Electroencephalographic Patterns in taVNS: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Study Selection
2.2. Data Extraction
2.3. Quality Assessment
3. Results
3.1. Included Studies
3.2. Description of Included Studies
3.3. taVNS’ Stimulation Parameters
3.4. Safety Data on taVNS
3.5. Electroencephalography
3.6. Effects of taVNS in Brain Oscillations
3.7. Power Analysis
3.8. Effects of taVNS in Brain Event-Related Potentials
3.9. Early Events
3.9.1. Positive Waves
3.9.2. Negative Waves
3.10. Late Events
3.10.1. Positive Waves
3.10.2. Negative Waves
3.11. Brain Event-Related Potential Tasks Related with taVNS
3.11.1. Power Spectrum Analysis
3.11.2. Brain Functions and the Event-Related Potentials
3.11.3. Visual/Attention ERPs
3.11.4. Conflict Resolution/Control/Inhibition ERPs
3.11.5. Somatosensory ERPs
3.11.6. Learning and Recognition ERPs
3.11.7. Action Planning
3.12. Other Events
4. Correlations between EEG Metrics and Clinical Data
5. Quality Assessment and Risk of Bias
6. Discussion
6.1. taVNS Effects on Typical Frequency Bands
6.2. taVNS Effects on ERP Metrics
6.3. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, C.J.; Martínez, J.L. The Wandering Nerve: Positional Variations of the Cervical Vagus Nerve and Neurosurgical Implications. World Neurosurg. 2021, 156, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Bonaz, B.; Picq, C.; Sinniger, V.; Mayol, J.-F.; Clarençon, D. Vagus nerve stimulation: From epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 2013, 25, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Ben-Menachem, E.; Revesz, D.; Simon, B.J.; Silberstein, S. Surgically implanted and non-invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. Eur. J. Neurol. 2015, 22, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Wilson, C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2014, 8, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Yang, M.-H.; Zhang, G.-Z.; Wang, X.-X.; Li, B.; Li, M.; Woelfer, M.; Walter, M.; Wang, L. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. J. Neuroinflamm. 2020, 17, 54. [Google Scholar] [CrossRef]
- Dietrich, S.; Smith, J.; Scherzinger, C.; Hofmann-Preiss, K.; Freitag, T.; Eisenkolb, A.; Ringler, R. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI/Funktionelle Magnetresonanztomographie zeigt Aktivierungen des Hirnstamms und weiterer zerebraler Strukturen unter transkutaner Vagusnervstimulation. Biomed. Eng. Biomed. Tech. 2008, 53, 104–111. [Google Scholar] [CrossRef]
- Kraus, T.; Kiess, O.; Hösl, K.; Terekhin, P.; Kornhuber, J.; Forster, C. CNS BOLD fMRI Effects of Sham-Controlled Transcutaneous Electrical Nerve Stimulation in the Left Outer Auditory Canal—A Pilot Study. Brain Stimul. 2013, 6, 798–804. [Google Scholar] [CrossRef]
- Yakunina, N.; Kim, S.S.; Nam, E.-C. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodul. Technol. Neural Interface 2017, 20, 290–300. [Google Scholar] [CrossRef]
- Capone, F.; Assenza, G.; Di Pino, G.; Musumeci, G.; Ranieri, F.; Florio, L.; Barbato, C.; Di Lazzaro, V. The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 2014, 122, 679–685. [Google Scholar] [CrossRef]
- Redgrave, J.; Day, D.; Leung, H.; Laud, P.; Ali, A.; Lindert, R.; Majid, A. Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review. Brain Stimul. 2018, 11, 1225–1238. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.L.; O’Leary, G.H.; Austelle, C.W.; Gruber, E.; Kahn, A.T.; Manett, A.J.; Short, B.; Badran, B.W. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front. Neurosci. 2021, 15, 709436. [Google Scholar] [CrossRef]
- Geng, D.; Liu, X.; Wang, Y.; Wang, J. The effect of transcutaneous auricular vagus nerve stimulation on HRV in healthy young people. PLoS ONE 2022, 17, e0263833. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Fidalgo, T.M.; Morales-Quezada, J.L.; Muzy, G.S.C.; Chiavetta, N.M.; Mendonca, M.E.; Santana, M.V.B.; Gonçalves, O.F.; Brunoni, A.R.; Fregni, F. Biological Markers in Noninvasive Brain Stimulation Trials in Major Depressive Disorder. J. ECT 2014, 30, 47–61. [Google Scholar] [CrossRef]
- Leite, J.; Morales-Quezada, L.; Carvalho, S.; Thibaut, A.; Doruk, D.; Chen, V.; Schachter, S.C.; Rotenberg, A.; Fregni, F. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System. Int. J. Neural Syst. 2017, 27, 1750026. [Google Scholar] [CrossRef]
- Angulo-Sherman, I.N.; Rodríguez-Ugarte, M.; Sciacca, N.; Iáñez, E.; Azorín, J.M. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power. J. Neuroeng. Rehabil. 2017, 14, 31. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jang, J.H.; Choi, A.R.; Chung, S.J.; Kim, B.; Park, M.; Oh, S.; Jung, M.H.; Choi, J.-S. Neuromodulatory Effect of Transcranial Direct Current Stimulation on Resting-State EEG Activity in Internet Gaming Disorder: A Randomized, Double-Blind, Sham-Controlled Parallel Group Trial. Cereb. Cortex Commun. 2021, 2, tgaa095. [Google Scholar] [CrossRef]
- McGeady, C.; Vučković, A.; Zheng, Y.-P.; Alam, M. EEG Monitoring Is Feasible and Reliable during Simultaneous Transcutaneous Electrical Spinal Cord Stimulation. Sensors 2021, 21, 6593. [Google Scholar] [CrossRef]
- Jaseja, H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: Clinical neurophysiological evidence. Med. Hypotheses 2010, 74, 855–856. [Google Scholar] [CrossRef]
- Marrosu, F.; Santoni, F.; Puligheddu, M.; Barberini, L.; Maleci, A.; Ennas, F.; Mascia, M.; Zanetti, G.; Tuveri, A.; Biggio, G. Increase in 20–50Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation. Clin. Neurophysiol. 2005, 116, 2026–2036. [Google Scholar] [CrossRef]
- Brázdil, M.; Doležalová, I.; Koriťáková, E.; Chladek, J.; Roman, R.; Pail, M.; Jurak, P.; Shaw, D.; Chrastina, J. EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics. Front. Neurol. 2019, 10, 392. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Wang, Z.; Zhang, X.; Zhang, L.; Xu, M.; Liu, S.; Ming, D. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Action Planning: A Behavioural and EEG Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 30, 1675–1683. [Google Scholar] [CrossRef]
- Dumoulin, M.; Liberati, G.; Mouraux, A.; Santos, S.F.; El Tahry, R. Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS ONE 2021, 16, e0254480. [Google Scholar] [CrossRef]
- Fischer, R.; Ventura-Bort, C.; Hamm, A.; Weymar, M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 2018, 18, 680–693. [Google Scholar] [CrossRef]
- Gadeyne, S.; Mertens, A.; Carrette, E.; Bossche, F.V.D.; Boon, P.; Raedt, R.; Vonck, K. Transcutaneous auricular vagus nerve stimulation cannot modulate the P3b event-related potential in healthy volunteers. Clin. Neurophysiol. 2021, 135, 22–29. [Google Scholar] [CrossRef]
- Keute, M.; Barth, D.; Liebrand, M.; Heinze, H.-J.; Kraemer, U.; Zaehle, T. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity. J. Cogn. Enhanc. 2019, 4, 121–130. [Google Scholar] [CrossRef]
- Keute, M.; Ruhnau, P.; Heinze, H.-J.; Zaehle, T. Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clin. Neurophysiol. 2018, 129, 1789–1795. [Google Scholar] [CrossRef]
- Konjusha, A.; Colzato, L.; Mückschel, M.; Beste, C. Auricular Transcutaneous Vagus Nerve Stimulation Diminishes Alpha-Band–Related Inhibitory Gating Processes During Conflict Monitoring in Frontal Cortices. Int. J. Neuropsychopharmacol. 2022, 25, 457–467. [Google Scholar] [CrossRef]
- Mertens, A.; Carrette, S.; Klooster, D.; Lescrauwaet, E.; Delbeke, J.; Wadman, W.J.; Carrette, E.; Raedt, R.; Boon, P.; Vonck, K.; et al. Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males. Neuromodul.Technol. Neural Interface 2021, 25, 395–406. [Google Scholar] [CrossRef]
- Obst, M.A.; Heldmann, M.; Alicart, H.; Tittgemeyer, M.; Münte, T.F. Effect of Short-Term Transcutaneous Vagus Nerve Stimulation (tVNS) on Brain Processing of Food Cues: An Electrophysiological Study. Front. Hum. Neurosci. 2020, 14, 206. [Google Scholar] [CrossRef]
- Phillips, I.; Calloway, R.C.; Karuzis, V.P.; Pandža, N.B.; O’Rourke, P.; Kuchinsky, S.E. Transcutaneous Auricular Vagus Nerve Stimulation Strengthens Semantic Representations of Foreign Language Tone Words during Initial Stages of Learning. J. Cogn. Neurosci. 2021, 34, 127–152. [Google Scholar] [CrossRef]
- Pihlaja, M.; Failla, L.; Peräkylä, J.; Hartikainen, K.M. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation—More Efficient Cognitive Control? Front. Hum. Neurosci. 2020, 14, 561780. [Google Scholar] [CrossRef]
- Poppa, T.; Benschop, L.; Horczak, P.; Vanderhasselt, M.-A.; Carrette, E.; Bechara, A.; Baeken, C.; Vonck, K. Auricular transcutaneous vagus nerve stimulation modulates the heart-evoked potential. Brain Stimul. 2021, 15, 260–269. [Google Scholar] [CrossRef]
- Ricci, L.; Croce, P.; Lanzone, J.; Boscarino, M.; Zappasodi, F.; Tombini, M.; Di Lazzaro, V.; Assenza, G. Transcutaneous Vagus Nerve Stimulation Modulates EEG Microstates and Delta Activity in Healthy Subjects. Brain Sci. 2020, 10, 668. [Google Scholar] [CrossRef]
- Sharon, O.; Fahoum, F.; Nir, Y. Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations. J. Neurosci. 2020, 41, 320–330. [Google Scholar] [CrossRef]
- Ventura-Bort, C.; Wirkner, J.; Genheimer, H.; Wendt, J.; Hamm, A.O.; Weymar, M. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on the P300 and Alpha-Amylase Level: A Pilot Study. Front. Hum. Neurosci. 2018, 12, 202. [Google Scholar] [CrossRef]
- Yifei, W.; Yi, Y.; Yu, W.; Jinling, Z.; Weihang, Z.; Shaoyuan, L.I.; Mozheng, W.U.; Jianghong, H.E.; Peijing, R. Transcutaneous auricular vague nerve stimulation improved brain connection activity on patients of disorders of consciousness: A pilot study. J. Tradit. Chin. Med. 2022, 42, 463–471. [Google Scholar] [CrossRef]
- Warren, C.; Maraver, M.; de Luca, A.; Kopp, B. The Effect of Transcutaneous Auricular Vagal Nerve Stimulation (taVNS) on P3 Event-Related Potentials during a Bayesian Oddball Task. Brain Sci. 2020, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.; Tona, K.; Ouwerkerk, L.; van Paridon, J.; Poletiek, F.; van Steenbergen, H.; Bosch, J.; Nieuwenhuis, S. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 2019, 12, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Modarres, M.; Kuzma, N.N.; Kretzmer, T.; Pack, A.I.; Lim, M.M. EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiol. Sleep Circadian Rhythm. 2017, 2, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gloor, P.; Ball, G.; Schaul, N. Brain lesions that produce delta waves in the EEG. Neurology 1977, 27, 326. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.F.; Shackman, A.J. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J. Physiol. 2014, 109, 3–15. [Google Scholar] [CrossRef]
- Palva, S.; Palva, J.M. New vistas for α-frequency band oscillations. Trends Neurosci. 2007, 30, 150–158. [Google Scholar] [CrossRef]
- Mridha, Z.; de Gee, J.W.; Shi, Y.; Alkashgari, R.; Williams, J.; Suminski, A.; Ward, M.P.; Zhang, W.; McGinley, M.J. Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve. Nat. Commun. 2021, 12, 1539. [Google Scholar] [CrossRef]
- Lu, M.; Doñamayor, N.; Münte, T.F.; Bahlmann, J. Event-related potentials and neural oscillations dissociate levels of cognitive control. Behav. Brain Res. 2017, 320, 154–164. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Peterson, N.N.; Schroeder, C.E.; Arezzo, J.C. Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1995, 96, 248–260. [Google Scholar] [CrossRef]
- Sur, S.; Sinha, V.K. Event-related potential: An overview. Ind. Psychiatry J. 2009, 18, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Clayson, P.E.; Larson, M.J. Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology 2011, 48, 1621–1630. [Google Scholar] [CrossRef]
- Gilula, M.F.; Kirsch, D.L. Cranial Electrotherapy Stimulation Review: A Safer Alternative to Psychopharmaceuticals in the Treatment of Depression. J. Neurother. 2005, 9, 7–26. [Google Scholar] [CrossRef]
- Kirsch, D.L.; Nichols, F. Cranial Electrotherapy Stimulation for Treatment of Anxiety, Depression, and Insomnia. Psychiatr. Clin. N. Am. 2013, 36, 169–176. [Google Scholar] [CrossRef]
- Peuker, E.T.; Filler, T.J. The nerve supply of the human auricle. Clin. Anat. 2002, 15, 35–37. [Google Scholar] [CrossRef]
- Feusner, J.D.; Madsen, S.; Moody, T.D.; Bohon, C.; Hembacher, E.; Bookheimer, S.Y.; Bystritsky, A. Effects of cranial electrotherapy stimulation on resting state brain activity. Brain Behav. 2012, 2, 211–220. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2020, 24, 256–313. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
Author | Design | Population | Age (M, SD or Range) | Sex | Sample Size (Active/Control) |
---|---|---|---|---|---|
Chen et al., 2021 [26] | Parallel | healthy | 23.4; 1.7 | 13F/15M | 14/14 |
Dumoulin et al., 2021 [27] | Cross-over | healthy | A: 27.32; 9.11 B: 30.13; 11.23 | 12F/10M 6F/9M | 22/22 15/15 |
Fisher et al., 2018 [28] | Cross-over | healthy | 20.3; 1.4 | 18F/3M | 21/21 |
Gadeyne et al., 2022 [29] | Cross-over | healthy | 21.23; 1.63 | 21F/18M | 39/39 |
Keute et al., 2020 [30] | Cross-over | healthy | 23.8; 21–28 | 16F/6M | 22/22 |
Keute et al., 2018 [31] | Cross-over | healthy | 25.1; 2.4 | 8F/8M | 16 |
Konjusha et al., 2022 [32] | Cross-over | healthy | 23.57; 0.51 | 37F/8M | 45/45 |
Mertens et al., 2021 [33] | Cross-over | healthy | 22–32 | 15M | 15/15 |
Obst et al., 2020 [34] | Cross-over | healthy | 23; 2 | 15F/16M | 31/31 |
Phillips et al., 2021 [35] | Parallel | healthy | Priming: 22.7; 4.19 Peristim: 21.7; 2.87 Sham: 22.1; 4.01 | 8F/4M 9F/4M 12F/8M | 12 13 20 |
Pihlaja et al., 2020 [36] | Cross-over | healthy | 25.5; 4.8 | 16F/9M | 25/25 |
Poppa et al., 2022 [37] | Cross-over | healthy | 23.1; 5.01 | 27F/18M | 45/45 |
Ricci et al., 2020 [38] | Cross-over | healthy | 30.5; 6.02 | 8M | 8/8 |
Sharon et al., 2021 [39] | Cross-over | healthy | 28.08; 5.84 | 24M | 25/25 |
Ventura-Bort et al., 2018 [40] | Cross-over | healthy | 20.3; 1.4 | 18F/3M | 21/21 |
Yifei et al., 2022 [41] | Parallel | Disorder of consciousness | 38.08; 9.38 | 12M | 6/6 |
Warren et al., 2020 [42] | Cross-over | healthy | 20.55; 2.18 | 34 F/8M | 47/47 |
Warren et al., 2019 [43] | Cross-over | healthy | A: 22.6 B: 23.6 C: 22.1 | 28F/6M 9F/11M 17M | 24/24 20/20 17/17 |
Author | Intervention | Control | N of Sessions | taVNS Parameters | Duration | Device | Site |
---|---|---|---|---|---|---|---|
Chen et al., 2021 [26] | taVNS | Sham in earlobe | 1 | 25 Hz, 0.5 mA, 200–300 | 30 min prior the session and continued throughout the entire session2 | (CM02, Cerbomed, Erlangen, Germany) | left cymba conchae |
Dumoulin et al., 2021 [27] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (to elicit a maximal, but non-painful, tingling sensation), 250, 30 s ON/30 s OFF | 180 m | Nemos/Vitos, Erlangen, Germany | left cymba conchae |
Fisher et al., 2018 [28] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (above the detection threshold and below the pain threshold 1.49 ± 1.3 mA), 200–300 | 36 m | Medical CMO2, Cerbomed, Erlangen, Germany | left cymba conchae |
Gadeyne et al., 2022 [29] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (above the detection threshold and below the pain threshold mean 0.6 ± 0.3 mA), 250; 7 s/18 s on-off | 17 m during the task | Medical Nemos, Cerbomed, Germany | left cymba conchae |
Keute et al., 2020 [30] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (máx 3 mA 2.6/2.37 ± 0.16 mA), 200; 30 s/30 s on–off | 76 m | Medical Digitimer DS7 (Designed for Human Research Use—NOT a medical) | left cymba conchae |
Keute et al., 2018 [31] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (Stimulation intensity was set to 8 mA, if tolerable for the subject, and else individually adjusted below pain threshold. 7.5/5.9), 200; 30 s/30 s on–off | 25 m prior task | Medical Digitimer DS7 (Designed for Human Research Use—NOT a medical) | left cymba conchae |
Konjusha et al., 2022 [32] | taVNS | Sham in earlobe | 1 | 25 Hz, 0.5 mA, 200–300, 30 s/30 s on–off | 20 m prior | Cerbomed atVNS device | left outer ear |
Mertens et al., 2021 [33] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (gradually increased until the participant could perceive the stimulation, but remained 0.1 mA below the pain threshold, 7 s on,18 s off, 250 | 60 m | Medical Nemos, Cerbomed, Germany | left cymba conchae |
Obst et al., 2020 [34] | taVNS | Sham in the outer upper ear | 1 | 25 Hz, 0.6 mA, 30 s on off | 120 m | Medical Nemos, Cerbomed, Germany | left cymba conchae |
Phillips et al., 2021 [35] | taVNS priming taVNS peristim | Sham (receive taVNS outside of calibration and ramping) | 2 | 300 Hz, adjustable intensity (0.2 mA below their perceptual threshold), 50 | 10 min prior or immediately preceding | Digitimer DS8R Biphasic Constant Current Stimulator | left outer ear |
Pihlaja et al., 2020 [36] | taVNS | Sham in earlobe | 1 | 30 Hz, adjustable intensity (1.6 mA and 3.2 mA), 250 | CE approved tVNS device (Salustim Group, Kempele, Finland) | Left inner tragus | |
Poppa et al., 2022 [37] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (The intensity was slowly increased from 0.1 mA in increments of 0.1 mA until the participant first detected a tingling sensation, recorded as the perceptual threshold. The intensity was increased in 0.1 mA increments until the sensation was reported to be unpleasant or pricking (exciting Ad fibers). This procedure was repeated three times. The average of the detection and pain thresholds was set as the stimulation intensity), 7 s on and 18 s off, 250 | 15 min | NEMOS® device | left cymba conchae |
Ricci et al., 2020 [38] | taVNS | Sham in earlobe | 1 | 30 Hz, up to 8 mA (above the detection threshold and below pain perception), 500 | 60 min | Twister-EBM (medical but other nerves) | left inner tragus |
Sharon et al., 2021 [39] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (to a level experienced as just below painful, adjusted for each participant), 200–300 | Medical Nemos | left cymba conchae | |
Ventura-Bort et al., 2018 [40] | taVNS | Sham in earlobe | 1 | 25 Hz, adjustable intensity (above the detection threshold and below the pain threshold 1.49/1.3 mA), 200–300, continuous. | 28 m | CMO2, Medical Cerbomed, Erlangen, Germany | left cymba conchae |
Yifei et al., 2022 [41] | taVNS | Sham in the tail of helix | 28 | 20 Hz, 4–6 mA, >1 ms wave width | 30 min | The Huatuo brand electronic acupuncture instrument (SDZ-II_B type, Suzhou Medical Products Factory Co., Ltd.). | Bilateral auricular concha |
Warren et al., 2020 [42] | taVNS | Sham in earlobe | 1 | 25 Hz, 0.5 mA, 200–300 | NEMOS® taVNS | left cymba conchae | |
Warren et al., 2019 [43] | taVNS | Sham in earlobe | 1 | 25 Hz, 0.5 mA, 200–300 | 20 min before than continue with the task | NEMOS® taVNS | left cymba conchae |
Author * | Safety—Adverse Effects |
---|---|
Fisher et al., 2018 [28] | Subjective ratings indicated that the side effects of the stimulation were minimal, and no differences between stimulation conditions, except for the physical subjective experience of the stimulation, with higher ratings for the tVNS condition |
Konjusha et al., 2022 [32] | No differences and blinding successful |
Ricci et al., 2020 [38] | No major adverse events were registered during the experimental sessions |
Sharon et al., 2021 [39] | Sham and tVNS conditions did not differ in any of the parameters of subjective averseness examined. |
Ventura-Bort et al., 2018 [40] | The side effects of the stimulation were minimal, no differences between stimulation conditions, except for the sensory experience of the stimulation, with higher ratings in the tVNS condition, sensation under the electrodes; skin irritation in the ear, compared to sham. These results indicate that no unpleasant side-effects were experienced in either of the two conditions. |
Author | Electrodes (Total) | Sampling Rate (Hz) | EEG Modality | Main EEG Outcomes | Results | Limitations |
---|---|---|---|---|---|---|
Power analysis | ||||||
Ricci et al., 2020 [38] | 32 | 5000 | Resting pre and post stimulation | Microstates and power spectrum | Microstates: Global explained variance: no significant difference was found. Templates: Only microstate A: a significant increase in mean duration in the active group (69.1 [67.8–75.2] ms for Pre. vs. 74.6 [68.4–77.5] ms for Post., p = 0.03, effect size (r) = 0.58), and a significant difference post stimulation (74.6 [68.4–77.5] ms for active and 64.1 [63.4–67.3] ms for Sham; p = 0.02). Power spectrum: no differences in theta, alpha, and beta frequencies. Delta power revealed significant increasing in several EEG channels (FZ, FcZ, Cz, F4, FC2, FC6, C4, CP2, CP6, P4, P8, C3, FC1, CP1; p < 0.01) for active pre vs. active post and for active post vs. sham post (FcZ, FC1, FC2, Cz, C4, CP2; p < 0.05) | Exploratory study, multiple comparisons, small sample, short resting state conditions. |
Sharon et al., 2021 [39] | 256 | - | Resting during taVNS | Attenuation in alpha oscillations | Active group: attenuation of alpha in comparison to baseline (mean, 94.35% ± 2.2% of baseline, p = 0.003). Sham group: No attenuation from baseline (mean, 103.55 ± 2.4% of baseline) | Only male subjects, small sample |
Yifei et al., 2022 [41] | 62 | 2500 | Resting state | Power differences and coherence analysis | No differences between active and sham groups were detected after stimulation. | Not clear representation of the results and analysis, small sample size, short follow-up. |
Keute et al., 2020 [30] | 64 | 500 | ERP during Go/No Go task | Power differences | Cue-locked: no differences between active and sham Target-locked: increase in frontocentral theta activity (p < 0.029), time-averaged frontal midline (200–600 ms post-target) in conflict (stop and change) trials increased in tVNS sessions by 0.4 dB compared with sham sessions (χ2 = 4.3, p = 0.039). | No pre-specified outcomes, ceiling effects |
Konjusha et al., 2022 [32] | 60 | - | ERP during Eriksen Flanker task | Power differences for theta and alpha using cluster-based permutation task | Theta: No differences of cluster-based permutation task modulation between active and sham. Alpha: CPTs revealed significant differences for S-, C- and R-cluster (p < 0.048). A negative cluster suggests that the alpha power was larger in the active stimulation condition than in the sham condition, whereas a positive cluster suggests smaller alpha power in the active condition. S-cluster: Significant alpha-band increasing were found as indicated by a negative cluster of central electrodes (Cz, FCz, FC1, CP1, F1, FC2, CP2, CPz, FC4; p = 0.007) and decreasing in a positive cluster at left hemisphere frontal electrodes (F5, Fp1, AF7, FT7, T7, FT9; p = 0.026). C-cluster: Significant alpha-band increasing modulations could be shown, as indicated by a negative cluster of central electrodes (Cz, FC1, FC2, CP2; p = 0.041) and a decreasing in positive cluster at left hemisphere frontal electrodes (F5, Fp1, AF7, FT7, FT9; p = 0.044). R-cluster: Significant alpha-band power increasing were also found for the R-cluster, as indicated by a negative cluster of central electrodes (Cz, FC1, FC2, CP2; p = 0.040) and a decreasing positive cluster at left hemisphere frontal electrodes (F5, Fp1, AF7, FT7, FT9; p = 0.033). | No pre-specified outcomes, multiple comparisons. |
ERP’s metrics | ||||||
Ventura-Bort et al., 2018 [40] | 257 | 250 | ERP during novelty Oddball task | Effects on P300b amplitudes | P300b: No significant changes | Small sample and gender imbalance |
Warren et al., 2020 [42] | 32 | 256 | ERP during Bayesian Oddball task | Effects on P300 amplitude | P300: No significant changes | Gender imbalance |
Warren et al., 2019 [43] | 64 | 512 | ERP during Oddball and novelty Oddball tasks | Effects on P300 amplitude | P300: No significant changes in both tasks and experiments | Fixed stimulation intensity of 0.5 mA and relatively small sample size |
Gadeyne et al., 2022 [29] | 26 | 1024 | Auditory Oddball paradigm | Effects on P300b | No significant differences between groups | Lack of inclusion of additional methods of measurement |
Pihlaja et al., 2020 [36] | 64 | 500 | ERP Go/No Go task | Frontal N200 and centro-parietal P300 | N200: main effect of stimulation status (tVNS, Sham, F [1, 17] = 14, 41, p = 0.001) and interaction of trial type (Go vs. NoGo) and stimulation status (F [1, 17] = 5.06, p = 0.038) reducing N200 amplitudes in frontal area. When analyzed separately, the stimulation status had an effect in the No Go, but not in the Go task. P300: no significant effects of stimulation. | Stimulation artifact mainly in reference electrodes, small sample size. |
Dumoulin et al., 2021 [27] | 32 | 1000 | ERP during somatosensory stimuli | Laser-evoked ERPs analyzed through N200 and P200 | Laser-evoked ERPs, cool-evoked ERPs, and vibrotactile-evoked ERPs: N200: no significant effect of condition. P200: no significant effect of condition. | Low sign to noise ratio, small sample size, lack of statistical power, use of earlobe as sham condition. |
Fisher et al., 2018 [28] | 257 | 250 | ERP during Simon task | N200 and P300 amplitudes | N200: no significant stimulation effects. However, reduction of N2 for incompatible trials following conflict (compared to following non-conflict) in taVNS. P300: no significant stimulation effects. | Lack of pre-specified outcomes, small sample size, multiple comparisons. |
Obst et al., 2020 [34] | 29 | - | ERP during visual stimuli of objects and food items (similar to the Oddball task) | Differential effect on ERPs to food vs. object pictures on N100, P100, N200, P200, P300, and LPP. | P100: lower amplitudes in the tVNS (F [1,30] = 5.36, p = 0.028) at occipital electrodes. P200: smaller P2 amplitude in the tVNS (p = 0.018) in occipital area N200: higher N2 amplitude in the tVNS (p = 0.012) in central area. | Small sample size, multiple comparisons. |
Mertens et al., 2021 [33] | 64 | 5000 | TMS evoked potentials | Pre-post changes in P3, N45, P6, N100, and P180 | Single-pulse: Time window of interest: no significant changes Region of interest: P180: increase in the right motor region after active taVNS (p = 0.018) SICI: Time window of interest: Sham taVNS: P300: widespread decrease after sham taVNS (p = 0.013) N450: widespread increase after sham taVNS (p = 0.008) Region of interest: Active taVNS: P300: increase in the right motor region after taVNS (p = 0.016) P600: increase in the right motor region after taVNS (p = 0.019) Sham taVNS: P300: widespread decrease after sham taVNS (p = 0.008) N450: widespread increase after sham taVNS (p = 0.003) LICI: No significant differences were found. | No pre-specified outcomes, multiple comparisons, small sample size, not register the perceptions taVNS threshold, not include sham-TMS measurements. |
Phillips et al., 2021 [35] | 64 | 1000 | ERP during passive and active learning tasks, and lexical recognition test | N400 amplitude and topography | N400: Passive word learning task: Amplitude: peristim and sham group presented larger amplitude over central and parietal. (p ≥ 0.001) Topography: negativity centered over central or centro-parietal midline sites with exception of priming group (central, frontal, and frontal polar sites). Active word learning task: No effects of stimulation were found. Lexical recognition test: Amplitude: larger effect amplitude at parietal sites for peristim (p = 0.002) and priming (p = 0.01). Topography: broad centro-parietal negativity for all taVNS groups and larger amplitude for peristim and sham. | Small sample size and multiple testing. |
Chen et al., 2021 [26] | 64 | 1000 | ERP during the action planning paradigm | Difference in movement-related cortical potentials amplitude differences in LD/LE/RD/RE | Significant difference was observed between active group and sham group especially in Left-difficult (LE) task (p = 0.004) in the motor cortex. | Stimulation set at 0.5 mA, sham in the earlobe. |
Keute et al., 2018 [31] | 4 | 1000 | ERP during experimental task | Modulation of negative compatibility effect and lateralized readiness potentials components | Readiness potential difference: For compatible trials: significant decrease in cortical motor preparation in active taVNS in the time window from 280 to 380 ms after prime presentation (p = 0.049) in motor cortex. For incompatible trials: no difference between active and sham | Small sample size. |
Other metrics | ||||||
Poppa et al., 2022 [37] | 64 | - | Resting pre, during, and post stimulation | Heart-evoked potentials | Sensor-level: Cluster 1: lower HEP voltage amplitudes on left frontocentral. Cluster 2: centroparietal regions and greater HEP in centroparietal regions. Source-level: Cluster 1: greater magnitude observed bilaterally in lateral and medial sectors of the orbitofrontal cortex, anterior cingulate and subcallosal gyri. Left-lateralized effect on the operculum, postcentral gyrus, precentral gyrus, anterior and posterior insula, middle frontal gyrus, superior temporal gyrus, temporal pole, and anterior medial temporal regions. | Low spatial precision. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gianlorenco, A.C.L.; de Melo, P.S.; Marduy, A.; Kim, A.Y.; Kim, C.K.; Choi, H.; Song, J.-J.; Fregni, F. Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines 2022, 10, 2208. https://doi.org/10.3390/biomedicines10092208
Gianlorenco ACL, de Melo PS, Marduy A, Kim AY, Kim CK, Choi H, Song J-J, Fregni F. Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines. 2022; 10(9):2208. https://doi.org/10.3390/biomedicines10092208
Chicago/Turabian StyleGianlorenco, Anna Carolyna L., Paulo S. de Melo, Anna Marduy, Angela Yun Kim, Chi Kyung Kim, Hyuk Choi, Jae-Jun Song, and Felipe Fregni. 2022. "Electroencephalographic Patterns in taVNS: A Systematic Review" Biomedicines 10, no. 9: 2208. https://doi.org/10.3390/biomedicines10092208
APA StyleGianlorenco, A. C. L., de Melo, P. S., Marduy, A., Kim, A. Y., Kim, C. K., Choi, H., Song, J. -J., & Fregni, F. (2022). Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines, 10(9), 2208. https://doi.org/10.3390/biomedicines10092208