In Vitro and Ex Vivo Evaluation of Mangifera indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Mangifera indica L. Kernel and Peel Extract
2.2.2. GC-MS Analysis
2.2.3. Atomic Absorption Spectroscopy
2.2.4. Effect on Antioxidant Enzymes
Cells and Culture Medium
Effect of Extract on Antioxidant Enzymes GSH, GST, Superoxide Dismutase (SOD), POD, and Catalase
2.2.5. Total Phenolic Contents (TPC)
2.2.6. Total Flavonoid Contents (TFC)
2.2.7. 2,2-Diphenyl-1-Picrylhydrazyl Scavenging Assay
2.2.8. Preparation of NLCs
2.2.9. Particle Size (PS), Zetapotential (ZP), and Polydispersity Index (PDI)
2.2.10. Entrapped Phenolic Contents
2.2.11. Fourier-Transform Infrared Spectroscopy (FTIR)
2.2.12. Morphological Observation
2.2.13. Cytotoxicity Studies
2.2.14. Cell Permeation Studies
2.2.15. Preparation of M-NLC-Loaded Emulsion
2.2.16. Ex Vivo Diffusion Studies
2.2.17. Rheological Studies
2.2.18. pH of M-NLCs at Different Storage Conditions
2.2.19. Noninvasive Skin Investigation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Extract
3.2. Identification of Compounds in M. indica Peel and Kernel Extract
3.3. Atomic Absorption Spectroscopy
3.4. Effects on AOE
3.5. Total Phenolic and Flavonoid Contents
3.6. DPPH Assay
3.7. Physicochemical Characterization of M-Ext-Loaded NLCs
3.8. Fourier-Transform Infrared Spectroscopy (FTIR)
3.9. Morphological Observation
3.10. Cytotoxicity Studies
3.11. Cell Permeation Studies
3.12. Ex Vivo Diffusion Studies
3.13. Rheological Studies
3.14. pH of M-NLCs at Different Storage Conditions
3.15. Noninvasive Skin Investigation
3.15.1. Erythema and Skin Melanin Level
3.15.2. Skin Hydration and TEWL Index
3.15.3. Sebum Level and Elasticity of Skin
3.15.4. Wrinkles and pH of the Skin
3.15.5. Pore Size
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imelda, E.; Idroes, R.; Khairan, K.; Lubis, R.R.; Abas, A.H.; Nursalim, A.J.; Rafi, M.; Tallei, T.E. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants 2022, 11, 1285. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-H.; Yu, Y.-H.; Ye, S.-R.; Chen, Y.-W. Antibacterial and Antioxidant Activity of the Fruit of Macaranga tanarius, the Plant Origin of Taiwanese Green Propolis. Antioxidants 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Su, L.; Yu, L. Phytochemicals and Antioxidant Properties in Wheat Bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
- Gurumeenakshi, G.; Varadharaju, N.; Rajeswari, R. Quality Analysis of Mango Fruit Waste for Utilization in Food Products. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 20–27. [Google Scholar] [CrossRef]
- Muruganandan, S.; Gupta, S.; Kataria, M.; Lal, J.; Gupta, P.K. Mangiferin Protects the Streptozotocin-Induced Oxidative Damage to Cardiac and Renal Tissues in Rats. Toxicology 2002, 176, 165–173. [Google Scholar] [CrossRef]
- Cáceres-Vélez, P.R.; Ali, A.; Fournier-Level, A.; Dunshea, F.R.; Jusuf, P.R. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants 2022, 11, 1280. [Google Scholar] [CrossRef]
- Răcuciu, M.; Tecucianu, A.; Oancea, S. Impact of Magnetite Nanoparticles Coated with Aspartic Acid on the Growth, Antioxidant Enzymes Activity and Chlorophyll Content of Maize. Antioxidants 2022, 11, 1193. [Google Scholar] [CrossRef]
- Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F.; Sidhu, M.A.I.; Rehman, H.U.; Aftab, S. Therapeutic Potentials of Bioactive Compounds from Mango Fruit Wastes. Trends Food Sci. Technol. 2016, 53, 102–112. [Google Scholar] [CrossRef]
- Darmawan, M.A.; Ramadhani, N.H.; Hubeis, N.A.; Ramadhan, M.Y.A.; Sahlan, M.; Abd-Aziz, S.; Gozan, M. Natural Sunscreen Formulation with a High Sun Protection Factor (SPF) from Tengkawang Butter and Lignin. Ind. Crops Prod. 2022, 177, 114466. [Google Scholar] [CrossRef]
- Serna-Cock, L.; García-Gonzales, E.; Torres-León, C. Agro-Industrial Potential of the Mango Peel Based on Its Nutritional and Functional Properties. Food Rev. Int. 2016, 32, 364–376. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Gordon, M.H. Antioxidant and Tyrosinase Inhibitory Activity of Mango Seed Kernel by Product. Food Chem. 2009, 117, 332–341. [Google Scholar] [CrossRef]
- Ochocka, R.; Hering, A.; Stefanowicz-Hajduk, J.; Cal, K.; Barańska, H. The Effect of Mangiferin on Skin: Penetration, Permeation and Inhibition of ECM Enzymes. PLoS ONE 2017, 12, e0181542. [Google Scholar] [CrossRef]
- Valentino, A.; Conte, R.; De Luca, I.; Di Cristo, F.; Peluso, G.; Bosetti, M.; Calarco, A. ThermoResponsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants 2022, 11, 1210. [Google Scholar] [CrossRef]
- Poomanee, W.; Khunkitti, W.; Chaiyana, W.; Leelapornpisid, P. Optimization of Mangifera indica L. Kernel Extract-Loaded Nanoemulsions via Response Surface Methodology, Characterization, Stability, and Skin Permeation for Anti-Acne Cosmeceutical Application. Pharmaceutics 2020, 12, 454. [Google Scholar] [CrossRef]
- Kovačević, A.B.; Müller, R.H.; Savić, S.D.; Vuleta, G.M.; Keck, C.M. Solid Lipid Nanoparticles (SLN) Stabilized with Polyhydroxy Surfactants: Preparation, Characterization and Physical Stability Investigation. Colloids Surf. Physicochem. Eng. Asp. 2014, 444, 15–25. [Google Scholar] [CrossRef]
- Sarifuddin, N.; Soerarti, W.; Rosita, N. Preparation and Characteristics of NLC Coenzym Q10 with A Combination of Hyaluronic Acid. Health Notions 2019, 3, 32–36. [Google Scholar] [CrossRef]
- Schwarz, J.C.; Baisaeng, N.; Hoppel, M.; Löw, M.; Keck, C.M.; Valenta, C. Ultra-Small NLC for Improved Dermal Delivery of Coenyzme Q10. Int. J. Pharm. 2013, 447, 213–217. [Google Scholar] [CrossRef]
- Keck, C.M.; Schwabe, K. Silver-Nanolipid Complex for Application to Atopic Dermatitis Skin: Rheological Characterization, in vivo Efficiency and Theory of Action. J. Biomed. Nanotechnol. 2009, 5, 428–436. [Google Scholar] [CrossRef]
- Asensio-Regalado, C.; Alonso-Salces, R.M.; Gallo, B.; Berrueta, L.A.; Porcedda, C.; Pintus, F.; Vassallo, A.; Caddeo, C. A Liposomal Formulation to Exploit the Bioactive Potential of an Extract from Graciano Grape Pomace. Antioxidants 2022, 11, 1270. [Google Scholar] [CrossRef]
- Cheng, W.H.; Yap, C.K.; Zakaria, M.P.; Aris, A.Z.; Guan, T.S. Lithium Levels in Peninsular Malaysian Coastal Areas: An Assessment Based on Mangrove Snail Nerita Lineata and Surface Sediments. Pertanika J. Trop. Agric. Sci. 2015, 38, 93–101. [Google Scholar]
- Ullah, H.; Noreen, S.; Fozia; Rehman, A.; Waseem, A.; Zubair, S.; Adnan, M.; Ahmad, I. Comparative Study of Heavy Metals Content in Cosmetic Products of Different Countries Marketed in Khyber Pakhtunkhwa, Pakistan. Arab. J. Chem. 2017, 10, 10–18. [Google Scholar] [CrossRef]
- Anal, J.M.H.; Chase, P. Trace Elements Analysis in Some Medicinal Plants Using Graphite Furnace-Atomic Absorption Spectroscopy. Environ. Eng. Res. 2016, 21, 247–255. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, A.; Baig, M.W.; Ullah, N.; Ahmed, N.; Tipu, M.K.; Ali, H.; Khan, S. Poncirin Attenuates CCL4-Induced Liver Injury through Inhibition of Oxidative Stress and Inflammatory Cytokines in Mice. BMC Complement. Med. Ther. 2020, 20, 115. [Google Scholar] [CrossRef]
- Rasheed, H.; Afridi, R.; Ullah, A.; Muhammad, K.; Ullah, Z.; Khalid, S.; Atiq, A. Anti-Inflammatory, Anti-Rheumatic and Analgesic Activities of 2-(5-mercapto-1,3,4-oxadiazol-2-yl)-N-propylbenzenesulphonamide (MOPBS) in Rodents. Inflammopharmacology 2018, 13, 1037–1049. [Google Scholar] [CrossRef]
- Khan, A.M.; Khan, A.U.; Ali, H.; Islam, S.U.; Seo, E.K.; Khan, S. Continentalic Acid Exhibited Nephroprotective Activity against the LPS and E. Coli-Induced Kidney Injury through Inhibition of the Oxidative Stress and Inflammation. Int. Immunopharmacol. 2020, 80, 106209. [Google Scholar] [CrossRef]
- Baba, S.A.; Malik, S.A. Determination of Total Phenolic and Flavonoid Content, Antimicrobial and Antioxidant Activity of a Root Extract of Arisaema Jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Song, J.H.; Bae, E.Y.; Choi, G.; Hyun, J.W.; Lee, M.Y.; Lee, H.W.; Chae, S. Protective Effect of Mango (Mangifera indica L.) against UVB-Induced Skin Aging in Hairless Mice. Photodermatol. Photoimmunol. Photomed. 2013, 29, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Baylac, S.; Racine, P. Inhibition of Human Leukocyte Elastase by Natural Fragrant Extracts of Aromatic Plants. Int. J. Aromather. 2004, 14, 179–182. [Google Scholar] [CrossRef]
- Puglia, C.; Damiani, E.; Offerta, A.; Rizza, L.; Tirendi, G.G.; Tarico, M.S.; Curreri, S.; Bonina, F.; Perrotta, R.E. Evaluation of Nanostructured Lipid Carriers (NLC) and Nanoemulsions as Carriers for UV-Filters: Characterization, in vitro Penetration and Photostability Studies. Eur. J. Pharm. Sci. 2014, 51, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Desai, P.R.; Channer, D.; Singh, M. Enhanced Skin Permeation Using Polyarginine Modified Nanostructured Lipid Carriers. J. Control. Release 2012, 161, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Alves, A.C.; Nunes, C.; Sarmento, B.; Amaral, M.H.; Reis, S.; Oliveira, M.B.P.P. Permeation of Topically Applied Caffeine from a Food by—Product in Cosmetic Formulations: Is Nanoscale in vitro Approach an Option? Int. J. Pharm. 2016, 513, 496–503. [Google Scholar] [CrossRef]
- Karimi, N.; Ghanbarzadeh, B.; Hamishehkar, H.; Mehramuz, B.; Kafil, H.S. Antioxidant, Antimicrobial and Physicochemical Properties of Turmeric Extract-Loaded Nanostructured Lipid Carrier (NLC). Colloids Interface Sci. Commun. 2018, 22, 18–24. [Google Scholar] [CrossRef]
- Damle, M.; Mallya, R. Development and Evaluation of a Novel Delivery System Containing Phytophospholipid Complex for Skin Aging. AAPS PharmSciTech 2016, 17, 607–617. [Google Scholar] [CrossRef]
- Khan, Z.U.; Razzaq, A.; Khan, A.; Rehman, N.U.; Khan, H.; Khan, T.; Khan, A.U.; Menaa, F.; Iqbal, H.; Khan, N.U. Physicochemical Characterizations and Pharmacokinetic Evaluation of Pentazocine Solid Lipid Nanoparticles against Inflammatory Pain Model. Pharmaceutics 2022, 14, 12–21. [Google Scholar] [CrossRef]
- Wang, J.J.; Shi, Q.H.; Zhang, W.; Sanderson, B.J.S. Anti-Skin Cancer Properties of Phenolic-Rich Extract from the Pericarp of Mangosteen (Garcinia Mangostana Linn.). Food Chem. Toxicol. 2012, 50, 3004–3013. [Google Scholar] [CrossRef]
- Alnuqaydan, A. Toxicity and Genotoxicity of Beauty Products on Human Skin Cells in vitro. J. Clin. Toxicol. 2016, 6, 1000315. [Google Scholar] [CrossRef]
- Grafe, F.; Wohlrab, W.; Neubert, R.H.; Brandsch, M. Transport of Biotin in Human Keratinocytes. J. Investig. Dermatol. 2003, 120, 428–433. [Google Scholar] [CrossRef]
- Jaworska, M.; Sikora, E.; Ogonowski, J. Rheological Properties of Nanoemulsions Stabilized by Polysorbate 80. Chem. Eng. Technol. 2015, 38, 1469–1476. [Google Scholar] [CrossRef]
- Wohlrab, J.; Gebert, A. PH and Buffer Capacity of Topical Formulations. Curr. Probl. Dermatol. 2018, 54, 123–131. [Google Scholar] [CrossRef]
- Fossa Shirata, M.M.; Maia Campos, P.M.B.G. Sunscreens and Cosmetic Formulations Containing Ascorbyl Tetraisopalmitate and Rice Peptides for the Improvement of Skin Photoaging: A Double-Blind, Randomized Placebo-Controlled Clinical Study. Photochem. Photobiol. 2021, 97, 805–815. [Google Scholar] [CrossRef]
- Gianeti, M.D.; Mercurio, D.G.; Maia Campos, P.M.B.G. The Use of Green Tea Extract in Cosmetic Formulations: Not Only an Antioxidant Active Ingredient. Dermatol. Ther. 2013, 26, 267–271. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; González, M. Using Drying Treatments to Stabilise Mango Peel and Seed: Effect on Antioxidant Activity. LWT—Food Sci. Technol. 2012, 45, 261–268. [Google Scholar] [CrossRef]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic Metals Contained in Cosmetics: A Status Report. Regul. Toxicol. Pharmacol. 2014, 68, 447–467. [Google Scholar] [CrossRef]
- Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Brügel, M. Global Organic Textile Standard. Zertif. Als Erfolgsfaktor 2016, 2020, 153–163. [Google Scholar] [CrossRef]
- Wu, M.L.; Deng, J.F.; Lin, K.P.; Tsai, W.J. Lead, Mercury, and Arsenic Poisoning due to Topical Use of Traditional Chinese Medicines. Am. J. Med. 2013, 126, 451–454. [Google Scholar] [CrossRef]
- U.S FDA. FDA’s Testing of Cosmetics for Arsenic, Cadmium, Chromium, Cobalt, Lead, Mercury, and Nickel Content. Available online: https://www.fda.gov/cosmetics/potential-contaminants-cosmetics/fdas-testing-cosmetics-arsenic-cadmium-chromium-cobalt-lead-mercury-and-nickel-content (accessed on 4 April 2021).
- Massadeh, A.M.; El-khateeb, M.Y.; Ibrahim, S.M. Evaluation of Cd, Cr, Cu, Ni, and Pb in Selected Cosmetic Products from Jordanian, Sudanese, and Syrian Markets. Public Health 2017, 149, 130–137. [Google Scholar] [CrossRef]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of Heavy Metals in Cosmetic Products and Their Health Risk Assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Sultana, B.; Hussain, Z.; Asif, M.; Munir, A. Investigation on the Antioxidant Activity of Leaves, Peels, Stems Bark, and Kernel of Mango (Mangifera indica L.). J. Food Sci. 2012, 77, 849–852. [Google Scholar] [CrossRef]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front. Aging Neurosci. 2019, 11, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, W.; Manosroi, J. Anti-Aging Efficacy of Topical Formulations Containing Niosomes Entrapped with Rice Bran Bioactive Compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, S.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the PH-Driven Method. J. Agric. Food Chem. 2020, 68, 7103–7111. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; McClements, D.J. Formation and Stabilization of Nanoemulsions Using Biosurfactants: Rhamnolipids. J. Colloid Interface Sci. 2016, 479, 71–79. [Google Scholar] [CrossRef]
- Dai, L.; Li, R.; Wei, Y.; Sun, C.; Mao, L.; Gao, Y. Fabrication of Zein and Rhamnolipid Complex Nanoparticles to Enhance the Stability and in vitro Release of Curcumin. Food Hydrocoll. 2018, 77, 617–628. [Google Scholar] [CrossRef]
- Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Rhamnolipid Nanoparticles for in vivo Drug Delivery and Photodynamic Therapy. Nanomed. Nanotechnol. Biol. Med. 2019, 19, 12–21. [Google Scholar] [CrossRef]
- Fathi, M.; Varshosaz, J.; Mohebbi, M.; Shahidi, F. Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technol. 2013, 6, 1464–1475. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm.—Drug Res. 2010, 67, 217–223. [Google Scholar]
- Aditya, N.P.; Macedo, A.S.; Doktorovova, S.; Souto, E.B.; Kim, S.; Chang, P.S.; Ko, S. Development and Evaluation of Lipid Nanocarriers for Quercetin Delivery: A Comparative Study of Solid Lipid Nanoparticles (SLN), Nanostructured Lipid Carriers (NLC), and Lipid Nanoemulsions (LNE). LWT—Food Sci. Technol. 2014, 59, 115–121. [Google Scholar] [CrossRef]
- Marcon, A.F.V.S.; Wagemaker, T.A.L.; Maia Campos, P.M.B.G. Rheology, Clinical Efficacy and Sensorial of a Silicone-Based Formulation Containing Pearl Extract. J. Biomed. Biopharm. Res. 2014, 11, 247–255. [Google Scholar] [CrossRef]
- Ali, A.; Iqbal, S.; Ilyas, A.; Khan, H.; Asad, M.H.H.B.; Fatima, N.; Akhtar, N. Anti-Pollution Cosmetic-Based One-Step Formation of w/o/w Multiple Emulsion Containing D-Biotin for Skin Protection: Fabrication and in vitro and in vivo Evaluation. Drug Deliv. Transl. Res. 2019, 9, 1117–1132. [Google Scholar] [CrossRef]
- Jose, J.; Netto, G. Role of Solid Lipid Nanoparticles as Photoprotective Agents in Cosmetics. J. Cosmet. Dermatol. 2018, 18, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.Z.; Zhou, D.W. Oxidative Stress and Role of Natural Plant Derived Antioxidants in Animal Reproduction. J. Integr. Agric. 2013, 12, 1826–1838. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Ali, A.; Akhtar, N.; Khan, M.S. Skin Melanin and Erythema Content in vivo Evaluation: The Effects of a Cream Containing Acacia Bark Extract on Skin Melanin and Erythema Content. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2012, 29, 369–372. [Google Scholar] [CrossRef]
- Kubo, I.; Kinst-Hori, I.; Kubo, Y.; Yamagiwa, Y.; Kamikawa, T.; Haraguchi, H. Molecular Design of Antibrowning Agents. J. Agric. Food Chem. 2000, 48, 1393–1399. [Google Scholar] [CrossRef]
- Dobrev, H. Study of Human Skin Mechanical Properties by Mean of Cutometer. Folia Med. 2002, 44, 5–10. [Google Scholar]
- Toshida, H.; Tabuchi, N.; Koike, D.; Koide, M.; Sugiyama, K.; Nakayasu, K.; Kanai, A.; Murakami, A. The Effects of Vitamin A Compounds on Hyaluronic Acid Released from Cultured Rabbit Corneal Epithelial Cells and Keratocytes. J. Nutr. Sci. Vitaminol. 2012, 58, 223–229. [Google Scholar] [CrossRef]
- Downing, D.T.; Stranieri, A.M.; Strauss, J.S. The Effect of Accumulated Lipids on Measurements of Sebum Secreation in Human Skin. J. Investig. Dermatol. 1982, 79, 226–228. [Google Scholar] [CrossRef]
- Esler, W.P.; Tesz, G.J.; Hellerstein, M.K.; Beysen, C.; Sivamani, R.; Turner, S.M.; Watkins, S.M.; Amor, P.A.; Carvajal-Gonzalez, S.; Geoly, F.J.; et al. Human Sebum Requires de novo Lipogenesis, Which Is Increased in Acne Vulgaris and Suppressed by Acetyl-CoA Carboxylase Inhibition. Sci. Transl. Med. 2019, 11, eaau8465. [Google Scholar] [CrossRef]
- Mahmood, T.; Akhtar, N.; Moldovan, C. A Comparison of the Effects of Topical Green Tea and Lotus on Facial Sebum Control in Healthy Humans. Hippokratia 2013, 17, 64–67. [Google Scholar]
- Heinrich, U. In vivo Assessment of Ectoin: A Randomized, Vehicle-Controlled. Ski. Pharmacol. Physiol. 2019, 20, 211–218. [Google Scholar] [CrossRef]
- Park, M.; Kim, H.; Kim, S.; Lee, J.; Kim, S.; Byun, J.W.; Hwang-Bo, J.; Park, K.H. Changes in Skin Wrinkles and Pores due to Long-Term Mask Wear. Ski. Res. Technol. 2021, 27, 785–788. [Google Scholar] [CrossRef]
- Bosset, S.; Barre, P.; Chalon, A.; Kurfurst, R.; Bonte, F.; Andre, P.; Perrier, P.; Disant, F.; Varlet, B.L.E.; Nicolas, J.-F. Skin Ageing: Clinical and Histopathologic Study of Permanent and Reducible Wrinkles. Eur. J. Dermatol. 2002, 12, 247–252. [Google Scholar]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Álvarez, G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.M.; Yosipovitch, G. Skin PH: From Basic Science to Basic Skin Care. Acta Derm. Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef]
- Proksch, E. PH in Nature, Humans and Skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef]
- Kim, B.Y.; Choi, J.W.; Park, K.C.; Youn, S.W. Sebum, Acne, Skin Elasticity, and Gender Difference—Which Is the Major Influencing Factor for Facial Pores? Ski. Res. Technol. 2011, 19, e45–e53. [Google Scholar] [CrossRef]
Hit | Rev | For | Compound Name | M.W. | Formula | CAS | Library |
---|---|---|---|---|---|---|---|
1 | 753 | 517 | Succinic acid, cyclohexylmethyl geranyl | 350 | C21H34O4 | 900391-21-5 | NIST |
1 | 878 | 561 | Heptacosanoic acid, 25-methyl-, methyl e | 438 | C29H58O2 | 900112-14-5 | NIST |
1 | 819 | 704 | Dodecanoic acid | 200 | C12H24O2 | 143-07-7 | NIST |
1 | 803 | 533 | 2,6,10,14-tetramethyl-7-(3-methylpent-4- | 348 | C25H48 | 900370-41-6 | NIST |
1 | 943 | 882 | Tridecanoic acid, 12-methyl-, methyl est | 242 | C15H30O2 | 5129-58-8 | NIST |
1 | 858 | 774 | Tetradecanoic acid | 228 | C14H28O2 | 544-63-8 | NIST |
1 | 894 | 812 | 14-methylpentadec-9-enoic acid methyl es | 268 | C17H32O2 | 900365-89-7 | NIST |
1 | 933 | 661 | Tetradecanoic acid, 10,13-dimethyl-, met | 270 | C17H34O2 | 267650-23-7 | NIST |
1 | 869 | 754 | Ethyl 14-methyl-hexadecanoate | 298 | C19H38O2 | 900336-64-7 | NIST |
1 | 877 | 735 | Methyl 5,12-octadecadienoate | 294 | C19H34O2 | 900336-43-1 | NIST |
1 | 936 | 815 | 6-octadecenoic acid | 282 | C18H34O2 | 900336-66-8 | NIST |
1 | 811 | 683 | L-(+)-ascorbic acid 2,6-dihexadecanoate | 652 | C38H68O8 | 28474-90-0 | NIST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Z.U.; Khan, T.; Mannan, A.; Ali, A.; Ni, J. In Vitro and Ex Vivo Evaluation of Mangifera indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging. Biomedicines 2022, 10, 2266. https://doi.org/10.3390/biomedicines10092266
Khan ZU, Khan T, Mannan A, Ali A, Ni J. In Vitro and Ex Vivo Evaluation of Mangifera indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging. Biomedicines. 2022; 10(9):2266. https://doi.org/10.3390/biomedicines10092266
Chicago/Turabian StyleKhan, Zaheer Ullah, Taous Khan, Abdul Mannan, Atif Ali, and Jiang Ni. 2022. "In Vitro and Ex Vivo Evaluation of Mangifera indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging" Biomedicines 10, no. 9: 2266. https://doi.org/10.3390/biomedicines10092266
APA StyleKhan, Z. U., Khan, T., Mannan, A., Ali, A., & Ni, J. (2022). In Vitro and Ex Vivo Evaluation of Mangifera indica L. Extract-Loaded Green Nanoparticles in Topical Emulsion against Oxidative Stress and Aging. Biomedicines, 10(9), 2266. https://doi.org/10.3390/biomedicines10092266