Therapeutic Potential of Glucagon-like Peptide-1 Agonists in Polycystic Ovary Syndrome: From Current Clinical Evidence to Future Perspectives
Abstract
:1. Introduction
2. Current Position of GLP-1 Receptor Agonists in PCOS Management
2.1. The Efficacy of GLP-1 Receptor Agonists in Weight Management in PCOS
Population Studied | Study Type | Duration | Study Arms | Weight Loss | Other Remarks | Ref |
---|---|---|---|---|---|---|
40 obese nondiabetic women with PCOS who had lost <5% body weight during pretreatment with metformin | Open-label, prospective study | 12 weeks | Metformin 1000 mg BID | −1.2 ± 1.4 kg | WC also decreased by 5.5 ± 3.8 cm in the combination arm compared with 3.2 ± 2.9 cm in liraglutide and 1.6 ± 2.9 cm in the metformin arm. The majority of patients who achieved at least 5% of weight reduction were on combination therapy or liraglutide monotherapy. | [20] |
liraglutide 1.2 mg QD s.c. | −3.8 ± 3.7 kg | |||||
metformin 1000 mg BID and liraglutide 1.2 mg QD s.c | −6.5 ± 2.8 kg | |||||
32 obese women with newly diagnosed PCOS | Open-label, prospective study | 12 weeks | Metformin 1000 mg BID | −2.3 kg | Comparable results were found for the reduction of BMI, WC and whole-body fat mass. However, in a subgroup of patients with the combination of extreme obesity and insulin resistance, the patients achieved better results with liraglutide compared to metformin. | [21] |
Liraglutide 1.2 mg QD s.c. | −3.0 kg | |||||
84 overweight/obese women with PCOS | Observational study | a minumum of 4 weeks; a mean duration of treatment was 27.8 weeks | Starting dose was 0.6 mg liraglutide given s.c. QD. If the weight was not reduced, the dose was increased to 1.2 mg and if necessary to 1.8 mg. | −9.0 kg | 81.7% of patients achieved beyond 5% weight loss, and 32.9% of patients achieved more than 10% weight loss. | [22] |
72 women with PCOS, with a BMI > 25 kg/m2 and/or insulin resistance | Prospective, double-blind, placebo-controlled, randomized clinical trial | 26 weeks | Placebo | 0.2 kg | Body weight reduction of more than 5% was achieved in 55% and 14% of participants in the liraglutide and placebo groups, respectively. In addition to liver fat content, VAT and SAT were reduced by 18.6% and 10.0%, respectively. | [23] |
liraglutide 1.8 mg QD s.c | −5.2 kg | |||||
44 obese women with PCOS | Open-label, prospective, randomized control trial | 12 weeks | Liraglutide 1.2 mg QD s.c. | −3.8 ± 3.5 kg | 59.1% of patients in the cobination groups vs. 42.9% of patients in the liraglutide-only group achieved beyond 5% weight reduction. | [24] |
metformin 1000 mg BID and liraglutide 1.2 mg QD s.c. | −6.2 ± 2.4 kg | |||||
31 obese patients with PCOS | Retrospective study | 6 months | Metformin 500 or 1000 mg daily | −4.9 kg | Liraglutide was superior in the analysis of the number of patients that achieved 5% or 10% weight loss. | [25] |
Liraglutide doses of 1.8 mg and 3.0 mg or semaglutide dosing up to 1 mg | −9.1 kg | |||||
50 overweight/obese PCOS women | Open-label prospective, randomized, clinical trial | 12 weeks | Metformin 500 mg TID | −2.1 ± 3.0 kg | WC decreased by 4.63 ± 4.4 cm in combination group compared with 1.72 ± 3.07 cm in the metformin-only group. | [26] |
metformin 500 mg TID, exenatide 2 mg QW | −3.8 ± 2.4 kg | |||||
60 overweight oligoovulatory women with PCOS | Open-label prospective, randomized, clinical trial | 24 weeks | Metformin 1000 mg BID | −1.6 ± 0.2 kg | Combination therapy was more efficient compared to to exenatide or metformin in reducing abdominal fat. | [27] |
exenatide 10 mcg BID | −3.2 ± 0.1 kg | |||||
metformin 1000 mg BID and exenatide 10 mcg BID | −6.0 ± 0.5 kg | |||||
19 obese women with PCOS | Open label, prospective | 6 months | Liraglutide 1.8 mg QD | −3.0 ± 4.2 kg | / | [28] |
45 obese PCOS women | Open-label, prospective, randomized clinical trial | 12 weeks | Metformin 1000 mg BID | −0.2 ± 1.8 kg | Liraglutide also resulted in significant decrease in VAT area and was superior in reducing WC. | [29] |
roflumilast 500 mcg QD | −2.1 ± 2.0 kg | |||||
liraglutide 1.2 mg QD | −3.1 ± 3.5 kg | |||||
30 obese PCOS women | Open-label prospective randomized clinical trial | 12 weeks | Metformin 1000 mg BID and liraglutide 1.2 mg QD | −3.6 ± 2.5 kg | WC reduction in liraglutide arm was greater than in combination. | [30] |
liraglutide 3.0 mg QD | −6.3 ± 3.7 kg | |||||
28 infertile obese PCOS patients | Open-label prospective randomized clinical trial | 12 weeks | Metformin 1000 mg BID | −7.0 ± 6.0 kg | Weight reduction beyond 5% was seen in 69.2% of patients in the combination group and 57.1% of patients in the metformin-only group. Significant and similar decreases in WC, VAT area, and volume were noticed between groups. | [31] |
metformin 1000 mg BID combined with liraglutide 1.2 mg QD | −7.5 ± 3.9 kg | |||||
176 overweight/obese women with PCOS | Open-label prospective, randomized clinical trial | 24 weeks | Metformin 1000 mg BID | −2.3 ± 0.6 kg | 47% of patients achieved beyond 5% weight loss with exenatide therapy in the first 12 weeks, but no subject demonstrated similar weight loss with MET therapy. The decrease in WC was more significant in patients on exenatide than those in patients on metformin. Exenatide therapy resulted in significant decreases in abdominal fat. | [32] |
exenatide 10 μg BID (first 12 weeks), metformin 1000 mg BID (second 12 weeks) | −4.3 ± 1.3 kg | |||||
30 overweight/obese anovulatory women with all 3 Rotterdam criteria | Open label, prospective study | 16 weeks | exenatide 5 mcg BD for 4 weeks then 10 mcg BD for 12 weeks | −3.2 kg | There was no effect on WC but there was a reduction in hip circumference. | [33] |
32 overweight/obese PCOS patients | Prospective study | 12 weeks | the initial dose of exenatide 5 μg BD was increased to 10 μg BD after 1 month | −6.0 kg | After exenatide treatment, the body adipose distribution—related indexes, including body fat content, WC, and hipline circumference, decreased. | [34] |
119 nondiabetic obese women with PCOS | Single-blinded, randomized controlled trial | 24 weeks | once-weekly 2 mg exenatide (EQW) | −4.1 kg | The combination of exenatide and dapagliflozin resulted in superior weight and total body fat reductions than either therapy individually. | [35] |
dapagliflozin 10 mg daily (DAPA) | −1.4 kg | |||||
coadministered EQW/DAPA | −6.0 kg | |||||
DAPA/extended-release (ER) metformin 2000 mg daily (DAPA/MET) | −1.8 kg | |||||
phentermine 7.5 mg/topiramate extended release 46 mg ER daily | −9.0 kg | |||||
25 obese women with PCOS | Randomized single-blind, pilot study | 16 weeks | placebo | −1.9 ± 1.5 kg | Tongue fat tissue and fat proportion significantly reduced after semaglutide vs. placebo and were assocaited with those in body weight, BMI and WC. | [14] |
semaglutide 1.0 mg | −5.2 ± 4.0 kg | |||||
182 women with PCOS | Randomized controlled trial | 12 weeks | metformin 1000 mg BID | −3.6 kg | There was a significant decrease in WC in both treatment groups, and exenatide group was better in changes of WC than metformin group. | [36] |
exenatide 10 μg BID | −5.2 kg |
2.2. The Additional Metabolic Effects of GLP-1 Receptor Agonists in PCOS
2.3. The Effects of GLP-1 RAs on Menstrual Regularity in PCOS
2.4. The Effects of GLP-1 Receptor Agonists on Pregnancy Rate in PCOS
2.5. The Effects of GLP-1 Receptor Agonists on Cardiovascular Outcomes in PCOS
3. Comparison of GLP-1 Receptor Agonists to Metformin and the Potential Role of Their Combination
4. Safety Profile and Tolerability of GLP-1 Receptor Agonists in PCOS
5. The Potential Benefits of GLP-1 Receptor Agonists in PCOS beyond Weight Management
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Dumesic, D.A.; Chazenbalk, G.; Azziz, R. Polycystic ovary syndrome: Etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 2011, 7, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Dapas, M.; Dunaif, A. Deconstructing a Syndrome: Genomic Insights into PCOS Causal Mechanisms and Classification. Endocr. Rev. 2022, in press. [Google Scholar]
- Ee, C.; Pirotta, S.; Mousa, A.; Moran, L.; Lim, S. Providing lifestyle advice to women with PCOS: An overview of practical issues affecting success. BMC Endocr. Disord. 2021, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Whigham, L.D.; Butz, D.E.; Dashti, H.; Tonelli, M.; Johnson, L.K.; Cook, M.E.; Porter, W.P.; Eghbalnia, H.R.; Markley, J.L.; Lindheim, S.R. Metabolic Evidence of Diminished Lipid Oxidation in Women with Polycystic Ovary Syndrome. Curr. Metab. 2014, 2, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef] [PubMed]
- De Leo, V.; la Marca, A.; Petraglia, F. Insulin-lowering agents in the management of polycystic ovary syndrome. Endocr. Rev. 2003, 24, 633–667. [Google Scholar] [CrossRef]
- Naderpoor, N.; Shorakae, S.; de Courten, B.; Misso, M.L.; Moran, L.J.; Teede, H.J. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum. Reprod. Update 2015, 21, 560–574. [Google Scholar] [CrossRef]
- Rondanelli, M.; Perna, S.; Faliva, M.; Monteferrario, F.; Repaci, E.; Allieri, F. Focus on metabolic and nutritional correlates of polycystic ovary syndrome and update on nutritional management of these critical phenomena. Arch. Gynecol. Obstet. 2014, 290, 1079–1092. [Google Scholar] [CrossRef]
- Garvey, W.T. New Horizons. A New Paradigm for Treating to Target with Second-Generation Obesity Medications. J. Clin. Endocrinol. Metab. 2022, 107, e1339–e1347. [Google Scholar] [CrossRef]
- Scicchitano, P.; Dentamaro, I.; Carbonara, R.; Bulzis, G.; Dachille, A.; Caputo, P.; Riccardi, R.; Locorotondo, M.; Mandurino, C.; Ciccone, M.M. Cardiovascular Risk in Women With PCOS. Int. J. Endocrinol. Metab. 2012, 10, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Davies, M.J.; Norman, R.J.; Moran, L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update 2012, 18, 618–637. [Google Scholar] [CrossRef] [PubMed]
- Siamashvili, M.; Davis, S.N. Update on the effects of GLP-1 receptor agonists for the treatment of polycystic ovary syndrome. Expert Rev. Clin. Pharmacol. 2021, 14, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Jensterle Sever, M.; Ferjan, S.; Vovk, A.; Battelino, T.; Rizzo, M.; Janez, A. Semaglutide reduces fat accumulation in the tongue: A randomized single-blind, pilot study. Diabetes Res. Clin. Pract. 2021, 2, 178. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Nuffer, W.A.; Trujillo, J.M. Liraglutide: A New Option for the Treatment of Obesity. Pharmacotherapy 2015, 35, 926–934. [Google Scholar] [CrossRef]
- Lewis, A.L.; McEntee, N.; Holland, J.; Patel, A. Development and approval of rybelsus (oral semaglutide): Ushering in a new era in peptide delivery. Drug. Deliv. Transl. Res. 2022, 12, 1–6. [Google Scholar] [CrossRef]
- Cena, H.; Chiovato, L.; Nappi, R.E. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef]
- Wang, F.F.; Wu, Y.; Zhu, Y.H.; Ding, T.; Batterham, R.L.; Qu, F.; Hardiman, P.J. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: A systematic review and network meta-analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018, 19, 1424–1445. [Google Scholar] [CrossRef]
- Jensterle Sever, M.; Kocjan, T.; Pfeifer, M.; Kravos, N.A.; Janez, A. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur. J. Endocrinol. 2014, 170, 451–459. [Google Scholar] [CrossRef]
- Jensterle, M.; Kravos, N.A.; Pfeifer, M.; Kocjan, T.; Janez, A. A 12-week treatment with the long-acting glucagon-like peptide 1 receptor agonist liraglutide leads to significant weight loss in a subset of obese women with newly diagnosed polycystic ovary syndrome. Hormones 2015, 14, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.B.; Lindenberg, S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: An observational study. Front. Endocrinol. 2014, 5, 140. Available online: https://pubmed.ncbi.nlm.nih.gov/25221543 (accessed on 1 May 2022). [CrossRef] [PubMed]
- Frøssing, S.; Nylander, M.; Chabanova, E.; Frystyk, J.; Holst, J.J.; Kistorp, C.; Skouby, S.O.; Faber, J. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: A randomized clinical trial. Diabetes Obes. Metab. 2018, 20, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Goricar, K.; Janez, A. Metformin as an initial adjunct to low-dose liraglutide enhances the weight-decreasing potential of liraglutide in obese polycystic ovary syndrome: Randomized control study. Exp. Ther. Med. 2016, 11, 1194–1200. [Google Scholar] [CrossRef]
- Srinivasan, D.; Lofton, H.F. Effect of GLP-1 agonists on weight loss in patients with polycystic ovary syndrome and obesity: A single-center study. Obes. Pillars 2022, 2, 100016. Available online: https://www.sciencedirect.com/science/article/pii/S2667368122000079 (accessed on 1 May 2022). [CrossRef]
- Ma, R.L.; Deng, Y.; Wang, Y.F.; Zhu, S.Y.; Ding, X.S.; Sun, A.J. Short-term combined treatment with exenatide and metformin for overweight/obese women with polycystic ovary syndrome. Chin. Med. J. 2021, 134, 2882–2889. [Google Scholar] [CrossRef]
- Elkind-Hirsch, K.; Marrioneaux, O.; Bhushan, M.; Vernor, D.; Bhushan, R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 2670–2678. [Google Scholar] [CrossRef]
- Kahal, H.; Aburima, A.; Ungvari, T.; Rigby, A.S.; Coady, A.M.; Vince, R.V.; Ajjan, R.A.; Kilpatrick, E.S.; Naseem, K.M.; Atkin, S.L. The effects of treatment with liraglutide on atherothrombotic risk in obese young women with polycystic ovary syndrome and controls. BMC Endocr. Disord. 2015, 15, 14. [Google Scholar] [CrossRef]
- Jensterle, M.; Salamun, V.; Kocjan, T.; Vrtacnik Bokal, E.; Janez, A. Short term monotherapy with GLP-1 receptor agonist liraglutide or PDE 4 inhibitor roflumilast is superior to metformin in weight loss in obese PCOS women: A pilot randomized study. J. Ovarian. Res. 2015, 8, 32. [Google Scholar] [CrossRef]
- Jensterle, M.; Kravos, N.A.; Goričar, K.; Janez, A. Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: Randomized trial. BMC Endocr. Disord. 2017, 17, 5. [Google Scholar] [CrossRef]
- Salamun, V.; Jensterle, M.; Janez, A.; Vrtacnik Bokal, E. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: A pilot randomized study. Eur. J. Endocrinol. 2018, 179, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Zheng, S.Y.; Lin, R.; Xie, Y.J.; Chen, H.; Zheng, Y.; Liu, E.; Chen, L.; Yan, J.; et al. Efficacy of exenatide on weight loss, metabolic parameters and pregnancy in overweight/obese polycystic ovary syndrome. Clin. Endocrinol. 2017, 87, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.J.; Sathyapalan, T.; Vince, R.; Coady, A.M.; Ajjan, R.A.; Kilpatrick, E.S.; Atkin, S.L. The Effect of Exenatide on Cardiovascular Risk Markers in Women with Polycystic Ovary Syndrome. Front. Endocrinol. 2019, 10, 189. Available online: https://pubmed.ncbi.nlm.nih.gov/31001199 (accessed on 1 May 2022). [CrossRef]
- Tang, L.; Yuan, L.; Yang, G.; Wang, F.; Fu, M.; Chen, M.; Liu, D. Changes in whole metabolites after exenatide treatment in overweight/obese polycystic ovary syndrome patients. Clin. Endocrinol. (Oxf.) 2019, 91, 508–516. [Google Scholar] [CrossRef]
- Elkind-Hirsch, K.E.; Chappell, N.; Seidemann, E.; Storment, J.; Bellanger, D. Exenatide, Dapagliflozin, or Phentermine/Topiramate Differentially Affect Metabolic Profiles in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 3019–3033. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, E.; Zhang, Y.; Long, T.; Liu, X.; Gong, Y.; Mai, T.; Shen, H.; Chen, H.; Lin, R.; et al. Circulating zinc-α2-glycoprotein is reduced in women with polycystic ovary syndrome, but can be increased by exenatide or metformin treatment. Endocr. J. 2019, 66, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Guja, C.; Hardy, E.; Ahmed, A.; Dong, F.; Öhman, P.; Jabbour, S.J. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised control. Lancet Diabetes Endocrinol. 2016, 4, 1004–1016. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. Molecular mechanisms by which GLP-1 RA and DPP-4i induce insulin sensitivity. Life Sci. 2019, 234, 116776. [Google Scholar] [CrossRef]
- Yang, M.; Liu, R.; Li, S.; Luo, Y.; Zhang, Y.; Zhang, L.; Liu, D.; Wang, Y.; Xiong, Z.; Boden, G.; et al. Zinc-α2-glycoprotein is associated with insulin resistance in humans and is regulated by hyperglycemia, hyperinsulinemia, or liraglutide administration: Cross-sectional and interventional studies in normal subjects, insulin-resistant subjects, and subjects with newly diagnosed diabetes. Diabetes Care 2013, 36, 1074–1082. [Google Scholar]
- Lai, Y.; Chen, J.; Li, L.; Yin, J.; He, J.; Yang, M.; Yang, M.; Jia, Y.; Liu, D.; Liu, H.; et al. Circulating Zinc-α2-glycoprotein levels and Insulin Resistance in Polycystic Ovary Syndrome. Sci. Rep. 2016, 6, 25934. Available online: https://doi.org/10.1038/srep25934 (accessed on 1 May 2022). [CrossRef]
- Livadas, S.; Androulakis, I.; Angelopoulos, N.; Lytras, A.; Papagiannopoulos, F.; Kassi, G. Liraglutide administration improves hormonal/metabolic profile and reproductive features in women with HAIR-AN syndrome. Endocrinol. Diabetes Metab. Case Rep. 2020, 2020, 19–150. Available online: https://pubmed.ncbi.nlm.nih.gov/32554829 (accessed on 1 May 2022). [CrossRef] [PubMed]
- Kahal, H.; Abouda, G.; Rigby, A.S.; Coady, A.M.; Kilpatrick, E.S.; Atkin, S.L. Glucagon-like peptide-1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and nonalcoholic fatty liver disease. Clin. Endocrinol. 2014, 81, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Nylander, M.; Frøssing, S.; Clausen, H.V.; Kistorp, C.; Faber, J.; Skouby, S.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: A randomized clinical trial. Reprod. Biomed. Online 2017, 35, 121–127. [Google Scholar] [CrossRef]
- Jensterle, M.; Janez, A.; Fliers, E.; DeVries, J.H.; Vrtacnik-Bokal, E.; Siegelaar, S.E. The role of glucagon-like peptide-1 in reproduction: From physiology to therapeutic perspective. Hum. Reprod. Update 2019, 25, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, F. Successful Pregnancy after Improving Insulin Resistance with the Glucagon-Like Peptide-1 Analogue in a Woman with Polycystic Ovary Syndrome: A Case Report and Review of the Literature. Gynecol. Obstet. Investig. 2016, 81, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Osibogun, O.; Ogunmoroti, O.; Michos, E.D. Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention. Trends Cardiovasc. Med. 2020, 30, 399–404. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, Z.; Lou, H.; Zhu, G.; Huang, W.; Zhang, S.; Liu, F. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): A meta-analysis. Oncotarget 2016, 7, 33715–33721. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Warren. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Frandsen, K.B.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Nylander, M.; Frøssing, S.; Kistorp, C.; Faber, J.; Skouby, S.O. Liraglutide in polycystic ovary syndrome: A randomized trial, investigating effects on thrombogenic potential. Endocr. Connect. 2017, 6, 89–99. [Google Scholar] [CrossRef]
- Frøssing, S.; Nylander, M.; Kistorp, C.; Skouby, S.O.; Faber, J. Effect of liraglutide on atrial natriuretic peptide, adrenomedullin, and copeptin in PCOS. Endocr. Connect. 2018, 7, 115–123. Available online: https://pubmed.ncbi.nlm.nih.gov/29295870 (accessed on 1 May 2022). [CrossRef] [PubMed]
- Mannucci, E.; Tesi, F.; Bardini, G.; Ognibene, A.; Petracca, M.G.; Ciani, S.; Pezzatini, A.; Brogi, M.; Dicembrini, I.; Cremasco, F.; et al. Effects of metformin on glucagon-like peptide-1 levels in obese patients with and without Type 2 diabetes. Diabetes Nutr. Metab. 2004, 17, 336–342. [Google Scholar]
- Yasuda, N.; Inoue, T.; Nagakura, T.; Yamazaki, K.; Kira, K.; Saeki, T.; Tanaka, I. Enhanced secretion of glucagon-like peptide 1 by biguanide compounds. Biochem. Biophys. Res. Commun. 2002, 298, 779–784. [Google Scholar] [CrossRef]
- Han, Y.; Li, Y.; He, B. GLP-1 receptor agonists versus metformin in PCOS: A systematic review and meta-analysis. Reprod. Biomed. Online 2019, 39, 332–342. [Google Scholar] [CrossRef]
- Lyu, X.; Lyu, T.; Wang, X.; Zhu, H.; Pan, H.; Wang, L.; Yang, H.; Gong, F. The Antiobesity Effect of GLP-1 Receptor Agonists Alone or in Combination with Metformin in Overweight/Obese Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2021, 2021, 6616693. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.J.; Wang, D.J.; Song, W.; Shen, S.M.; Ge, W.H. The effectiveness and safety of liraglutide in treating overweight/obese patients with polycystic ovary syndrome: A meta-analysis. J. Endocrinol. Investig. 2022, 45, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, S.F.; Du, M.R.; Jiang, S. Meta-Analysis of the Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Patients with Polycystic Ovary Syndrome. Am. J. Ther. 2021, 29, e245–e248. [Google Scholar] [CrossRef]
- Ma, R.; Ding, X.; Wang, Y.; Deng, Y.; Sun, A. The therapeutic effects of glucagon-like peptide-1 receptor agonists and metformin on polycystic ovary syndrome: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e26295. [Google Scholar] [CrossRef]
- Greco, D. Normal pregnancy outcome after first-trimester exposure to liraglutide in a woman with Type 2 diabetes. Diabet. Med. 2015, 32, e29–e30. [Google Scholar] [CrossRef]
- Pontikis, C.; Yavropoulou, M.P.; Toulis, K.A.; Kotsa, K.; Kazakos, K.; Papazisi, A.; Gotzamani-Psarakou, A.; Yovos, J.G. The incretin effect and secretion in obese and lean women with polycystic ovary syndrome: A pilot study. J. Womens Health (Larchmt) 2011, 20, 971–976. [Google Scholar] [CrossRef]
- Hussein, M.S.; Abushady, M.M.; Refaat, S.; Ibrahim, R. Plasma level of glucagon-like peptide 1 in obese Egyptians with normal and impaired glucose tolerance. Arch. Med. Res. 2014, 45, 58–62. [Google Scholar] [CrossRef] [PubMed]
- De Luis, D.A.; Aller, R.; Conde, R.; Primo, D.; Izaola, O.; Castro, M.J.; Sagrado, M.G. Basal glucagonlike peptide 1 levels and metabolic syndrome in obese patients. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2012, 60, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.D.; Larsen, M.O.; Jelic, K.; Lindgren, O.; Vikman, J.; Holst, J.J.; Deacon, C.F.; Ahrén, B. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. J. Clin. Endocrinol. Metab. 2010, 95, 872–878. [Google Scholar] [CrossRef]
- Muscelli, E.; Mari, A.; Casolaro, A.; Camastra, S.; Seghieri, G.; Gastaldelli, A.; Holst, J.J.; Ferrannini, E. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 2008, 57, 1340–1348. [Google Scholar] [CrossRef]
- Vrbikova, J.; Hill, M.; Bendlova, B.; Grimmichova, T.; Dvorakova, K.; Vondra, K.; Pacini, G. Incretin levels in polycystic ovary syndrome. Eur. J. Endocrinol. 2008, 159, 121–127. [Google Scholar] [CrossRef]
- Cassar, S.; Teede, H.J.; Harrison, C.L.; Joham, A.E.; Moran, L.J.; Stepto, N.K. Biomarkers and insulin sensitivity in women with Polycystic Ovary Syndrome: Characteristics and predictive capacity. Clin. Endocrinol. 2015, 83, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Gama, R.; Norris, F.; Wright, J.; Morgan, L.; Hampton, S.; Watkins, S.; Marks, V. The entero-insular axis in polycystic ovarian syndrome. Ann. Clin. Biochem. 1996, 33, 190–195. [Google Scholar]
- Svendsen, P.F.; Nilas, L.; Madsbad, S.; Holst, J.J. Incretin hormone secretion in women with polycystic ovary syndrome: Roles of obesity, insulin sensitivity, and treatment with metformin. Metabolism 2009, 58, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Li, S.; Xu, H.; Zhou, H.; Feng, R.; Liu, W.; Sun, Y.; Ma, J. Gastrointestinal hormone secretion in women with polycystic ovary syndrome: An observational study. Hum. Reprod. 2015, 30, 2639–2644. [Google Scholar] [CrossRef]
- Aydin, K.; Arusoglu, G.; Koksal, G.; Cinar, N.; Aksoy, D.Y.; Yildiz, B.O. Fasting and post-prandial glucagon like peptide 1 and oral contraception in polycystic ovary syndrome. Clin. Endocrinol. 2014, 81, 588–592. [Google Scholar] [CrossRef]
- Goldsammler, M.; Merhi, Z.; Buyuk, E. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis. Reprod. Biol. Endocrinol. 2018, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Bednarz, K.; Kowalczyk, K.; Cwynar, M.; Czapla, D.; Czarkowski, W.; Kmita, D.; Nowak, A.; Madej, P. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2022, 23, 4334. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, E.; Martínez, M.D.; Roncero, I.; Chowen, J.A.; García-Cuartero, B.; Gispert, J.D.; Sanz, C.; Vázquez, P.; Maldonado, A.; de Cáceres, J. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J. Neurochem. 2005, 92, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Beak, S.A.; Heath, M.M.; Small, C.J.; Morgan, D.G.; Ghatei, M.A.; Taylor, A.D.; Buckingham, J.C.; Bloom, S.R.; Smith, D.M. Glucagon-like peptide-1 stimulates luteinizing hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell line. J. Clin. Investig. 1998, 101, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Outeiriño-Iglesias, V.; Romaní-Pérez, M.; González-Matías, L.C.; Vigo, E.; Mallo, F. GLP-1 Increases Preovulatory LH Source and the Number of Mature Follicles, As Well As Synchronizing the Onset of Puberty in Female Rats. Endocrinology 2015, 156, 4226–4237. [Google Scholar] [CrossRef] [PubMed]
- Farkas, I.; Vastagh, C.; Farkas, E.; Bálint, F.; Skrapits, K.; Hrabovszky, E.; Fekete, C.; Liposits, Z. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Path. Front. Cell Neurosci. 2016, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Heppner, K.M.; Baquero, A.F.; Bennett, C.M.; Lindsley, S.R.; Kirigiti, M.A.; Bennett, B.; Bosch, M.A.; Mercer, A.J.; Rønnekleiv, O.K.; True, C.; et al. GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance. eNeuro 2017, 4, 2016. [Google Scholar] [CrossRef]
- Ma, X.; Bruning, J.; Ashcroft, F.M. Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 7125–7129. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Hasegawa, T.; Fujita, S.; Iwata, N.; Nagao, S.; Hosoya, T.; Inagaki, K.; Wada, J.; Otsuk, F. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells. J. Steroid. Biochem. Mol. Biol. 2018, 178, 82–88. [Google Scholar] [CrossRef]
- Bou Nemer, L.; Shi, H.; Carr, B.R.; Word, R.A.; Bukulmez, O. Effect of Body Weight on Metabolic Hormones and Fatty Acid Metabolism in Follicular Fluid of Women Undergoing In Vitro Fertilization: A Pilot Study. Reprod. Sci. 2019, 26, 404–411. [Google Scholar] [CrossRef]
- Gallwitz, B.; Giorgino, F. Clinical Perspectives on the Use of Subcutaneous and Oral Formulations of Semaglutide. Front. Endocrinol. 2021, 12, 645507. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.A.; Deshmukh, H.; Atkin, S.; Sathyapalan, T. The potential role of incretin-based therapies for polycystic ovary syndrome: A narrative review of the current evidence. Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018821989238. [Google Scholar] [CrossRef] [PubMed]
- Kahal, H.; Kilpatrick, E.; Rigby, A.; Coady, A.; Atkin, S. The effects of treatment with liraglutide on quality of life and depression in young obese women with PCOS and controls. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2019, 35, 142–145. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensterle, M.; Herman, R.; Janež, A. Therapeutic Potential of Glucagon-like Peptide-1 Agonists in Polycystic Ovary Syndrome: From Current Clinical Evidence to Future Perspectives. Biomedicines 2022, 10, 1989. https://doi.org/10.3390/biomedicines10081989
Jensterle M, Herman R, Janež A. Therapeutic Potential of Glucagon-like Peptide-1 Agonists in Polycystic Ovary Syndrome: From Current Clinical Evidence to Future Perspectives. Biomedicines. 2022; 10(8):1989. https://doi.org/10.3390/biomedicines10081989
Chicago/Turabian StyleJensterle, Mojca, Rok Herman, and Andrej Janež. 2022. "Therapeutic Potential of Glucagon-like Peptide-1 Agonists in Polycystic Ovary Syndrome: From Current Clinical Evidence to Future Perspectives" Biomedicines 10, no. 8: 1989. https://doi.org/10.3390/biomedicines10081989
APA StyleJensterle, M., Herman, R., & Janež, A. (2022). Therapeutic Potential of Glucagon-like Peptide-1 Agonists in Polycystic Ovary Syndrome: From Current Clinical Evidence to Future Perspectives. Biomedicines, 10(8), 1989. https://doi.org/10.3390/biomedicines10081989