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Abstract: Extracorporeal membrane oxygenation (ECMO) is a lifesaving support for respiratory
and cardiovascular failure. However, ECMO induces a systemic inflammatory response syndrome
that can lead to various complications, including endothelial dysfunction in the cerebral circulation.
We aimed to investigate whether ECMO-associated endothelial dysfunction also affected coronary
circulation. Ten-day-old piglets were randomized to undergo either 8 h of veno-arterial ECMO
(n = 5) or no treatment (Control, n = 5). Hearts were harvested and coronary arteries were dissected
and mounted as 3 mm rings in organ baths for isometric force measurement. Following precon-
traction with the thromboxane prostanoid (TP) receptor agonist U46619, concentration–response
curves to the endothelium-dependent vasodilator bradykinin (BK) and the nitric oxide (NO) donor
(endothelium-independent vasodilator) sodium nitroprusside (SNP) were performed. Relaxation
to BK was studied in the absence or presence of the NO synthase inhibitor Nω-nitro-L-arginine
methyl ester HCl (L-NAME). U46619-induced contraction and SNP-induced relaxation were similar
in control and ECMO coronary arteries. However, BK-induced relaxation was significantly impaired
in the ECMO group (30.4 ± 2.2% vs. 59.2 ± 2.1%; p < 0.0001). When L-NAME was present, no
differences in BK-mediated relaxation were observed between the control and ECMO groups. Taken
together, our data suggest that ECMO exposure impairs endothelium-derived NO-mediated coronary
relaxation. However, there is a NO-independent component in BK-induced relaxation that remains
unaffected by ECMO. In addition, the smooth muscle cell response to exogenous NO is not altered by
ECMO exposure.

Keywords: extracorporeal membrane oxygenation (ECMO); endothelial dysfunction; porcine
coronary arteries; bradykinin
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1. Introduction

Extracorporeal membrane oxygenation (ECMO) is a lifesaving procedure for children
and adults with reversible respiratory and/or cardiovascular failure refractory to standard
treatment [1,2]. ECMO remains essential in several conditions as a bridge to recovery,
transplantation, or other therapeutical decisions [3,4]. Indications and criteria for ECMO
have changed over the years, but it continues to be the only option for some patients failing
other medical therapies [5,6]. Since 1990, more than 45,000 newborns have been supported
with ECMO. Patient outcomes have improved over time, with survival to discharge or
transfer ranging from 73% and 43% to 42% for respiratory, cardiac, or cardiopulmonary
resuscitation indications, respectively [7,8]. Although ECMO technology and expertise have
increased throughout the years, the procedure is still burdened by complications, affecting
short- and long-term outcomes, including bleeding and neurological complications [7,9].

ECMO initiation is associated with an immediate and complex inflammatory reaction,
similar to that seen in systemic inflammatory response syndrome (SIRS) [10]. This SIRS-like
reaction induces oxidative stress and plays a central role in the pathogenesis of most ECMO
complications [10–12]. The exposure of patients’ blood to the extracorporeal surface leads
to the activation of coagulation and inflammatory cascades [10]. Typically, 1–2 h after
beginning the procedure, the contact between blood and components in the ECMO circuit
triggers complement-activating factors, which leads to the activation of neutrophils and
release of cytokines [13]. In addition, neutrophils produce different cytolytic proteins,
such as elastase, myeloperoxidase, and lysozyme [14,15]. The massive activation of the
pro-inflammatory and oxidative systems is very damaging, especially if the antioxidant
defenses are incompletely developed, as is frequency the case in the neonatal period [16]. In
addition, there is a growing recognition that ECMO exposure induces vascular endothelial
dysfunction [17,18]. However, studies on the effects of ECMO on endothelial function have
so far been limited to cerebral circulation [17,18].

Our hypothesis in the present study is that ECMO-induced endothelial dysfunction
is not limited to cerebral vessels. To test this hypothesis, we conducted an ex vivo study
of endothelial function in coronary arteries from 10-day-old piglets exposed to 8 h of
Veno Arterial (VA) ECMO. Endothelium-dependent relaxation was assessed by the re-
sponse to bradykinin (BK), a widely used mediator in evaluating endothelial function in
coronary arteries [19–24]. Moreover, BK levels increase markedly during ECMO and it
has been suggested that BK plays a key role in the pathophysiology of ECMO-associated
complications [10,25].

2. Materials and Methods

The experiments were conducted on 10-day-old Large White pigs (n = 10), weighing
between 4 and 6 kg and randomized into two groups: ECMO (n = 5) and control (n = 5).

All animal procedures were carried out in accordance with the national and European
legislative and administrative provisions in force. The study protocol was approved by
the animal welfare body (OPBA) of the Università degli Studi di Milano and by the Italian
Ministry of Health (authorization number 15/2015 PR).

2.1. Blood Collection for Extracorporeal Priming Circuit

Blood for extracorporeal priming circuit or transfusions was collected 24 h before at
the slaughterhouse and stored at 4 ◦C in sterilized 500 mL glass bottles. Citric dextrose acid
(70 mL) was added to each bottle as anticoagulant. In addition, vancomycin (25 mg) and
gentamicin (20 mg) were added to 500 mL of blood to reduce the risk of infection. Before
proceeding with the priming of the circuit, blood compatibility tests were performed with
the animal under study. Direct blood group typing was performed by manual method,
using ABO Ortho BioVue Card (Ortho Clinical Diagnostics, Pencoed, UK) on 3% blood cells
diluted in saline solution. Indirect blood group typing was manually performed on fresh
plasma through Reverse Diluent Ortho BioVue Card with standard blood cells A1, B, and
0 (Affirmagen, Ortho Clinical Diagnostics, Pencoed, UK). We repeated the same analyses
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at 4 ◦C to enhance ABO antibody-mediated activity. Major compatibility (recipient serum
versus donor red blood cells) and minor compatibility (donor plasma with the recipient red
cells) were manually performed using Ortho BioVue with anti-IgG, C3d polyspecific Cards.

The donor animal was chosen based on the negativity of both compatibility tests.

2.2. Surgical Procedures

Animals in both groups were sedated by an intramuscular (i.m.) administration of
medetomidine (0.025 mg/kg) and tiletamine/zolazepam (5 mg/kg). In addition, the lateral
auricular vein was cannulated by a 24 G cannula in all animals.

After ear vein cannulation, animals belonging to the control group were euthanized.
Animals in the ECMO group were anesthetized with a continuous intravenous (i.v.) infusion
of propofol (5 mg/kg/h), medetomidine (10 µg/kg/h), and rocuronium (7 µg/kg/min),
surgically tracheostomized, intubated, and ventilated (Baby Log 8000 Plus; Draeger; Ger-
many). The left carotid artery and left external jugular vein were cannulated for blood
pressure monitoring, blood sampling, and infusion of medications. A surgical cystostomy
with a 6 French Foley catheter (Coloplast A/S, 3050 Humlebaek, Denmark) was made to
monitor the diuresis during the extracorporeal procedure. In addition, i.v. ceftriaxone (2 g)
was administered as antibiotic therapy to prevent the onset of infectious complications.

Cannulation of the right carotid artery with an 8 Fr catheter (Medtronic, Minneapolis,
MN, USA) was achieved by placing the catheter up to the aortic arch, while cannulation of
the external jugular vein with a 10 Fr catheter (Medtronic, Minneapolis, MN, USA) was
established and advanced into the right atrium by pediatric surgeons.

All animals were systematically heparinized with a loading dose of heparin (100 IU/kg)
following a heparin maintenance dose (25 IU/kg/h).

2.3. ECMO Procedure

A polyvinyl chloride 1/4 (external diameter) × 1/16 (tube thickness) inch tubing
circuit and RotaFlow centrifugal blood pump with tip-to-tip BIOLINE coating and poly-
methylpentene oxygenator (Permanent Life Support (PLS) System and Quadrox iD
lung—Pediatric (Getinge Group, Gothenburg, Sweden)) was used for VA ECMO. Body
temperature was maintained at 38 ◦C during the extracorporeal procedure with a heater
unit HU 35 (Getinge Group, Gothenburg, Sweden). The CardioHelp System (Getinge
Group, Gothenburg, Sweden) monitored continuous venous and arterial pressure control.
Temperature (◦C), hemoglobin (Hb, g/dL), hematocrit (Hct, %), venous and arterial oxygen
saturation (SvO2, SaO2, %), oxygen delivery (DO2, mL/min), oxygen consumption (VO2,
mL/min), oxygen extraction ratio (O2ER), oxygen partial pressure (pO2, mmHg), and
carbon dioxide partial pressure (pCO2, mmHg) were continuously monitored by Spectrum
M4 (SpectrumMedical, Gloucester, UK) (Figure 1) [26,27].

As previously described, the extracorporeal circuit was primed with 125 mL of porcine
blood. The extracorporeal blood flow was fixed at 80–100 mL/kg/min with 0.25 L/m of
sweep gas to obtain an arterial pCO2 (PaCO2) 50 mmHg. The activated coagulation time
(ACT) was maintained between 180 and 200 s. The ventilator was set to deliver a tidal
volume of 7 mL/kg, PEEP 5 cm H2O, FiO2 0.3, respiratory rate 30 breaths/minute. All these
parameters were kept constant during the experiment. An electrolyte solution (100 mL/kg)
and a 10% glucose solution (20 mL/kg) were infused during the entire experiment.

Vital parameters were continuously recorded while blood gas analysis and ACT were
performed every 15 min in the first hour of ECMO, every 30 min in the second hour, and
every hour until the end of the experiment, 8 h from the beginning of the support (Figure 2).

2.4. Euthanasia and Tissue Collection

The animals in both groups were euthanized by medetomidine (50 µg/kg) and propo-
fol (10 mg/kg) overdose, followed by intravenous potassium chloride (20 mEq). The
heart was quickly removed after sacrifice and placed in the cold Krebs-Ringer bicarbonate
(KRB) solution.
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2.5. Vascular Reactivity Studies

The left anterior descending coronary artery was carefully dissected free of surround-
ing tissue and cut into 2–3 mm length rings under a dissection microscope. After dissection,
two L-shaped stainless-steel wires were inserted into the arterial lumen and the rings were
suspended in 5 mL organ baths filled with KRB solution maintained at 37 ◦C and aerated
with 95% O2-5% CO2 (pH 7.4), as previously described [28–30]. One wire was attached
to the chamber and the other to an isometric force-displacement transducer (model PRE
206-4, Cibertec, Madrid, Spain). The isometric force signal was amplified, A/D converted
and recorded (MP100 data acquisition system, BIOPAC System Inc. Santa Barbara, CA,
USA). As determined from previous experiments, an optimal resting tension of 1 g (9.8 mN)
was applied to the rings [30]. Tissues were allowed to equilibrate for 60–90 min. During
this period, they were restretched and washed every 30 min with warm KRB solution.
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Before starting the experiments, the rings were transiently challenged with 62.5 mM KCl
for 10 min to assess the functional state and establish a reference nonreceptor-mediated
contraction to standardize contractile responses. Next, the rings were washed three times
and then allowed to rest for 30 min.

Relaxant responses were studied following 10 min of contraction of the vessels with the
thromboxane prostanoid (TP) receptor 9,11-Dideoxy-9a,11a-methanoepoxy prostaglandin
F2a (U46619, 1 µM). This concentration elicited ~80% of the maximal contractile response
to the drug in the coronary artery, as determined in previous experiments [30]. When
contraction induced by U46619 reached a plateau, concentration–response curves were
performed for the different relaxant agents. The agent concentration was incremented once
the response had reached a plateau or after 5–10 min if no response had occurred or a clear
plateau was not reached.

The following relaxant agents were tested: the non-selective bradykinin receptors
(B1 and B2) agonist BK (10 pM—1 µM) as endothelium-dependent vasorelaxation and
the NO donor sodium nitroprusside (SNP, 10 pM—1 µM) as endothelium-independent
vasorelaxation. At the end of the concentration–response curve, we administered papaver-
ine hydrochloride (0.1 mM) for 10 min to assess whether the rings had already reached
maximum relaxation.

Some experiments were conducted with the inclusion of NO synthase (NOS) inhibitor
Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, 0.1 mM) for 30 min.

2.6. Drugs and Solutions

KRB buffer is composed as follows (in mmol L−1): NaCl, 118.5; KCl, 4.75; MgSO4·7H2O,
1.2; KH2PO4, 1.2; NaHCO3, 25.0; CaCl2, 2.5; glucose, 11.1. Solutions including different con-
centrations of KCl were prepared by adding KCl instead of NaCl in an equimolar amount.

U46619, SNP, and papaverine were obtained from Sigma-Aldrich Chemical Co (St. Louis,
MO, USA). All the other drugs were obtained from Tocris (Ballwin, MO, USA).

Papaverine hydrochloride, BK, L-NAME, and SNP were dissolved in distilled deion-
ized water. U46619 was dissolved in methyl acetate. The vehicles’ concentration did not
exceed 0.1% and did not influence the mechanical activity of the vessels.

2.7. Data Analysis

Results are shown as mean± standard errors of means (S.E.M.). Contraction responses
with U46619 were expressed as a percentage of contractions induced by KCl.

The relaxant responses with BK and SNP were expressed as a percentage of papaverine-
induced relaxation.

Sensitivity/potency (expressed as pD2 =−log EC50) and maximal relaxation (Emax) to
agonists were determined by fitting individual concentration–response data to a nonlinear
sigmoidal regression curve.

Mean value differences were calculated by Student’s t-test or two-way ANOVA fol-
lowed by Bonferroni’s post hoc t-test.

Differences were considered significant at a p < 0.05. GraphPad Prism was the software
used for all the analyses performed (version 9.0.1.151 for Windows, GraphPad Software,
San Diego CA, USA).

3. Results
3.1. ECMO Procedure

Ten animals were equally randomized into two groups. Age (Control group:
9.6 ± 1.28 days; ECMO group: 9.2 ± 1.16 days), sex (Control group: female 5; ECMO
group: female 5), and weight (Control group: 6.44 ± 0.16 kg; ECMO group: 6.28 ± 0.12 kg)
in each group were similar. No statistically significant differences were found between the
two groups.
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In ECMO animals, physiological variables were maintained during the study period.
The mean body temperature was 37.1 ± 1.1 ◦C, mean arterial oxygen saturation was
97.7 ± 1.7%, and mean systolic arterial pressure was 80–100 ± 10 mmHg (Table 1).

Table 1. Physiological characteristics during extracorporeal membrane oxygenation (ECMO).

Parameters Mean (S.E.M.)

HR (bpm) 142.3 (3.09)
SpO2 (%) 97.7 (0.43)

sAP (mmHg) 96.8 (2.35)
dAP (mmHg) 67.3 (2.39)
mAP (mmHg) 76.3 (2.22)

ACT (s) 211.3 (17.25)
Diuresis (mL/kg/h) 3.9 (0.57)

T (◦C) 37 (0.17)
pH 7.3 (0.00)

pO2 (mmHg) 47.6 (1.95)
pCO2 (mmHg) 45.6 (1.07)

BE −1.8 (0.46)
HCO3− 23.1 (0.43)

Lactate (mEq/L) 4.6 (0.26)
Hb (g/dL) 11.5 (0.26)

Hct (%) 35.4 (0.80)
K+ (mmol/L) 4 (0.08)

Na+ (mmol/L) 145.2 (0.53)
Cl− (mmol/L) 107.3 (0.58)
Ca2+ (mmol/L) 1.4 (0.02)

Cardiac Index (mL/kg/m) 86.6 (2.32)
ven P (mmHg) −28.4 (0.93)
int P (mmHg) 154.2 (9.97)
Art P (mmHg) 130.9 (4.24)

Sweep Gas (L/m) 0.25 (0.02)
FiO2 ECMO 0.4 (0.01)

SvO2 (%) 78.2 (0.12)
SaO2 (%) 98.5 (0.21)

DO2 (mL/m) 166.8 (4.36)
VO2 (mL/m) 37.2 (0.92)

O2ER 0.2 (0.00)
PEEP (cmH2O) 4.9 (0.01)
PIP (cmH2O) 20.5 (0.74)

RR (rpm) 31.9 (1.99)
FiO2 ventilator 0.2 (0.01)

ACT: activated coagulation time; Art P: arterial pressure; BE: base excess; dAP: diastolic arterial pressure; DO2:
oxygen delivery; ECMO: extracorporeal membrane oxygenation; FiO2: Fraction of inspired O2; Hb: hemoglobin;
Hct: hematocrit; HR: heart rate; int P: internal pressure; mAP: mean arterial pressure; O2ER: VO2/DO2 ratio;
pCO2: partial pressure of CO2; PEEP: positive end-expiratory pressure; PIP: peak inspiratory pressure; pO2: partial
pressure of O2; RR: respiratory rate; SaO2: arterial oxygen saturation; sAP: systolic arterial pressure; SpO2: oxygen
saturation; SvO2: venous oxygen saturation; T: Temperature; ven P: venous pressure; VO2: oxygen consumption.

3.2. Reactivity of Coronary Arteries

KCl and U46619 induced a tonic contraction of the arteries that was not significantly
different between the ECMO and the control group (Figure 3).

BK and SNP relaxed U46619-contracted vessels in a concentration-dependent manner.
ECMO-treated vessels showed a significantly reduced maximal response (Emax) to BK
as compared to control vessels (n = 5; p < 0.0001; two-way ANOVA) (Figure 4, Table 2).
However, the sensitivity (pD2) to BK was not significantly different between ECMO-
exposed and control vessels. SNP-induced relaxation was similar in ECMO-exposed
and control coronary arteries (Figure 5, Table 2). In order to assess whether the reduced
response to BK in ECMO coronary artery rings could be due to the reduced bioavailability
of endothelium-derived NO, additional experiments in the presence of the NOS inhibitor
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L-NAME were performed. After 30 min of incubation with L-NAME (0.1 mM), we observed
no difference between the control and ECMO groups on the relaxation induced by BK
(Figure 6, Table 2).
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precontracted with U46619 (1 µM). Data points are presented as mean ± S.E.M (n = 5 in both groups).
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4. Discussion

To the best of our knowledge, the present study is the first to investigate the effects of
ECMO exposure on vascular reactivity in vessels not supplying the central nervous system.
Coronary arteries of 10-day-old piglets exposed to 8 h of veno-arterial ECMO showed a
significant impairment in BK-mediated relaxation. In contrast, the relaxation mediated by
the NO donor SNP was not affected by ECMO exposure. Interestingly, the presence of the
NOS inhibitor L-NAME impaired BK-mediated relaxation in the control group to a level
comparable to the relaxation observed in ECMO-exposed coronary arteries. Taken together,
our data suggest that ECMO exposure impairs endothelium-derived NO (EDNO)-mediated
coronary relaxation. However, there is an EDNO-independent component in BK-induced
relaxation that remains unaffected by ECMO (Figure 7). Further, the smooth muscle cell
response to exogenous NO is not altered by ECMO exposure.
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Figure 7. Schematic representation of ECMO-induced endothelial dysfunction. B2: bradykinin
receptors 2; BK: bradykinin; cGMP: 3′-5′-cyclic guanosine monophosphate; ECMO: extracorporeal
membrane oxygenation; ECMO: extracorporeal membrane oxygenation; EDHF: endothelium-derived
hyperpolarization factor; eNOS: endothelial nitric oxide synthase; GTP: Guanosine-5′-triphosphate;
HNO: nitroxyl; K+: potassium ion; KCa: calcium-activated potassium channel; Kv: voltage-gated
potassium channel; L-NAME: Nω-nitro-L-arginine methyl ester HCl; Na+/K+ ATPase: sodium-
potassium adenosine triphosphatase; NO−: nitroxyl anion; NO•: neutral free radical nitric oxide;
sGC: soluble guanylate cyclase. The dashed red line has an inhibiting action. The solid black arrow
has an activation action. The dashed black arrow indicates the getaway of the K ion from the cell.
Created with BioRender.com.

A large body of literature has explored the physiology and pharmacology of BK
and defined two receptor types, B1 and B2, which mediate its multiple effects [31–33]. B2
receptors are constitutively expressed, mediating most of the vascular and metabolic actions
of BK [31–33]. Conversely, B1 receptors are generally absent in physiological conditions
but may induce various pathological conditions, including inflammation, tissue trauma,
and disruption of B2 receptors [31–33]. The mechanisms involved in BK-induced vascular
relaxation vary according to species, vascular bed, and vessel size, but the porcine coronary
artery is one of the vessels that has been most extensively studied [19–24]. BK induces
porcine coronary artery relaxation via endothelial B2 receptors. This effect can be blocked
partly by NOS inhibitors, such as L-NAME, suggesting a role for de novo synthesis of
NO from L-arginine by eNOS [19]. The relaxant effect of BK that is not blocked by NOS
inhibitors is attributed to EDHF [20–23].

Our experimental data suggest that ECMO exposure impairs endothelium-derived NO
(EDNO)-mediated coronary relaxation. However, there is an EDNO-independent compo-
nent of BK-induced relaxation that is attributed to endothelium-derived hyperpolarization
factor (EDHF) and remains unaffected by ECMO (Figure 7).

The release of EDHF from endothelial cells depends on the activation of endothe-
lial intermediate-conductance and small-conductance Ca2+-dependent K+-channels (IKCa,
SKCa). Several EDHF candidates have been proposed, but in porcine coronary arteries,
S-nitrosothiols have the strongest experimental support [20–23]. Subsequently, EDHF
induces smooth muscle cell hyperpolarization through activation of inwardly rectifying
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K+ channel (KIR) channels, Na+/K+-ATPase and/or large-conductance Ca2+-dependent K+

(BKCa) channels [20–23]. In addition, NO itself is capable of inducing hyperpolarization
via activation of Ca2+-dependent K+ (KV) channels and Na+-K+-ATPase. Furthermore,
BK also releases NO from stores of NO-containing factors, such as S-nitrosothiols [20–23].
Importantly, by reacting with other thiols at physiological pH, S-nitrosothiols yield nitroxyl
(HNO), a recently discovered EDHF. HNO acts as a relaxant, either directly or via its
conversion to NO [23] (Figure 7).

The main limitations of our study are that it is exclusively based on functional ex-
periments and we did not explore the EDHF pathway. However, as mentioned above,
there is substantial experimental evidence for an important role of the EDHF pathway in
BK-mediated relaxation in porcine coronary arteries [20–23]. Moreover, our results are
in agreement with those of Thollon et al., who demonstrated that, in porcine coronary
arteries subjected to angioplasty, EDNO-mediated relaxation induced by BK is reduced
while the EDHF component is not affected [24]. Thus, the production of EDHF explains
the maintained relaxation by BK despite the reduced endothelial production of NO [24].
We speculate that the same phenomenon occurs in coronary arteries exposed to ECMO.
Nevertheless, the relevance of the EDHF pathway increases as coronary artery size de-
creases [22,23]. Therefore, ECMO-induced endothelial dysfunction may have a lower
impact on coronary microcirculation.

Extracorporeal circulation raises endogenous BK levels to 20-times the basal levels [25].
The ECMO circuit appears to be a decisive factor in this process, as BK levels in the arterial
blood leaving the pump were higher than those in the mixed venous blood arriving at the
pump [25]. The mechanism is mediated by activation of the contact coagulation pathway
with an increase in FXIIa and reduction in C1 inhibitor [10]. The relevance of this process
is demonstrated by the anti-inflammatory efficacy of trials with inhibitors of FXIIa and
C1 esterase in patients in extracorporeal circulation [34,35]. In addition to plasma kinin
increase, the endothelial B1 and B2 receptors are upregulated during inflammation [36]. All
these data would suggest an increase in BK-induced effects in the ECMO group. However,
our study shows that ECMO-induced vascular impairment leads to a counter-regulatory
mechanism, attenuating the relaxant effects of BK.

As mentioned in the Introduction, the effects of ECMO on vascular reactivity have been
poorly investigated, except for the cerebrovascular bed [17,18]. Short et al. showed that
ECMO impaired cerebrovascular autoregulation in healthy newborn lambs [37]. Ingyinn
et al. investigated the association between ECMO and endothelial dysfunction. They
found that the middle cerebral arteries of newborn lambs exposed to ECMO had im-
paired myogenic response and altered endothelial function [17]. Further studies confirmed
this impairment, showing an alteration in the EDNO-dependent relaxation mediated by
acetylcholine stimulation, with recovery after adding a NO donor [18,38].

Possible explanations for the coronary endothelial dysfunction observed in our study,
as well as for the cerebral arteries, are the hemodynamic changes induced by the veno-
arterial ECMO. Indeed, the veno-arterial ECMO pump flow decreases the left ventricu-
lar output, reducing the physiological pulsatile arterial blood flow proportional to the
cardiac index [39]. Moreover, a Doppler evaluation of the pericallosal artery demon-
strated that the continuous non-pulsatile ECMO pump flow increases diastolic flow, expos-
ing vessels to shear stress, which altered the endothelial production of NO, limiting the
vasodilation [40,41].

In addition to hemodynamic changes, ECMO plays a direct role in developing en-
dothelial dysfunction. The exposure to the extracorporeal circuit and related SIRS-like,
transfusion burden, hyperoxia, hemolysis, and sequestration of antioxidants into the ECMO
circuit is responsible for reactive oxygen species (ROS) formation [11]. Oxidative stress
determines a direct endothelial injury and a phenotypic switch toward an inflammatory
and apoptotic stage in the smooth muscle cells [42]. Furthermore, the proportion between
ROS production and NO is the determinant of the vascular response to inflammation. In
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physiological conditions, NO predominance favors normal arterial vasomotor function,
endothelial barrier integrity, and an anti-adhesive endothelial cell surface [43].

Conversely, the balance between NO and ROS is shifted toward the latter species dur-
ing inflammation due to reduced NO biosynthesis and inactivation of available NO [44–46].
Oxidant excess reduces tetra-hydro-biopterin (BH4), the eNOS cofactor [47]. Insufficient
concentration of BH4 inhibits the normal oxygenase function of eNOS. This triggers an
active production of ROS by activating its reductase function, further favoring the harmful
effects in endothelial and vascular function [48]. Additionally, ROS are responsible for the
upregulation of cell adhesion molecules and chemotactic molecules through ROS-sensitive
nuclear transcription factors, such as NFkB and AP-1. This is particularly important
considering the exponential increase in pro-inflammatory cytokines during ECMO [49,50].

Furthermore, the endothelial dysfunction induced by oxidative stress activates the
intrinsic coagulation pathway, complement system, platelet dysfunction, fibrinolysis activa-
tion, and acquired von Willebrand syndrome, with a potential procoagulant effect [11,43].
Moreover, the clot formation triggers the consumption of coagulation factors and platelets,
thus, increasing the risk of disseminated intravascular coagulopathy and bleeding [10].
Further, the cannulation adds additional hemodynamic risk in terms of overload, shear
stress, and hypoxia.

Other limitations of our study are worth considering. First, we only evaluated the
functional impairment secondary to ECMO, but endothelial damage can be analyzed
from different perspectives. In particular, the plasma analysis of vascular growth factors,
stem cells, and the glycocalyx components seem to be promising markers, opening new
implications for ECMO and, consequently, new therapeutic strategies [51,52]. In this regard,
a recent study showed a reduction in endothelial progenitor (EPC) and mesenchymal
stromal cells (MSCs), associated with a decrease in vascular endothelial growth factor
(VEGF) and an increase in angiopoietin 2 (Ang-2) in ECMO-supported infants with a
congenital diaphragmatic hernia [51].

Furthermore, our model started from a healthy animal, while in the clinical setting,
infants requiring ECMO are always exposed to pre-ECMO mild to moderate hypoxia [39].
This probably involves a further accentuation or diversification of endothelial injury in
these tiny patients. However, this model allowed us to assess the ECMO-related endothelial
dysfunction specifically.

Lastly, an important limitation is related to our study’s small sample size due to
the ECMO procedure’s complexity and application of the three Rs ethics principle in
animal experimentation.

A better understanding of the endothelial pathways altered during ECMO could
provide new insights for improving outcomes. Unfortunately, data on the long-term
medical outcomes of neonatal ECMO survivors are limited and chronic cardiovascular
complications, such as hypertension, are recognized mainly as secondary to chronic kidney
injury [53]. For this reason, the cardiovascular outcome is not yet included in the long-term
recommendations for follow-up after neonatal ECMO, focusing more on neurocognitive,
motor, sensory, and growth outcomes [54]. In addition, an extensive patient cohort would
be necessary to verify how treatment with extracorporeal circulation could affect chronic
endothelial diseases, especially atherosclerosis. However, increasing knowledge in this
area is fundamental to implementing the multidisciplinary follow-up accompanying our
patients up to adolescence and beyond.

In conclusion, our findings confirm a reduction in BK-mediated vasorelaxation in
the coronary arteries of piglets undergoing 8 h of ECMO, suggesting that ECMO alters
EDNO-dependent coronary relaxation.
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