TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Study Design
2.1.1. Semen Collection and Cryopreservation
2.1.2. DNA Integrity Tests: Alkaline and Neutral Comet Assay
2.2. Proteomic Analysis of Spermatozoa
2.2.1. Sample Preparation for Proteomic Analysis
2.2.2. Trypsin Digestion and TMT Labeling
2.2.3. Liquid Chromatography and Mass Spectrometry Analysis
2.2.4. Protein Identification, Quantification, and Data Analysis
2.2.5. Functional Enrichment Analysis
3. Results
3.1. Sperm DNA Fragmentation
3.2. Analysis of Differentially Expressed Proteins (DEPs)
3.3. Functional Enrichment and Clustering Analyses of DEPs
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DSB | Double-stranded breaks |
DEP | Differentially expressed protein |
FD | Fertile donors |
GO | Gene ontology |
LC | Liquid chromatography |
MS | Mass spectrometry |
RM | Recurrent miscarriage |
RM-OA | Recurrent miscarriage after oral antioxidant treatment |
ROS | Reactive oxygen species |
SDF | Sperm DNA fragmentation |
TMT | Tandem mass tag |
References
- Chard, T. Frequency of Implantation and Early Pregnancy Loss in Natural Cycles. Bailliere’s Clin. Obstet. Gynaecol. 1991, 5, 179–189. [Google Scholar] [CrossRef]
- Rai, R.; Regan, L. Recurrent Miscarriage. Lancet 2006, 368, 601–611. [Google Scholar] [CrossRef]
- Hogge, W.A.; Byrnes, A.L.; Lanasa, M.C.; Surti, U. The Clinical Use of Karyotyping Spontaneous Abortions. Am. J. Obs. Gynecol. 2003, 189, 397–400; discussion 400–402. [Google Scholar] [CrossRef]
- ASRM. Evaluation and Treatment of Recurrent Pregnancy Loss: A Committee Opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef]
- Fritz, B.; Hallermann, C.; Olert, J.; Fuchs, B.; Bruns, M.; Aslan, M.; Schmidt, S.; Coerdt, W.; Müntefering, H.; Rehder, H. Cytogenetic Analyses of Culture Failures by Comparative Genomic Hybridisation (CGH)–Re-Evaluation of Chromosome Aberration Rates in Early Spontaneous Abortions. Eur. J. Hum. Genet. 2001, 9, 539–547. [Google Scholar] [CrossRef]
- Quintero-Ronderos, P.; Laissue, P. Genetic Variants Contributing to Early Recurrent Pregnancy Loss Etiology Identified by Sequencing Approaches. Reprod Sci. 2020, 27, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Homer, H.A. Modern Management of Recurrent Miscarriage. Aust. N. Z. J. Obs. Gynaecol. 2019, 59, 36–44. [Google Scholar] [CrossRef]
- Stirrat, G.M. Recurrent Miscarriage I: Definition and Epidemiology. Lancet 1990, 336, 673–675. [Google Scholar] [CrossRef]
- Ewington, L.J.; Tewary, S.; Brosens, J.J. New Insights into the Mechanisms Underlying Recurrent Pregnancy Loss. J. Obs. Gynaecol. Res. 2019, 45, 258–265. [Google Scholar] [CrossRef]
- Woolner, A.M.F.; Nagdeve, P.; Raja, E.A.; Bhattacharya, S.; Bhattacharya, S. Family History and Risk of Miscarriage: A Systematic Review and Meta-Analysis of Observational Studies. Acta Obstet. Gynecol. Scand. 2020, 99, 1584–1594. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Yeste, M.; Salas-Huetos, A. The Relationship between Sperm Oxidative Stress Alterations and IVF/ICSI Outcomes: A Systematic Review from Nonhuman Mammals. Biology 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Barbăroșie, C.; Ambar, R.; Finelli, R. The Impact of Single- and Double-Strand DNA Breaks in Human Spermatozoa on Assisted Reproduction. Int. J. Mol. Sci. 2020, 21, 3882. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.E.M.; Aitken, R.J.; Conner, S.J.; De Iuliis, G.; Evenson, D.P.; Henkel, R.; Giwercman, G.A.; Gharagozloo, P. The Impact of Sperm DNA Damage in Assisted Conception and beyond: Recent Advances in Diagnosis and Treatment. Reprod. BioMedicine Online 2013, 27, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Borini, A.; Tarozzi, N.; Bizzaro, D.; Bonu, M.A.; Fava, L.; Flamigni, C.; Coticchio, G. Sperm DNA Fragmentation: Paternal Effect on Early Post-Implantation Embryo Development in ART. Hum. Reprod. 2006, 21, 2876–2881. [Google Scholar] [CrossRef] [PubMed]
- Yifu, P.; Lei, Y.; Shaoming, L.; Yujin, G.; Xingwang, Z. Sperm DNA Fragmentation Index with Unexplained Recurrent Spontaneous Abortion: A Systematic Review and Meta-Analysis. J. Gynecol. Obs. Hum. Reprod. 2020, 49, 101740. [Google Scholar] [CrossRef] [PubMed]
- McQueen, D.B.; Zhang, J.; Robins, J.C. Sperm DNA Fragmentation and Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Fertil. Steril. 2019, 112, 54–60.e3. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; García-Peiró, A.; Fernandez-Encinas, A.; Amengual, M.J.M.; Prada, E.; Cortés, P.; Navarro, J.; Benet, J. Double Stranded Sperm DNA Breaks, Measured by Comet Assay, Are Associated with Unexplained Recurrent Miscarriage in Couples without a Female Factor. PLoS ONE 2012, 7, e44679. [Google Scholar] [CrossRef]
- Robinson, L.; Gallos, I.D.; Conner, S.J.; Rajkhowa, M.; Miller, D.; Lewis, S.; Kirkman-Brown, J.; Coomarasamy, A. The Effect of Sperm DNA Fragmentation on Miscarriage Rates: A Systematic Review and Meta-Analysis. Hum. Reprod. 2012, 27, 2908–2917. [Google Scholar] [CrossRef]
- Gil-Villa, A.M.; Cardona-Maya, W.; Agarwal, A.; Sharma, R.; Cadavid, A. Assessment of Sperm Factors Possibly Involved in Early Recurrent Pregnancy Loss. Fertil. Steril. 2010, 94, 1465–1472. [Google Scholar] [CrossRef]
- Gupta, S.; Finelli, R.; Agarwal, A.; Henkel, R. Total Antioxidant Capacity-Relevance, Methods and Clinical Implications. Andrologia 2021, 53, e13624. [Google Scholar] [CrossRef]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for Male Subfertility. Cochrane Database Syst. Rev. 2019, 3, CD007411. [Google Scholar] [CrossRef] [PubMed]
- Casanovas, A.; Ribas-Maynou, J.; Lara-Cerrillo, S.; Jimenez-Macedo, A.R.; Hortal, O.; Benet, J.; Carrera, J.; García-Peiró, A. Double-Stranded Sperm DNA Damage Is a Cause of Delay in Embryo Development and Can Impair Implantation Rates. Fertil. Steril. 2019, 111, 699–707.e1. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Zhang, Y.; Wang, Y.; Wang, J.; An, F.; Sun, X.; Yu, Z. Quantitative Proteomic Analysis of Sperm in Unexplained Recurrent Pregnancy Loss. Reprod. Biol. Endocrinol. 2019, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Sutovsky, P.; Aarabi, M.; Miranda-Vizuete, A.; Oko, R. Negative Biomarker Based Male Fertility Evaluation: Sperm Phenotypes Associated with Molecular-Level Anomalies. Asian J. 2015, 17, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Encinas, A.; García-Peiró, A.; del Rey, J.; Ribas-Maynou, J.; Abad, C.; Amengual, M.J.; Prada, E.; Navarro, J.; Benet, J. Proteomic Analysis in Seminal Plasma of Fertile Donors and Infertile Patients with Sperm DNA Fragmentation. Int. J. Mol. Sci. 2020, 21, 5046. [Google Scholar] [CrossRef] [PubMed]
- Nazari, L.; Salehpour, S.; Hosseini, S.; Allameh, F.; Jahanmardi, F.; Azizi, E.; Ghodssi-Ghassemabadi, R.; Hashemi, T. Effect of Antioxidant Supplementation Containing L-Carnitine on Semen Parameters: A Prospective Interventional Study. JBRA Assist. Reprod. 2020, 25, 76–80. [Google Scholar] [CrossRef]
- Gual-Frau, J.; Abad, C.; Amengual, M.J.; Hannaoui, N.; Checa, M.A.; Ribas-Maynou, J.; Lozano, I.; Nikolaou, A.; Benet, J.; García-Peiró, A.; et al. Oral Antioxidant Treatment Partly Improves Integrity of Human Sperm DNA in Infertile Grade i Varicocele Patients. Hum. Fertil. 2015, 18, 225–229. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; García-Peiró, A.; Abad, C.; Amengual, M.J.; Navarro, J.; Benet, J. Alkaline and Neutral Comet Assay Profiles of Sperm DNA Damage in Clinical Groups. Hum. Reprod. 2012, 27, 652–658. [Google Scholar] [CrossRef]
- Cao, X.; Cui, Y.; Zhang, X.; Lou, J.; Zhou, J.; Bei, H.; Wei, R. Proteomic Profile of Human Spermatozoa in Healthy and Asthenozoospermic Individuals. Reprod. Biol. Endocrinol. 2018, 16, 16. [Google Scholar] [CrossRef]
- Pini, T.; Parks, J.; Russ, J.; Dzieciatkowska, M.; Hansen, K.C.; Schoolcraft, W.B.; Katz-Jaffe, M. Obesity Significantly Alters the Human Sperm Proteome, with Potential Implications for Fertility. J. Assist. Reprod. Genet. 2020, 37, 777–787. [Google Scholar] [CrossRef]
- Jodar, M.; Attardo-Parrinello, C.; Soler-Ventura, A.; Barrachina, F.; Delgado-Dueñas, D.; Cívico, S.; Calafell, J.M.; Ballescà, J.L.; Oliva, R. Sperm Proteomic Changes Associated with Early Embryo Quality after ICSI. Reprod. BioMedicine Online 2020, 40, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, G.; Jena, S.R.; Nayak, J.; Kar, S.; Samanta, L. Proteomic Signatures in Spermatozoa Reveal the Role of Paternal Factors in Recurrent Pregnancy Loss. World J. Mens. Health 2020, 38, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agarwal, A.; Mohanty, G.; Hamada, A.J.; Gopalan, B.; Willard, B.; Yadav, S.; du Plessis, S. Proteomic Analysis of Human Spermatozoa Proteins with Oxidative Stress. Reprod. Biol. Endocrinol. 2013, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Paiano, J.; Wu, W.; Yamada, S.; Sciascia, N.; Callen, E.; Paola Cotrim, A.; Deshpande, R.A.; Maman, Y.; Day, A.; Paull, T.T.; et al. ATM and PRDM9 Regulate SPO11-Bound Recombination Intermediates during Meiosis. Nat. Commun. 2020, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-bauer, K.; Nixon, B. Molecular Changes Induced by Oxidative Stress That Impair Human Sperm Motility. Antioxidants 2020, 9, 134. [Google Scholar] [CrossRef]
- Conrad, M.; Schneider, M.; Seiler, A.; Bornkamm, G.W. Physiological Role of Phospholipid Hydroperoxide Glutathione Peroxidase in Mammals. Biol. Chem. 2007, 388, 1019–1025. [Google Scholar] [CrossRef]
- Puglisi, R.; Maccari, I.; Pipolo, S.; Mangia, F.; Boitani, C. The Nuclear Form of Glutathione Peroxidase 4 Colocalizes and Directly Interacts with Protamines in the Nuclear Matrix during Mouse Sperm Chromatin Assembly. Spermatogenesis 2014, 4, e28460. [Google Scholar] [CrossRef]
- Meseguer, M.; de los Santos, M.J.; Simón, C.; Pellicer, A.; Remohí, J.; Garrido, N. Effect of Sperm Glutathione Peroxidases 1 and 4 on Embryo Asymmetry and Blastocyst Quality in Oocyte Donation Cycles. Fertil. Steril. 2006, 86, 1376–1385. [Google Scholar] [CrossRef]
- Puglisi, R.; Maccari, I.; Pipolo, S.; Conrad, M.; Mangia, F.; Boitani, C. The Nuclear Form of Glutathione Peroxidase 4 Is Associated with Sperm Nuclear Matrix and Is Required for Proper Paternal Chromatin Decondensation at Fertilization. J. Cell Physiol. 2012, 227, 1420–1427. [Google Scholar] [CrossRef]
- Ward, W.S. Function of Sperm Chromatin Structural Elements in Fertilization and Development. Mol Hum Reprod 2010, 16, 30–36. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Benet, J. Single and Double Strand Sperm DNA Damage: Different Reproductive Effects on Male Fertility. Genes 2019, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.D.; Griffin, F.J.; Clark, W.H. Immunological Characterisation of the Acrosomal Filament in the Marine Shrimp Sicyonia Ingentis. Zygote 1998, 6, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Maunoury, R.; Hill, A.M. Immunocytochemical Localization in Human Spermatozoa of Tubulin and the Associated High Molecular Weight Proteins MAP1 and MAP2. Comptes Rendus Seances L’academie Sci. Ser. D Sci. Nat. 1980, 291, 425–428. [Google Scholar]
- Magley, R.A.; Rouhana, L. Tau Tubulin Kinase Is Required for Spermatogenesis and Development of Motile Cilia in Planarian Flatworms. Mol. Biol. Cell 2019, 30, 2155–2170. [Google Scholar] [CrossRef]
- Wang, C.; Yang, H.; Gao, C. Potential Biomarkers for Heart Failure. J. Cell. Physiol. 2019, 234, 9467–9474. [Google Scholar] [CrossRef] [PubMed]
- Ooshio, T.; Irie, K.; Morimoto, K.; Fukuhara, A.; Imai, T.; Takai, Y. Involvement of LMO7 in the Association of Two Cell-Cell Adhesion Molecules, Nectin and E-Cadherin, through Afadin and α-Actinin in Epithelial Cells. J. Biol. Chem. 2004, 279, 31365–31373. [Google Scholar] [CrossRef]
- Te Velthuis, A.J.W.; Bagowski, C.P. PDZ and LIM Domain-Encoding Genes: Molecular Interactions and Their Role in Development. Sci. World J. 2007, 7, 1470–1492. [Google Scholar] [CrossRef]
- Clarke, J.P.; Mearow, K.M. Cell Stress Promotes the Association of Phosphorylated HspB1 with F-Actin. PLoS ONE 2013, 8, e68978. [Google Scholar] [CrossRef]
- McReynolds, S.; Dzieciatkowska, M.; Stevens, J.; Hansen, K.C.; Schoolcraft, W.B.; Katz-Jaffe, M.G. Toward the Identification of a Subset of Unexplained Infertility: A Sperm Proteomic Approach. Fertil. Steril. 2014, 102, 692–699. [Google Scholar] [CrossRef]
- Hosseinifar, H.; Gourabi, H.; Salekdeh, G.H.; Alikhani, M.; Mirshahvaladi, S.; Sabbaghian, M.; Modarresi, T.; Gilani, M.A.S. Study of Sperm Protein Profile in Men with and without Varicocele Using Two-Dimensional Gel Electrophoresis. Urology 2013, 81, 293–300. [Google Scholar] [CrossRef]
- Mohanty, G.; Jena, S.R.; Nayak, J.; Kar, S.; Samanta, L. Quantitative Proteomics Decodes Clusterin as a Critical Regulator of Paternal Factors Responsible for Impaired Compensatory Metabolic Reprogramming in Recurrent Pregnancy Loss. Andrologia 2020, 52, e13498. [Google Scholar] [CrossRef] [PubMed]
- Erenpreiss, J.; Spano, M.; Erenpreisa, J.; Bungum, M.; Giwercman, A. Sperm Chromatin Structure and Male Fertility: Biological and Clinical Aspects. Asian J. Androl. 2006, 8, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Manochantr, S.; Chiamchanya, C.; Sobhon, P. Relationship between Chromatin Condensation, DNA Integrity and Quality of Ejaculated Spermatozoa from Infertile Men. Andrologia 2012, 44, 187–199. [Google Scholar] [CrossRef]
- Darmishonnejad, Z.; Zarei-Kheirabadi, F.; Tavalaee, M.; Zarei-Kheirabadi, M.; Zohrabi, D.; Nasr-Esfahani, M.H. Relationship between Sperm Telomere Length and Sperm Quality in Infertile Men. Andrologia 2020, 52, e13546. [Google Scholar] [CrossRef] [PubMed]
- Zini, A.; Zhang, X.; Gabriel, M.S. Sperm Nuclear Histone H2B: Correlation with Sperm DNA Denaturation and DNA Stainability. Asian J. Androl. 2008, 10, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.; Kruhlak, M.J.; Kim, J.; Tran, A.D.; Liu, J.; Nyswaner, K.; Shi, L.; Jailwala, P.; Sung, M.H.; Hakim, O.; et al. A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance. Cell Rep. 2014, 8, 1049–1062. [Google Scholar] [CrossRef]
- Naaby-Hansen, S.; Herr, J.C. Heat Shock Proteins on the Human Sperm Surface. J. Reprod. Immunol. 2010, 84, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, A.; Hillarp, A.; Giwercman, A.; Malm, J. Determination of Serum Amyloid P Component in Seminal Plasma and Correlations with Serum Hormone Levels in Young, Healthy Men. Scand. J. Clin. Lab. Investig. 2011, 71, 569–575. [Google Scholar] [CrossRef]
- Breathnach, S.M.; Kofler, H.; Sepp, N.; Ashworth, J.; Woodrow, D.; Pepys, M.B.; Hintner, H. Serum Amyloid P Component Binds to Cell Nuclei in Vitro and to in Vivo Deposits of Extracellular Chromatin in Systemic Lupus Erythematosus. J. Exp. Med. 1989, 170, 1433–1438. [Google Scholar] [CrossRef]
- Heidari, M.; Darbandi, S.; Darbani, M.; Amirjanati, N.; Bozorgmehr, M.; Zeraati, H.; Akhondi, M.M.; Sadeghi, M.R. Evaluating the Potential of Three Sperm Surface Antigens as Egg-Adhesion Biomarkers for Human Sperm Selection. J. Reprod. Infertil. 2018, 19, 203–210. [Google Scholar]
- Vanhoutteghem, A.; Messiaen, S.; Hervé, F.; Delhomme, B.; Moison, D.; Petit, J.M.; Rouiller-Fabre, V.; Livera, G.; Djian, P. The Zinc-Finger Protein Basonuclin 2 Is Required for Proper Mitotic Arrest, Prevention of Premature Meiotic Initiation and Meiotic Progression in Mouse Male Germ Cells. Development 2014, 141, 4298–4310. [Google Scholar] [CrossRef] [PubMed]
Group and Pathology | Oxidative DNA Damage (Alkaline Comet) | Double-Strand Breaks (Neutral Comet) |
---|---|---|
FD (n = 5) | 37.4 ± 12.64 | 51.6 ± 14.18 |
RM (n = 5) | 43.8 ± 11.07 | 75.6 ± 4.04 * |
RM-OA (n = 5) | 43.6 ± 1.51 | 64.2 ± 6.09 |
FD vs. RM | FD vs. RM-OA | |||||
---|---|---|---|---|---|---|
Protein Name | Gene Name | Uniprot Ac | Ratio FD/RM | p-Value | Ratio FD/RM-OA | p-Value |
Upregulated | ||||||
28S ribosomal protein S31, mitochondrial | RT31_HUMAN | Q92665 | 1.86 | 0.037 | 1.61 | 0.037 |
Acrosin | ACRO_HUMAN | P10323 | 2.03 | 0.002 | 1.89 | 0.001 |
A-kinase anchor protein 3 | AKAP3_HUMAN | O75969 | 1.69 | 0.005 | 1.70 | 0.007 |
A-kinase anchor protein 4 | AKAP4_HUMAN | Q5JQC9 | 2.49 | 0.023 | 2.58 | 0.014 |
Ankyrin repeat and SOCS box protein 14 | ASB14_HUMAN | A6NK59 | 2.53 | 0.011 | 2.09 | 0.015 |
ATP synthase subunit alpha, mitochondrial | ATPA_HUMAN | P25705 | 1.49 | 0.018 | 1.63 | 0.008 |
Calcium-binding tyrosine phosphorylation-regulated protein | CABYR_HUMAN | O75952 | 2.10 | 0.001 | 1.59 | 0.005 |
Cathelicidin antimicrobial peptide | CAMP_HUMAN | P49913 | 1.56 | 0.045 | 1.69 | 0.022 |
Chromosome-associated kinesin KI4B | KIF4B_HUMAN | Q2VIQ3 | 2.10 | 0.001 | 1.59 | 0.006 |
Dynein light chain 1, cytoplasmic | DYL1_HUMAN | P63167 | 1.89 | 0.060* | 2.20 | 0.020 |
Glyceraldehyde-3-phosphate dehydrogenase, testis-specific | G3PT_HUMAN | O14556 | 1.92 | 0.015 | 1.98 | 0.010 |
Histone H2B type 1-A | H2B1A_HUMAN | Q96A08 | 2.17 | 0.002 | 2.33 | <0.001 |
Heat shock protein beta-1 | HSPB1_HUMAN | P04792 | 2.30 | 0.012 | 2.67 | 0.003 |
LIM domain only protein 7 | LMO7_HUMAN | Q8WWI1 | 1.63 | 0.026 | 1.12 | 0.632 * |
Matrix metalloproteinase-28 | MMP28_HUMAN | Q9H239 | 1.99 | 0.008 | 1.64 | 0.033 |
Microtubule-associated protein 2 | MTAP2_HUMAN | P11137 | 3.20 | <0.001 | 2.54 | <0.001 |
Neurofilament heavy polypeptide | NEFH_HUMAN | P12036 | 1.72 | 0.028 | 1.49 | 0.056 * |
Phospholipid hydroperoxide glutathione peroxidase | GPX4_HUMAN | P36969 | 1.80 | 0.024 | 2.08 | 0.002 |
PR domain zinc finger protein 2 | PRDM2_HUMAN | Q13029 | 4.49 | 0.012 | 2.76 | 0.022 |
Probable C-mannosyltransferase DPY19L2 | D19L2_HUMAN | Q6NUT2 | 2.19 | 0.019 | 2.05 | 0.022 |
Pyruvate kinase PKM | KPYM_HUMAN | P14618 | 2.03 | 0.009 | 1.85 | 0.010 |
Serum amyloid P component | SAMP_HUMAN | P02743 | 1.96 | 0.011 | 1.76 | 0.049 |
Sperm acrosome membrane-associated protein 4 | SACA4_HUMAN | Q8TDM5 | 1.61 | 0.067 * | 1.86 | 0.027 |
Sperm protein associated with the nucleus on the X chromosome B1 | SPNXB_HUMAN | Q9NS25 | 1.56 | 0.030 | 2.14 | 0.001 |
Sperm surface protein Sp17 | SP17_HUMAN | Q15506 | 2.73 | 0.001 | 2.19 | 0.001 |
Two-pore calcium channel protein 1 | TPC1_HUMAN | Q9ULQ1 | 1.74 | 0.007 | 1.60 | 0.029 |
Zona pellucida binding protein 1 | ZPBP1_HUMAN | Q9BS86 | 1.84 | 0.065* | 1.96 | 0.018 |
Downregulated | ||||||
Clusterin | CLUS_HUMAN | P10909 | 0.47 | <0.001 | 0.52 | 0.001 |
Hepatocyte growth factor activator | HGFA_HUMAN | Q04756 | 0.60 | 0.019 | 0.48 | <0.001 |
Nebulin-related anchoring protein | NRAP_HUMAN | Q86VF7 | 0.37 | 0.024 | 0.38 | 0.014 |
Prolactin-inducible protein | PIP_HUMAN | P12273 | 0.44 | 0.006 | 0.54 | <0.001 |
Ras-specific guanine nucleotide-releasing factor RalGPS1 | RGPS1_HUMAN | Q5JS13 | 0.29 | 0.012 | 0.37 | 0.001 |
Zinc finger protein basonuclin-2 | BNC2_HUMAN | Q6ZN30 | 0.36 | 0.046 | 0.43 | 0.065 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez-Encinas, A.; Ribas-Maynou, J.; García-Peiró, A.; Garcia-Segura, S.; Martinez-Pasarell, O.; Navarro, J.; Oliver-Bonet, M.; Benet, J. TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment. Biomedicines 2022, 10, 2014. https://doi.org/10.3390/biomedicines10082014
Fernandez-Encinas A, Ribas-Maynou J, García-Peiró A, Garcia-Segura S, Martinez-Pasarell O, Navarro J, Oliver-Bonet M, Benet J. TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment. Biomedicines. 2022; 10(8):2014. https://doi.org/10.3390/biomedicines10082014
Chicago/Turabian StyleFernandez-Encinas, Alba, Jordi Ribas-Maynou, Agustín García-Peiró, Sergio Garcia-Segura, Olga Martinez-Pasarell, Joaquima Navarro, Maria Oliver-Bonet, and Jordi Benet. 2022. "TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment" Biomedicines 10, no. 8: 2014. https://doi.org/10.3390/biomedicines10082014
APA StyleFernandez-Encinas, A., Ribas-Maynou, J., García-Peiró, A., Garcia-Segura, S., Martinez-Pasarell, O., Navarro, J., Oliver-Bonet, M., & Benet, J. (2022). TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment. Biomedicines, 10(8), 2014. https://doi.org/10.3390/biomedicines10082014