Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CA 19.9 and Nodal Involvment
3.2. CA 19.9 and Margin Status
3.3. CA 19.9 and Vascular Invasion
3.4. CA 19.9 and Early Local Recurrence
3.5. CA 19.9 and Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018, 24, 2047–2060. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921, Erratum in Cancer Res. 2014, 74, 4006. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Statistics Center. 2018. Available online: https://cancerstatisticscenter.cancer.org (accessed on 27 June 2022).
- Caputo, D.; Pozzi, D.; Farolfi, T.; Passa, R.; Coppola, R.; Caracciolo, G. Nanotechnology and pancreatic cancer management: State of the art and further perspectives. World J. Gastrointest. Oncol. 2021, 13, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; van Eijck, C.H.; Punt, C.J.; Suker, M.; Zwinderman, A.H.; Dohmen, M.A.; Groothuis, K.B.; Busch, O.R.; Besselink, M.G.; de Hingh, I.H.; et al. Dutch Pancreatic Cancer Group (DPCG). Preoperative radiochemotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC trial): Study protocol for a multicentre randomized controlled trial. Trials 2016, 17, 127. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Redaelli, C.; Lietz, M.; Seiler, C.A.; Friess, H.; Büchler, M.W. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br. J. Surg. 2004, 91, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Bockhorn, M.; Uzunoglu, F.G.; Adham, M.; Imrie, C.; Milicevic, M.; Sandberg, A.A.; Asbun, H.J.; Bassi, C.; Büchler, M.; Charnley, R.M.; et al. International Study Group of Pancreatic Surgery. Borderline resectable pancreatic cancer: A consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2014, 155, 977–988. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Bentrem, D.J.; Ko, C.Y.; Stewart, A.K.; Winchester, D.P.; Talamonti, M.S. National failure to operate on early stage pancreatic cancer. Ann. Surg. 2007, 246, 173–180. [Google Scholar] [CrossRef]
- Barton, J.G.; Bois, J.P.; Sarr, M.G.; Wood, C.M.; Qin, R.; Thomsen, K.M.; Kendrick, M.L.; Farnell, M.B. Predictive and prognostic value of CA 19.9 in resected pancreatic adenocarcinoma. J. Gastrointest. Surg. 2009, 13, 2050–2058. [Google Scholar] [CrossRef]
- Isaji, S.; Mizuno, S.; Windsor, J.A.; Bassi, C.; Fernández-Del Castillo, C.; Hackert, T.; Hayasaki, A.; Katz, M.H.G.; Kim, S.W.; Kishiwada, M.; et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 2018, 18, 2–11. [Google Scholar] [CrossRef]
- Takahashi, H.; Yamada, D.; Asukai, K.; Wada, H.; Hasegawa, S.; Hara, H.; Shinno, N.; Ushigome, H.; Haraguchi, N.; Sugimura, K.; et al. Clinical implications of the serum CA19-9 level in “biological borderline resectability” and “biological downstaging” in the setting of preoperative chemoradiation therapy for pancreatic cancer. Pancreatology 2020, 20, 919–928. [Google Scholar] [CrossRef]
- Galli, C.; Basso, D.; Plebani, M. CA 19.9: Handle with care. Clin. Chem. Lab. Med. 2013, 51, 1369–1383. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Asbun, H.; Bain, A.; Behrman, S.W.; Benson, A.B., 3rd; Binder, E.; Cardin, D.B.; Cha, C.; et al. Pancreatic Adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2017, 15, 1028–1061. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Ohmori, K.; Izawa, M.; Koike, T.; Kumamoto, K.; Furukawa, K.; Ando, T.; Kiso, M.; Yamaji, T.; Hashimoto, Y.; et al. Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res. 2004, 64, 4498–4505. [Google Scholar] [CrossRef]
- Berger, A.C.; Meszoely, I.M.; Ross, E.A.; Watson, J.C.; Hoffman, J.P. Undetectable preoperative levels of serum CA 19.9 correlate with improved survival for patients with resectable pancreatic adenocarcinoma. Ann. Surg. Oncol. 2004, 11, 644–649. [Google Scholar] [CrossRef]
- Luo, G.; Fan, Z.; Cheng, H.; Jin, K.; Guo, M.; Lu, Y.; Yang, C.; Fan, K.; Huang, Q.; Long, J.; et al. New observations on the utility of CA19-9 as a biomarker in Lewis negative patients with pancreatic cancer. Pancreatology 2018, 18, 971–976. [Google Scholar] [CrossRef]
- Bergquist, J.R.; Puig, C.A.; Shubert, C.R.; Groeschl, R.T.; Habermann, E.B.; Kendrick, M.L.; Nagorney, D.M.; Smoot, R.L.; Farnell, M.B.; Truty, M.J. Carbohydrate Antigen 19-9 Elevation in Anatomically Resectable, Early Stage Pancreatic Cancer Is Independently Associated with Decreased Overall Survival and an Indication for Neoadjuvant Therapy: A National Cancer Database Study. J. Am. Coll. Surg. 2016, 223, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Yang, X.H.; Zhang, Y.; Jing, W.; Zheng, L.Q.; Liu, Y.P.; Qu, X.J. Elevated serum CA19-9 level is a promising predictor for poor prognosis in patients with resectable pancreatic ductal adenocarcinoma: A pilot study. World J. Surg. Oncol. 2014, 12, 171. [Google Scholar] [CrossRef]
- Coppola, A.; La Vaccara, V.; Fiore, M.; Farolfi, T.; Ramella, S.; Angeletti, S.; Coppola, R.; Caputo, D. CA 19.9 Serum Level Predicts Lymph-Nodes Status in Resectable Pancreatic Ductal Adenocarcinoma: A Retrospective Single-Center Analysis. Front. Oncol. 2021, 11, 690580. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Dutch Pancreatic Cancer Group. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III Preopanc Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Motoi, F.; Kosuge, T.; Ueno, H.; Yamaue, H.; Satoi, S.; Sho, M.; Honda, G.; Matsumoto, I.; Wada, K.; Furuse, J.; et al. Study Group of Preoperative Therapy for Pancreatic Cancer [Prep] and Japanese Study Group of Adjuvant Therapy for Pancreatic cancer [JSAP]. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer [Prep-02/JSAP05]. Jpn J. Clin. Oncol. 2019, 49, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Strobel, O.; Lorenz, P.; Hinz, U.; Gaida, M.; König, A.K.; Hank, T.; Niesen, W.; Kaiser, J.Ö.R.; Al-Saeedi, M.; Bergmann, F.; et al. Actual Five-year Survival After Upfront Resection for Pancreatic Ductal Adenocarcinoma: Who Beats the Odds? Ann. Surg. 2022, 275, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Pawlik, T.M.; Vauthey, J.N. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 2018, 25, 845–847. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Shin, S.; Lee, J.H.; Song, K.B.; Hwang, D.W.; Kim, H.J.; Byun, J.H.; Cho, H.; Kim, S.C.; Hong, S.M. Lymph node size and its association with nodal metastasis in ductal adenocarcinoma of the pancreas. J. Pathol. Transl. Med. 2020, 54, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, A.; Sakamoto, I.; Hayashi, T.; Tobinaga, S.; Araki, M.; Kunizaki, M.; Nonaka, T.; Takeshita, H.; Hidaka, S.; Sawai, T.; et al. Preoperative diagnosis of lymph node metastasis in biliary and pancreatic carcinomas: Evaluation of the combination of multi-detector CT and serum CA19-9 level. Dig. Dis. Sci. 2010, 55, 3617–3626. [Google Scholar] [CrossRef]
- Mattiucci, G.C.; Morganti, A.G.; Cellini, F.; Buwenge, M.; Casadei, R.; Farioli, A.; Alfieri, S.; Arcelli, A.; Bertini, F.; Calvo, F.A.; et al. Prognostic Impact of Presurgical Ca19-9 Level in Pancreatic Adenocarcinoma: A Pooled Analysis. Transl. Oncol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Shi, H.; Yang, F.; Teng, X.; Jiang, B. The value of 18F-FDG PET/CT and carbohydrate antigen 19-9 in predicting lymph node micrometastases of pancreatic cancer. Abdom. Radiol. 2019, 44, 4057–4062. [Google Scholar] [CrossRef]
- Hua, J.; Chen, X.M.; Chen, Y.J.; Lu, B.C.; Xu, J.; Wang, W.; Shi, S.; Yu, X.J. Development and multicenter validation of a nomogram for preoperative prediction of lymph node positivity in pancreatic cancer (NeoPangram). Hepatobiliary Pancreat. Dis. Int. 2021, 20, 163–172. [Google Scholar] [CrossRef]
- Nappo, G.; Borzomati, D.; Zerbi, A.; Spaggiari, P.; Boggi, U.; Campani, D.; Mrowiec, S.; Liszka, Ł.; Coppola, A.; Amato, M.; et al. The Role of Pathological Method and Clearance Definition for the Evaluation of Margin Status after Pancreatoduodenectomy for Periampullary Cancer. Results of a Multicenter Prospective Randomized Trial. Cancers 2021, 13, 2097. [Google Scholar] [CrossRef]
- Lai, C.C.; Wang, S.Y.; Liao, C.H.; Hsu, J.T.; Chiang, K.C.; Yeh, T.S.; Hwang, T.L.; Yeh, C.N. Surgical Margin Status of Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgery with Radical Intent: Risk Factors for the Survival Impact of Positive Margins. In Vivo 2018, 32, 1591–1597. [Google Scholar] [CrossRef]
- Mosquera, C.; Johnson, H.M.; Mitsakos, A.T.; Neill, N.E.; Bellamy, N.; Irish, W.; Zervos, E.E.; Laks, S. Predictive Value of Preoperative Serum CA19-9 on Margin Status. Am. Surg. 2019, 85, 965–972. [Google Scholar] [CrossRef]
- Fiore, M.; Taralli, S.; Trecca, P.; Scolozzi, V.; Marinelli, L.; Triumbari, E.K.A.; Caputo, D.; Angeletti, S.; Ciccozzi, M.; Coppola, A.; et al. A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer. Cancers 2020, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, J.R.; Thiels, C.A.; Shubert, C.R.; Ivanics, T.; Habermann, E.B.; Vege, S.S.; Grotz, T.E.; Cleary, S.P.; Smoot, R.L.; Kendrick, M.L.; et al. Perception versus reality: A National Cohort Analysis of the surgery-first approach for resectable pancreatic cancer. Cancer Med. 2021, 10, 5925–5935. [Google Scholar] [CrossRef] [PubMed]
- Ferrone, C.R.; Finkelstein, D.M.; Thayer, S.P.; Muzikansky, A.; Fernandez-delCastillo, C.; Warshaw, A.L. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 2897–2902. [Google Scholar] [CrossRef] [PubMed]
- Pandiaraja, J.; Viswanathan, S.; Antomy, T.B.; Thirumuruganand, S.; Kumaresan, D.S. The Role of CA19-9 in Predicting Tumour Resectability in Carcinoma Head of Pancreas. J. Clin. Diagn. Res. 2016, 10, PC06–PC069. [Google Scholar] [CrossRef]
- Kowalchuk, R.O.; Lester, S.C.; Graham, R.P.; Harmsen, W.S.; Zhang, L.; Halfdanarson, T.R.; Smoot, R.L.; Gits, H.C.; Ma, W.W.; Owen, D.; et al. Predicting Adverse Pathologic Features and Clinical Outcomes of Resectable Pancreas Cancer With Preoperative CA 19.9. Front Oncol. 2021, 11, 651119. [Google Scholar] [CrossRef]
- Kang, C.M.; Kim, J.Y.; Choi, G.H.; Kim, K.S.; Choi, J.S.; Lee, W.J.; Kim, B.R. The use of adjusted preoperative CA 19.9 to predict the recurrence of resectable pancreatic cancer. J. Surg. Res. 2007, 140, 31–35. [Google Scholar] [CrossRef]
- Nishio, K.; Kimura, K.; Amano, R.; Yamazoe, S.; Ohrira, G.; Nakata, B.; Hirakawa, K.; Ohira, M. Preoperative predictors for early recurrence of resectable pancreatic cancer. World J. Surg. Oncol. 2017, 15, 16. [Google Scholar] [CrossRef]
- Kurahara, H.; Maemura, K.; Mataki, Y.; Sakoda, M.; Iino, S.; Kawasaki, Y.; Arigami, T.; Mori, S.; Kijima, Y.; Ueno, S.; et al. A Therapeutic Strategy for Resectable Pancreatic Cancer Based on Risk Factors of Early Recurrence. Pancreas 2018, 47, 753–758. [Google Scholar] [CrossRef]
- Suzuki, F.; Fujiwara, Y.; Hamura, R.; Haruki, K.; Sakamoto, T.; Shiba, H.; Yanaga, K. Combination of Distance from Superior Mesenteric Artery and Serum CA19-9 as a Novel Prediction of Local Recurrence in Patients With Pancreatic Cancer Following Resection. Anticancer Res. 2019, 39, 1469–1478, Erratum in Anticancer Res. 2019, 39, 3975. [Google Scholar] [CrossRef]
- Ballehaninna, U.K.; Chamberlain, R.S. The clinical utility of serum CA 19.9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J. Gastrointest. Oncol. 2012, 3, 105–119. [Google Scholar] [CrossRef]
- Yang, G.Y.; Malik, N.K.; Chandrasekhar, R.; Ma, W.W.; Flaherty, L.; Iyer, R.; Kuvshinoff, B.; Gibbs, J.; Wilding, G.; Warren, G.; et al. Change in CA 19.9 levels after chemoradiotherapy predicts survival in patients with locally advanced unresectable pancreatic cancer. J. Gastrointest. Oncol. 2013, 4, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Sadula, A.; Ren, S.; Guo, X.; Yuan, M.; Yuan, C.; Xiu, D. The prognostic value of CA19-9 response after neoadjuvant therapy in patients with pancreatic cancer: A systematic review and pooled analysis. Cancer Chemother. Pharmacol. 2020, 86, 731–740. [Google Scholar] [CrossRef]
- Scarà, S.; Bottoni, P.; Scatena, R. CA 19.9: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA 19.9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Turanli, B.; Yildirim, E.; Gulfidan, G.; Arga, K.Y.; Sinha, R. Current State of “Omics” Biomarkers in Pancreatic Cancer. J. Pers. Med. 2021, 11, 127. [Google Scholar] [CrossRef]
- Preuss, K.; Thach, N.; Liang, X.; Baine, M.; Chen, J.; Zhang, C.; Du, H.; Yu, H.; Lin, C.; Hollingsworth, M.A.; et al. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers 2022, 14, 1654. [Google Scholar] [CrossRef]
Ref. n° | Author | Year | N° of Patients | Type | Concept Resumed |
---|---|---|---|---|---|
[17] | Bergquist | 2016 | 10,806 | Systematic review | Patients with elevated CA 19.9 levels (>37 U/mL) were more likely to have N1 disease (p < 0.001). This result was confirmed both for modest or greater elevation. Early staged PDACs with elevated CA 19.9 had decreased survival at 1, 2, and 3 years (56% vs. 68%, 30% vs. 42%, and 15% vs. 25%, all p < 0.001. |
[25] | Nanashima | 2010 | 139 | Retrospective | More accurate preoperative assessment of nodal involvement using combination of CA 19.9 and radiological findings at the CT scan (p = 0.003). |
[26] | Mattiucci | 2019 | 700 | Retrospective | Higher rates of N+ in patients with higher preoperative CA 19.9 level (p < 0.001). Worse overall survival (OS) and disease-free survival in patients with preoperative CA 19.9 serum levels between 100 and 353 and >353 U/ml. |
[19] | Coppola | 2021 | 165 | Retrospective | Increased preoperative CA 19.9 levels significantly associated with N+ in presence of normal serum level of albumin (p < 0.001). |
[27] | Wang | 2019 | 160 | Retrospective | Combination of CA 19.9 and PET/CT scan findings showed promising results in identifying patients at higher risk of N+. Cut-offs used were CA 19.9 levels > 240.55 U/mL and SUV of 7.05 (p < 0.001). |
[28] | Hua | 2021 | 558 | Retrospective | Combination of CA 19.9 with Ca 125, Ca 50, and Ca 242 and radiological findings are used to develop a nomogram to predict the risk of pathological nodal involvement (p = 0.0009). |
Ref. n° | Author | Year | N° of Patients | Type | Concept Resumed |
---|---|---|---|---|---|
[29] | Nappo | 2021 | 168 | Retrospective | Importance to refer to the Leeds Pathology Protocol (LEEPP) to assess the R1 status (p < 0.05). |
[30] | Lai | 2018 | 189 | Retrospective | Elevated levels of CA 19.9 result in a two-time higher risk of R+ resection (p = 0.040). R+ had no impact on OS. |
[31] | Moschera | 2019 | 184 | Retrospective | Even very high (>1000 U/mL) preoperative levels of CA 19.9 were not associated with increased risk of R+ resection, (p < 0.05). |
[32] | Fiore | 2020 | 120 | Retrospective | Levels of CA 19.9 > 698 U/mL were associated to a six-time higher risk of R+ (p = 0.005). |
[19] | Coppola | 2021 | 165 | Retrospective | In presence of normo-albuminemia, serum levels of CA 19.9 > 730 U/mL were significantly associated to R+ (specificity 85%, despite low PPV 63% and NPV 66%) (p = 0.025). |
[33] | Bergquist | 2021 | 12082 | Review | More than 60% of R+ had elevated preoperative serum levels of CA 19.9 (p < 0.001). |
Ref. n° | Author | Year | N° of Patients | Type | Concept Resumed |
---|---|---|---|---|---|
[34] | Ferrone | 2006 | 176 | Retrospective | Preoperative CA 19.9 levels can predict vascular invasion in patient with resectable pancreatic adenocarcinoma (p = 0.03). |
[9] | Barton | 2009 | 143 | Retrospective | Preoperative CA 19.9 serum level is not associated with a vascular invasion. Patients with CA 19.9 lower than 120 U/mL had an increased OS and disease-free survival (p = 0.002). |
[35] | Pandiaraja | 2016 | 30 | Prospective | A high preoperative level of CA 19.9 was not related with an increased risk of vascular resection. |
[36] | Kowalchuk | 2019 | 509 | Retrospective | Preoperative CA 19.9 levels predict vascular invasion (p = 0.0072) but are not associated with poorer OS (HR = 1.6 (1.3–2.0)). |
[19] | Coppola | 2021 | 165 | Retrospective | CA 19.9 levels were significantly associated with higher rates of vascular resection (p = 0.03). |
Ref. n° | Author | Year | N° of Patients | Type | Concept Resumed |
---|---|---|---|---|---|
[37] | Kang | 2007 | 60 | Retrospective | CA 19.9 levels (cut off ≥ 50 U/mL) adjusted according to bilirubin levels were an independent predictive factor of recurrence after curative resection of pancreatic cancer (p = 0.027). |
[38] | Nishio | 2017 | 90 | Retrospective | Preoperative CA 19.9 ≥ 529 U/mL was an independent risk factor for early local recurrence |
[39] | Kurahara | 2018 | 115 | Retrospective | Serum levels of CA 19.9 level > 85 U/mL were significantly associated with early local recurrence after surgery (p = 0.028). |
[40] | Suzuki | 2019 | 149 | Retrospective | Distance from common hepatic artery (CHA) and superior mesenteric artery (SMA), and preoperative serum levels of CA 19.9, predict local recurrence in resected PDAC patients (p = 0.004). |
Ref. n° | Author | Year | N° of Patients | Type | Concept Resumed |
---|---|---|---|---|---|
[34] | Ferrone | 2006 | 176 | Retrospective | Patients with a CA 19.9 < 1000 U/mL had higher median survival rates compared to those with CA 19.9 > 1000 U/mL (28 months vs. 12 month) (p = 0.0005) |
[9] | Barton | 2009 | 143 | Retrospective | Patients with CA 19.9 lower than 120 U/mL had increased overall survival and disease-free survival rates (p = 0.002). |
[41] | Ballehaninna | 2012 | 90 | Review | Normal serum level of presurgical CA 19.9 (<37 U/mL) means longer median survival (32–36 months) compared to patients with levels >37 U/mL (12–15 months). |
[42] | Yang | 2013 | 115 | Retrospective | After NAT, CA 19.9 reduction > 90% allows better overall survival (16.2 vs. 7.5 months) (p = 0.01). |
[18] | Dong | 2014 | 120 | Retrospective | Elevated preoperative CA 19.9 levels were independent predictive factor of poor prognosis in PDAC patients (optimal cut-off value of 338.45 U/mL) (p = 0.04). |
[26] | Mattiucci | 2019 | 700 | Retrospective | Patients with preoperative CA 19.9 serum levels between 100 and 353 and >353 U/mL had worse overall survival and disease-free survival (p < 0.001). |
[43] | Ye | 2020 | 2242 | Meta-Analysis | CA 19.9 decrease > 50% or a complete normalization of CA 19.9 after neoadjuvant treatment were significantly associated with better overall survival (p < 0.0001). |
[11] | Takahashi | 2020 | 407 | Retrospective | Patients with radiologically resectable tumor but CA 19.9 > 120 U/mL had OS similar to patients with borderline resectable tumors (44% vs. 34%, p = 0.082). Normalization of CA 19.9 after neoadjuvant chemotherapy represents an important positive prognostic factor. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, A.; La Vaccara, V.; Farolfi, T.; Fiore, M.; Cammarata, R.; Ramella, S.; Coppola, R.; Caputo, D. Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives. Biomedicines 2022, 10, 2091. https://doi.org/10.3390/biomedicines10092091
Coppola A, La Vaccara V, Farolfi T, Fiore M, Cammarata R, Ramella S, Coppola R, Caputo D. Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives. Biomedicines. 2022; 10(9):2091. https://doi.org/10.3390/biomedicines10092091
Chicago/Turabian StyleCoppola, Alessandro, Vincenzo La Vaccara, Tommaso Farolfi, Michele Fiore, Roberto Cammarata, Sara Ramella, Roberto Coppola, and Damiano Caputo. 2022. "Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives" Biomedicines 10, no. 9: 2091. https://doi.org/10.3390/biomedicines10092091
APA StyleCoppola, A., La Vaccara, V., Farolfi, T., Fiore, M., Cammarata, R., Ramella, S., Coppola, R., & Caputo, D. (2022). Role of CA 19.9 in the Management of Resectable Pancreatic Cancer: State of the Art and Future Perspectives. Biomedicines, 10(9), 2091. https://doi.org/10.3390/biomedicines10092091