry. Diabetes Care 2008, 31, 2357–2361. [Google Scholar] [CrossRef] [Green Version]
- Yun, H.R.; Kim, H.; Park, J.T.; Chang, T.I.; Yoo, T.H.; Kang, S.W.; Choi, K.H.; Sung, S.; Kim, S.W.; Lee, J.; et al. Obesity, Metabolic Abnormality, and Progression of CKD. Am. J. Kidney Dis. 2018, 72, 400–410. [Google Scholar] [CrossRef]
- Koh, E.S.; Han, K.D.; Kim, M.K.; Kim, E.S.; Lee, M.-K.; Nam, G.E.; Hong, O.-K.; Kwon, H.-S. Changes in metabolic syndrome status affect the incidence of end-stage renal disease in the general population: A nationwide cohort study. Sci. Rep. 2021, 11, 1957. [Google Scholar] [CrossRef]
- Bonora, E.; Tuomilehto, J. The pros and cons of diagnosing diabetes with A1C. Diabetes Care 2011, 34 (Suppl. 2), S184–S190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Yoon, J.S.; Won, K.C.; Lee, H.W. Usefulness of glycated hemoglobin as diagnostic criteria for metabolic syndrome. J. Korean Med. Sci. 2012, 27, 1057–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [Green Version]
- Kuo, I.-C.; Lin, H.Y.-H.; Niu, S.-W.; Lee, J.-J.; Chiu, Y.-W.; Hung, C.-C.; Hwang, S.-J.; Chen, H.-C. Anemia modifies the prognostic value of glycated hemoglobin in patients with diabetic chronic kidney disease. PLoS ONE 2018, 13, e0199378. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Warren, B.; Grams, M.; Kwong, Y.D.; Shafi, T.; Coresh, J.; Rebholz, C.M.; Selvin, E. Performance of non-traditional hyperglycemia biomarkers by chronic kidney disease status in older adults with diabetes: Results from the Atherosclerosis Risk in Communities Study. J. Diabetes 2018, 10, 276–285. [Google Scholar] [CrossRef]
- Galindo, R.J.; Beck, R.W.; Scioscia, M.F.; Umpierrez, G.E.; Tuttle, K. Glycemic Monitoring and Management in Advanced Chronic Kidney Disease. Endocr. Rev. 2020, 41, 756–774. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Sasso, B.L.; Agnello, L.; Bivona, G.; Maniscalco, R.; Ligi, D.; Mannello, F.; Ciaccio, M. Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J. Clin. Med. 2020, 9, 3634. [Google Scholar] [CrossRef]
- Aggarwal, V.; Schneider, A.L.; Selvin, E. Low hemoglobin A(1c) in nondiabetic adults: An elevated risk state? Diabetes Care 2012, 35, 2055–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, K.; Nianogo, R.; Telesca, D.; Goto, A.; Khachadourian, V.; Tsugawa, Y.; Sugiyama, T.; Mayeda, E.R.; Ritz, B. Low HbA1c levels and all-cause or cardiovascular mortality among people without diabetes: The US National Health and Nutrition Examination Survey 1999–2015. Int. J. Epidemiol. 2021, 50, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, A.H.; Sinclair, A.J. Low HbA1c and Increased Mortality Risk-is Frailty a Confounding Factor? Aging Dis. 2015, 6, 262–270. [Google Scholar] [CrossRef] [Green Version]
Variable | Non-MetS | p | MetS | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
All | HbA1c < 5% | HbA1c 5–5.7% | HbA1c ≥ 5.7% | All | HbA1c < 5% | HbA1c 5–5.7% | HbA1c ≥ 5.7% | |||
No. of patients | 628 | 93 (14.8%) | 347 (55.3%) | 188 (29.9%) | - | 642 | 54 (8.4%) | 282 (43.9%) | 306 (47.7%) | - |
Demographics | ||||||||||
Age (year) | 58.0 (17.3) | 51.2 (21.0) | 57.5 (16.8) | 62.2 (15.1) | <0.001 | 62.8 (14.2) | 59.5 (16.4) | 63.2 (15.1) | 63.0 (13.0) | 0.205 |
Sex (female) | 202 (32.2%) | 36 (38.7%) | 112 (32.3%) | 54 (28.7%) | 0.241 | 231 (36.0%) | 19 (35.2%) | 101 (35.8%) | 111 (36.3%) | 0.985 |
Cardiovascular disease | 84 (13.4%) | 11 (11.8%) | 39 (11.2%) | 34 (18.1%) | 0.076 | 126 (19.6%) | 9 (16.7%) | 62 (22.0%) | 55 (18.0%) | 0.402 |
Hypertension | 263 (41.9%) | 36 (38.7%) | 159 (45.8%) | 68 (36.2%) | 0.077 | 405 (63.1%) | 39 (72.2%) | 189 (67.0%) | 177 (57.8%) | 0.024 |
Hyperuricemia | 106 (16.9%) | 19 (20.4%) | 54 (15.6%) | 33 (17.6%) | 0.515 | 165 (25.7%) | 16 (29.6%) | 72 (25.5%) | 77 (25.2%) | 0.784 |
Cancer | 53 (8.4%) | 9 (9.7%) | 26 (7.5%) | 18 (9.6%) | 0.638 | 34 (5.3%) | 2 (3.7%) | 15 (5.3%) | 17 (5.6%) | 0.855 |
Malnutrition–inflammation 1 | 129 (20.5%) | 29 (31.2%) | 58 (16.7%) | 42 (22.3%) | 0.003 | 81 (12.6%) | 15 (27.8%) | 37 (13.1%) | 29 (9.5%) | 0.005 |
Laboratory data | ||||||||||
eGFR (ml/min/1.73 m2) | 40.1 (26.5–56.2) | 37.1 (25.0–65.3) | 40.2 (26.3–56.2) | 40.3 (29.9–51.8) | 0.638 | 35.1 (24.5–47.9) | 32.2 (20.1–44.5) | 33.1 (22.8–46.7) | 37.5 (27.1–49.7) | 0.337 |
UPCR (mg/g) | 451 (162–1171) | 551 (199–1454) | 436 (157–1051) | 436 (147–1202) | 0.310 | 608 (218–1368) | 730 (260–1665) | 578 (249–1350) | 615 (203–1352) | 0.208 |
Hemoglobin (g/dL) | 12.4 (2.1) | 12.2 (2.2) | 12.5 (2.1) | 12.4 (2.1) | 0.440 | 12.6 (2.2) | 11.4 (2.2) | 12.6 (2.2) | 12.9 (2.2) | <0.001 |
Albumin (g/dL) | 4.0 (0.5) | 3.9 (0.7) | 4.0 (0.5) | 4.0 (0.5) | 0.112 | 4.0 (0.5) | 3.9 (0.6) | 4.0 (0.5) | 4.1 (0.4) | 0.037 |
ALT (mg/dL) | 23.6 (17.2) | 23.0 (16.2) | 22.8 (15.1) | 25.4 (21.0) | 0.228 | 26.7 (23.3) | 28.9 (23.8) | 24.2 (27.1) | 28.7 (18.9) | 0.051 |
CRP (mg/L) | 0.7 (0.2–2.8) | 0.5 (0.1–2.8) | 0.7 (0.3–2.2) | 1.0 (0.2–4.7) | 0.273 | 1.0 (0.4–4.0) | 1.2 (0.5–5.3) | 1.0 (0.4–3.3) | 1.1 (0.4–4.4) | 0.139 |
Phosphorus (mg/dL) | 3.7 (0.8) | 3.9 (1.1) | 3.7 (0.7) | 3.7 (0.7) | 0.012 | 3.8 (0.8) | 4.0 (1.0) | 3.8 (0.8) | 3.8 (0.7) | 0.104 |
Calcium (mg/dL) | 9.2 (0.6) | 9.2 (0.6) | 9.2 (0.6) | 9.2 (0.6) | 0.623 | 9.2 (0.7) | 9.1 (0.8) | 9.1 (0.7) | 9.3 (0.6) | 0.001 |
Outcomes | ||||||||||
Renal outcome 2 | 141 (22.5%) | 32 (34.4%) | 84 (24.2%) | 25 (13.3%) | <0.001 | 182 (28.3%) | 16 (29.6%) | 90 (31.9%) | 76 (24.8%) | 0.318 |
All-cause mortality | 78 (12.4%) | 12 (12.9%) | 37 (10.7%) | 29 (15.4%) | 0.277 | 110 (17.1%) | 11 (20.4%) | 50 (17.7%) | 49 (16.0%) | 0.691 |
Variable | Non-MetS | p | MetS | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
All | HbA1c < 5% | HbA1c 5–5.7% | HbA1c ≥ 5.7% | All | HbA1c < 5% | HbA1c 5–5.7% | HbA1c ≥ 5.7% | |||
Components of metabolic syndrome | ||||||||||
MetS scores | 1.5 (0.7) | 1.3 (0.8) | 1.5 (0.7) | 1.6 (0.6) | 0.002 | 3.6 (0.7) | 3.6 (0.7) | 3.4 (0.6) | 3.7 (0.7) | <0.001 |
Waist criteria | 133 (21.2%) | 14 15.1%) | 73 (21.0%) | 46 (24.5%) | 0.191 | 500 (77.9%) | 44 (81.5%) | 201 (71.3%) | 255 (83.3%) | 0.002 |
Blood pressure criteria | 425 (67.7%) | 54 (58.1%) | 245 (70.6%) | 126 (67.0%) | 0.070 | 589 (91.7%) | 50 (92.6%) | 260 (92.2%) | 279 (91.2%) | 0.879 |
HDL criteria | 167 (26.6%) | 28 (30.1%) | 89 (25.6%) | 50 (26.6%) | 0.688 | 489 (76.2%) | 43 (79.6%) | 228 (80.9%) | 218 (71.2%) | 0.020 |
Blood sugar criteria | 130 (20.7%) | 13 (14.0%) | 68 (19.6%) | 49 (26.1%) | 0.047 | 375 (58.4%) | 28 (51.9%) | 138 (48.9%) | 209 (68.3%) | <0.001 |
Triglyceride criteria | 69 (11.0%) | 11 (11.8%) | 31 (8.9%) | 27 (14.4%) | 0.153 | 342 (53.3%) | 28 (51.9%) | 144 (51.1%) | 170 (55.6%) | 0.539 |
Associated data | ||||||||||
Waist (cm) | 80.8 (11.1) | 77.1 (11.3) | 81.3 (10.7) | 81.7 (11.4) | 0.002 | 92.5 (10.9) | 93.9 (10.9) | 90.3 (10.2) | 94.4 (11.2) | <0.001 |
BMI (kg/m2) | 23.1 (3.3) | 22.4 (3.7) | 23.2 (3.2) | 23.3 (3.2) | 0.093 | 26.4 (4.0) | 25.7 (3.7) | 25.7 (3.9) | 27.2 (4.0) | <0.001 |
Systolic BP (mmHg) | 131.1 (18.9) | 129.1 (21.1) | 130.9 (18.3) | 132.4 (18.7) | 0.377 | 138.6 (18.2) | 139.9 (18.6) | 137.9 (18.2) | 139.1 (18.2) | 0.630 |
Diastolic BP (mmHg) | 79.3 (12.6) | 78.1 (14.2) | 79.9 (12.5) | 78.7 (12.0) | 0.345 | 82.5 (12.5) | 83.2 (12.0) | 82.6 (13.6) | 82.2 11.6) | 0.830 |
Total cholesterol (mg/dL) | 194 (168–222) | 187 (157–217) | 199 (168–228) | 191 (170–219) | 0.108 | 192 (168–223) | 188 (157–221) | 188 (166–222) | 196 (171–224) | 0.819 |
Triglyceride (mg/dL) | 98 (71–125) | 95 (68–128) | 93 (71–122) | 102 (79–134) | 0.692 | 155 (109–211) | 152 (108–193) | 150 (106–205) | 162 (112–223) | 0.919 |
HDL cholesterol (mg/d) | 50.9 (15.2) | 50.3 (16.6) | 52.2 (15.8) | 49.0 (13.0) | 0.056 | 38.8 (11.1) | 37.3 (9.9) | 38.1 (11.2) | 39.8 (11.0) | 0.104 |
Blood glucose (mg/dL) | 94.7 (16.0) | 90.3 (13.1) | 93.8 (10.7) | 98.6 (23.2) | <0.001 | 103.8 (18.7) | 101.7 (16.1) | 98.9 (11.8) | 108.6 (22.7) | <0.001 |
HbA1c (%) | 5.5 (0.6) | 4.6 (0.4) | 5.4 (0.2) | 6.1 (0.3) | <0.001 | 5.7 (0.6) | 4.5 (0.4) | 5.5 (0.2) | 6.2 (0.4) | <0.001 |
TyG index | 8.4 (0.5) | 8.3 (0.5) | 8.4 (0.5) | 8.5 (0.5) | 0.003 | 9.0 (0.5) | 8.9 (0.7) | 9.0 (0.5) | 9.1 (0.5) | <0.001 |
Variables | Beta Coefficient (95% CI) | p Value |
---|---|---|
Age (years) | 0.004 (0.002 to 0.007) | <0.001 |
Sex (female vs. male) | 0.034 (−0.040 to 0.108) | 0.362 |
Cardiovascular disease | 0.068 (−0.024 to 0.159) | 0.146 |
Smoking | 0.074 (−0.024 to 0.172) | 0.137 |
MetS Components | ||
Waist criteria (+) | 0.114 (0.049 to 0.179) | 0.001 |
Blood pressure criteria (+) | 0.092 (0.000 to 0.184) | 0.050 |
HDL criteria (+) | −0.056 (−0.122 to−0.009) | 0.091 |
Blood sugar criteria (+) | 0.158 (0.090 to 0.225) | <0.001 |
Triglyceride criteria (+) | −0.024 (−0.122 to 0.075) | 0.637 |
Laboratory data | ||
eGFR (mL/min/1.73 m2) | 0.000 (−0.002 to 0.001) | 0.889 |
Log-UPCR | 0.023 (−0.041 to 0.088) | 0.447 |
Hemoglobin (g/dL) | 0.023 (0.004 to 0.042) | 0.019 |
Albumin (g/dL) | 0.007 (−0.071 to 0.085) | 0.863 |
Log-CRP | 0.040 (0.002 to 0.078) | 0.038 |
Phosphorus (mg/dL) | −0.030 (−0.074 to 0.015) | 0.188 |
Malnutrition–inflammation * | −0.056 (−0.114 to −0.001) | 0.043 |
TyG index | 0.165 (0.080 to 0.250) | <0.001 |
Non-MetS | MetS | |||||
---|---|---|---|---|---|---|
Hba1c < 5% | Hba1c 5–5.7% | Hba1c ≥ 5.7% | Hba1c < 5% | Hba1c 5–5.7% | Hba1c ≥ 5.7% | |
HR for renal outcome | ||||||
Unadjusted | 1 (reference) | 0.57 (0.38–0.85) * | 0.30 (0.18–0.50) * | 1 (reference) | 0.87 (0.51–1.49) | 0.64 (0.37–1.10) |
Fully adjusted | 1 (reference) | 0.49 (0.32–0.77) * | 0.25 (0.14–0.45) * | 1 (reference) | 2.04 (1.11–3.74) * | 2.00 (1.06–3.78) * |
HR for all-cause mortality | ||||||
Unadjusted | 1 (reference) | 0.78 (0.40–1.49) | 1.14 (0.58–2.24) | 1 (reference) | 0.76 (0.40–1.46) | 0.67 (0.35–1.29) |
Fully adjusted | 1 (reference) | 0.65 (0.34–1.24) | 0.57 (0.29–1.11) | 1 (reference) | 0.93 (0.47–1.82) | 1.00 (0.51–1.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, C.-C.; Zhen, Y.-Y.; Niu, S.-W.; Lin, K.-D.; Lin, H.Y.-H.; Lee, J.-J.; Chang, J.-M.; Kuo, I.-C. Predictive Value of HbA1c and Metabolic Syndrome for Renal Outcome in Non-Diabetic CKD Stage 1–4 Patients. Biomedicines 2022, 10, 1858. https://doi.org/10.3390/biomedicines10081858
Hung C-C, Zhen Y-Y, Niu S-W, Lin K-D, Lin HY-H, Lee J-J, Chang J-M, Kuo I-C. Predictive Value of HbA1c and Metabolic Syndrome for Renal Outcome in Non-Diabetic CKD Stage 1–4 Patients. Biomedicines. 2022; 10(8):1858. https://doi.org/10.3390/biomedicines10081858
Chicago/Turabian StyleHung, Chi-Chih, Yen-Yi Zhen, Sheng-Wen Niu, Kun-Der Lin, Hugo You-Hsien Lin, Jia-Jung Lee, Jer-Ming Chang, and I-Ching Kuo. 2022. "Predictive Value of HbA1c and Metabolic Syndrome for Renal Outcome in Non-Diabetic CKD Stage 1–4 Patients" Biomedicines 10, no. 8: 1858. https://doi.org/10.3390/biomedicines10081858
APA StyleHung, C. -C., Zhen, Y. -Y., Niu, S. -W., Lin, K. -D., Lin, H. Y. -H., Lee, J. -J., Chang, J. -M., & Kuo, I. -C. (2022). Predictive Value of HbA1c and Metabolic Syndrome for Renal Outcome in Non-Diabetic CKD Stage 1–4 Patients. Biomedicines, 10(8), 1858. https://doi.org/10.3390/biomedicines10081858