Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics
Abstract
:1. Introduction
2. Machine Learning Methods
- Classification: where the output variable is made up of a finite set of discrete categories that indicate the class labels of input data, and the goal is to predict class labels of new instances starting from a training set of observations with known class labels;
- Regression: where the output is a continuous variable, and the goal is to find the mathematical relationship between input variables and outcome with a reasonable level of approximation.
- Clustering (or unsupervised classification): with the aim to divide data so that similarity of instances of the same cluster is maximized and similarity of different clusters is minimized;
- Dimensionality Reduction: where input instances are projected into a new lower-dimensional space.
- LR [17]: the simplest among classification techniques, it is mainly used for binary problems. Assuming linear decision boundaries, LR works by applying a logistic function in order to model a dichotomous variable of output:
- Generalized Linear Models (GLM) [18] are an extension of linear models where data normality is no longer required because predictions distribution is transformed into a linear combination of input variables X throughout the inverse link function h:
- Support Vector Machine (SVM) [19]: it applies a kernel function with the aim to map available data into a higher dimensional feature space where they can be easily separated by an optimal classification hyperplane.
- k-Nearest Neighbors (k-NN) [20]: it assigns the class of each instance computing the majority voting among its k nearest neighbors. This approach is very simple but requires some not trivial choices such as the number of k and the distance metric. Standardized Euclidean distance is one of the most used because neighbors are weighted by the inverse of their distance:
- Naïve Bayes (NB) [21]: based on the Bayes’ Theorem, it computes for each instance the class with the highest probability of applying density estimation and assuming independence of predictors;
- Decision Tree (DT) [22]: a tree-like model that works performing for each instance a sequence of cascading tests from the root node to the leaf node. Each internal node is a test on a specific variable, each branch descending from that node is one of the possible outcomes of the test, and each leaf node corresponds to a class label. In particular, at each node the function Information Gain is maximized to select the best split variable:With p(c) equal to the proportion of examples of class c.And Ires is the residual information needed after the selection of variable A:
- A common technique employed to enhance models’ robustness and generalizability is the ensemble method [23,24,25,26] that combines predictions of many base estimators. The aggregation can be done with the Bootstrap Aggregation technique (Bagging) applying the average among several trees trained on a subset of the original dataset (such as in the case of Random Forests (RF)) or with the Boosting technique applying the single estimators sequentially giving higher importance to samples that were incorrectly classified from previous trees (like in AdaBoost algorithm);
- Artificial Neural Networks (ANNs) [27]: are a group of machine learning algorithms inspired by the way the human brain performs a particular learning task. In particular, neural networks consist of simple computational units called neurons connected by links representing synapses, which are characterized by weights used to store information during the training phase. A standard NN architecture is composed of an input layer whose neurons represent input variables {xi| x1, x2, …, xm}, a certain number of hidden layers for intermediate calculations, and the output layer that converts received values in outputs. Each internal node transforms values from the previous layer using a weighted linear summation (u = w1x1 + w2x2 + … + wmxm), followed by a non-linear activation function (y = ϕ(u + b)) such as step, sign, sigmoid or hyperbolic tan functions. The learning process is performed throughout the backpropagation algorithm that computes the error term from the output layer and then back propagates this term to previous layers updating weights. This process is repeated until a certain stop criterion, or a certain number of epochs, are reached.
3. Predicting Outcome: Conventional Statistics versus Machine Learning
3.1. Conventional Statistics versus Machine Learning Methods in TBI Patients
3.2. Conventional Statistics versus Machine Learning Methods in Stroke Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mostert, C.Q.B.; Singh, R.D.; Gerritsen, M.; Kompanje, E.J.O.; Ribbers, G.M.; Peul, W.C.; van Dijck, J.T.J.M. Long-term outcome after severe traumatic brain injury: A systematic literature review. Acta Neurochir. 2022, 164, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Dong, W.; Ji, L.; Duan, H. Outcome Prediction in Clinical Treatment Processes. J. Med. Syst. 2016, 40, 8. [Google Scholar] [CrossRef]
- Preston, E.; Ada, L.; Stanton, R.; Mahendran, N.; Dean, C.M. Prediction of Independent Walking in People Who Are Nonambulatory Early After Stroke: A Systematic Review. Stroke 2021, 52, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Matamala-Gomez, M.; Sanchez-Vives, M.V.; Paolucci, S.; Iosa, M. Watch your step! Who can recover stair climbing independence after stroke? Eur. J. Phys. Rehabil. Med. 2019, 54, 811–818. [Google Scholar] [CrossRef]
- Paolucci, S.; Bragoni, M.; Coiro, P.; De Angelis, D.; Fusco, F.R.; Morelli, D.; Venturiero, V.; Pratesi, L. Quantification of the Probability of Reaching Mobility Independence at Discharge from a Rehabilitation Hospital in Nonwalking Early Ischemic Stroke Patients: A Multivariate Study. Cerebrovasc. Dis. 2008, 26, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Smania, N.; Avesani, R.; Roncari, L.; Ianes, P.; Girardi, P.; Varalta, V.; Gambini, M.G.; Fiaschi, A.; Gandolfi, M. Factors Predicting Functional and Cognitive Recovery Following Severe Traumatic, Anoxic, and Cerebrovascular Brain Damage. J. Head Trauma Rehabil. 2013, 28, 131–140. [Google Scholar] [CrossRef]
- Van Eijck, M.M.; Schoonman, G.G.; Van Der Naalt, J.; De Vries, J.; Roks, G. Diffuse axonal injury after traumatic brain injury is a prognostic factor for functional outcome: A systematic review and meta-analysis. Brain Inj. 2018, 32, 395–402. [Google Scholar] [CrossRef]
- Mushkudiani, N.A.; Engel, D.C.; Steyerberg, E.; Butcher, I.; Lu, J.; Marmarou, A.; Slieker, A.F.J.; McHugh, G.S.; Murray, G.; Maas, A.I. Prognostic Value of Demographic Characteristics in Traumatic Brain Injury: Results from The IMPACT Study. J. Neurotrauma 2007, 24, 259–269. [Google Scholar] [CrossRef]
- Kulesza, B.; Nogalski, A.; Kulesza, T.; Prystupa, A. Prognostic factors in traumatic brain injury and their association with outcome. J. Pre-Clin. Clin. Res. 2015, 9, 163–166. [Google Scholar] [CrossRef]
- Montellano, F.A.; Ungethüm, K.; Ramiro, L.; Nacu, A.; Hellwig, S.; Fluri, F.; Whiteley, W.N.; Bustamante, A.; Montaner, J.; Heuschmann, P.U. Role of Blood-Based Biomarkers in Ischemic Stroke Prognosis: A Systematic Review. Stroke 2021, 52, 543–551. [Google Scholar] [CrossRef]
- Wang, K.K.; Yang, Z.; Zhu, T.; Shi, Y.; Rubenstein, R.; Tyndall, J.A.; Manley, G.T. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev. Mol. Diagn. 2018, 18, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lucca, L.F.; Lofaro, D.; Pignolo, L.; Leto, E.; Ursino, M.; Cortese, M.D.; Conforti, D.; Tonin, P.; Cerasa, A. Outcome prediction in disorders of consciousness: The role of coma recovery scale revised. BMC Neurol. 2019, 19, 68. [Google Scholar] [CrossRef]
- Lucca, L.F.; Lofaro, D.; Leto, E.; Ursino, M.; Rogano, S.; Pileggi, A.; Vulcano, S.; Conforti, D.; Tonin, P.; Cerasa, A. The Impact of Medical Complications in Predicting the Rehabilitation Outcome of Patients with Disorders of Consciousness after Severe Traumatic Brain Injury. Front. Hum. Neurosci. 2020, 14, 406. [Google Scholar] [CrossRef] [PubMed]
- Soldozy, S.; Yağmurlu, K.; Norat, P.; Elsarrag, M.; Costello, J.; Farzad, F.; Sokolowski, J.D.; Sharifi, K.A.; Elarjani, T.; Burks, J.; et al. Biomarkers Predictive of Long-Term Outcome after Ischemic Stroke: A Meta-Analysis. World Neurosurg. 2022, 163, e1–e42. [Google Scholar] [CrossRef]
- Maas, A.I.; Lingsma, H.F.; Roozenbeek, B. Predicting outcome after traumatic brain injury. In Handbok of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 128, pp. 455–474. [Google Scholar] [CrossRef]
- Rodney, T.; Osier, N.; Gill, J. Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: A review. Cytokine 2018, 110, 248–256. [Google Scholar] [CrossRef]
- Tolles, J.; Meurer, W. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA 2016, 316, 533–534. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1989; ISBN 0-412-31760-5. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. k-Nearest Neighbour Classifiers: 2nd Edition. ACM Comput. Surv. 2021, 54, 1–25. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer, Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Boca Raton, FL, USA, 2017. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Zhu, J.; Zou, H.; Rosset, S.; Hastie, T. Multi-class AdaBoost. Stat. Its Interface 2009, 2, 349–360. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients with Stroke Unable to Return to Work. Front. Neurol. 2021, 12, 650542. [Google Scholar] [CrossRef] [PubMed]
- Bruschetta, R.; Tartarisco, G.; Lucca, L.F.; Leto, E.; Ursino, M.; Tonin, P.; Pioggia, G.; Cerasa, A. Predicting Outcome of Traumatic Brain Injury: Is Machine Learning the Best Way? Biomedicines 2022, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Gravesteijn, B.Y.; Nieboer, D.; Ercole, A.; Lingsma, H.F.; Nelson, D.; van Calster, B.; Steyerberg, E.W.; Åkerlund, C.; Amrein, K.; Andelic, N.; et al. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J. Clin. Epidemiol. 2020, 122, 95–107. [Google Scholar] [CrossRef]
- Nourelahi, M.; Dadboud, F.; Khalili, H.; Niakan, A.; Parsaei, H. A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months. Acute Crit. Care 2022, 37, 45–52. [Google Scholar] [CrossRef]
- Eftekhar, B.; Mohammad, K.; Ardebili, H.E.; Ghodsi, M.; Ketabchi, E. Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Med. Inform. Decis. Mak. 2005, 5, 3. [Google Scholar] [CrossRef]
- Tunthanathip, T.; Oearsakul, T. Application of machine learning to predict the outcome of pediatric traumatic brain injury. Chin. J. Traumatol. 2021, 24, 350–355. [Google Scholar] [CrossRef]
- Amorim, R.L.; Oliveira, L.M.; Malbouisson, L.M.; Nagumo, M.M.; Simoes, M.; Miranda, L.; Bor-Seng-Shu, E.; Beer-Furlan, A.; De Andrade, A.F.; Rubiano, A.M.; et al. Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population. Front. Neurol. 2019, 10, 1366. [Google Scholar] [CrossRef]
- Chong, S.-L.; Liu, N.; Barbier, S.; Ong, M.E.H. Predictive modeling in pediatric traumatic brain injury using machine learning. BMC Med. Res. Methodol. 2015, 15, 22. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Kelly, K.M.; Borstad, A.L.; Adeli, H.; Gauthier, L.V. Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy. Phys. Ther. 2019, 99, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Scrutinio, D.; Ricciardi, C.; Donisi, L.; Losavio, E.; Battista, P.; Guida, P.; Cesarelli, M.; Pagano, G.; D’Addio, G. Machine learning to predict mortality after rehabilitation among patients with severe stroke. Sci. Rep. 2020, 10, 20127. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choo, Y.J.; Chang, M.C. Prediction of Motor Function in Stroke Patients Using Machine Learning Algorithm: Development of Practical Models. J. Stroke Cerebrovasc. Dis. 2021, 30, 105856. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Morone, G.; Antonucci, G.; Paolucci, S. Prognostic Factors in Neurorehabilitation of Stroke: A Comparison among Regression, Neural Network, and Cluster Analyses. Brain Sci. 2021, 11, 1147. [Google Scholar] [CrossRef]
- Imura, T.; Toda, H.; Iwamoto, Y.; Inagawa, T.; Imada, N.; Tanaka, R.; Inoue, Y.; Araki, H.; Araki, O. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 106011. [Google Scholar] [CrossRef]
- George, S.H.; Rafiei, M.H.; Gauthier, L.; Borstad, A.; Buford, J.A.; Adeli, H. Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke. Behav. Brain Res. 2017, 329, 191–199. [Google Scholar] [CrossRef]
- Sale, P.; Ferriero, G.; Ciabattoni, L.; Cortese, A.M.; Ferracuti, F.; Romeo, L.; Piccione, F.; Masiero, S. Predicting Motor and Cognitive Improvement Through Machine Learning Algorithm in Human Subject that Underwent a Rehabilitation Treatment in the Early Stage of Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2962–2972. [Google Scholar] [CrossRef]
- Oczkowski, W.J.; Barreca, S. Neural network modeling accurately predicts the functional outcome of stroke survivors with moderate disabilities. Arch. Phys. Med. Rehabil. 1997, 78, 340–345. [Google Scholar] [CrossRef]
- Thakkar, H.K.; Liao, W.-W.; Wu, C.-Y.; Hsieh, Y.-W.; Lee, T.-H. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J. Neuroeng. Rehabil. 2020, 17, 131. [Google Scholar] [CrossRef]
- Liu, N.T.; Salinas, J. Machine Learning for Predicting Outcomes in Trauma. Shock 2017, 48, 504–510. [Google Scholar] [CrossRef]
- Billot, A.; Lai, S.; Varkanitsa, M.; Braun, E.J.; Rapp, B.; Parrish, T.B.; Higgins, J.; Kurani, A.S.; Caplan, D.; Thompson, C.K.; et al. Multimodal Neural and Behavioral Data Predict Response to Rehabilitation in Chronic Poststroke Aphasia. Stroke 2022, 53, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jiang, B.; Gong, E.; Li, Y.; Zhu, G.; Michel, P.; Wintermark, M.; Zaharchuk, G. Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. Am. J. Roentgenol. 2019, 212, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Lim, M.H.; Gil Seo, H.; Seong, M.Y.; Oh, B.-M.; Kim, S. Development of a Novel Prognostic Model to Predict 6-Month Swallowing Recovery after Ischemic Stroke. Stroke 2020, 51, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.; Jung, I.-Y.; Ku, Y.; Kim, Y. Machine-Learning-Based Rehabilitation Prognosis Prediction in Patients with Ischemic Stroke Using Brainstem Auditory Evoked Potential. Diagnostics 2021, 11, 673. [Google Scholar] [CrossRef] [PubMed]
- George, S.H.; Rafiei, M.H.; Borstad, A.; Adeli, H.; Gauthier, L.V. Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke. Behav. Brain Res. 2017, 333, 314–322. [Google Scholar] [CrossRef]
- Battista, P.; Salvatore, C.; Berlingeri, M.; Cerasa, A.; Castiglioni, I. Artificial intelligence and neuropsychological measures: The case of Alzheimer’s disease. Neurosci. Biobehav. Rev. 2020, 114, 211–228. [Google Scholar] [CrossRef]
- Cerasa, A. Machine learning on Parkinson’s disease? Let’s translate into clinical practice. J. Neurosci. Methods 2016, 266, 161–162. [Google Scholar] [CrossRef]
- Van Der Vliet, R.; Selles, R.W.; Andrinopoulou, E.; Nijland, R.; Ribbers, G.M.; Frens, M.A.; Meskers, C.; Kwakkel, G. Predicting Upper Limb Motor Impairment Recovery after Stroke: A Mixture Model. Ann. Neurol. 2020, 87, 383–393. [Google Scholar] [CrossRef] [Green Version]
Classical Statistics | Machine Learning | |
---|---|---|
Approach | Top-down (applied to data) | Bottom-up (extracted by data) |
Model | Hypothesized by the researcher | Auto-defined |
Power of analysis | Medium | Usually High |
Accuracy | Medium | It could be superior or inferior to that of classical statistics |
Reliability | The same data always provide the same results | The results are affected by the initialization of parameters |
Type of relationships among variables | Often Linear, in general not complex | Complex relationships |
Interpretability | Simple | More complex |
TBI PATIENTS | ||||||
---|---|---|---|---|---|---|
Authors | Algorithms | Sample (n°) | Data Type | Outcome | Accuracy Regression vs. ML Models | Best Features Extracted |
Nourelahi et al. [31] |
| 2381 | Parameters measured at admission:
| Binary outcome based on GOS-e: “favorable” or “unfavorable” | 78%/78% |
|
Tunthanathip et al. [33] |
| 828 | Baseline and Clinical Characteristics:
| King’s Outcome Scale for Childhood Head Injury | 93%/93% |
|
Bruschetta et al. [29] |
| 102 |
| GOS-e | 85%/82% | 2 classes:
|
Amorim et al. [34] |
| 517 |
| Death within 14 days | 88%/90% (Best Model: Naïve Bayes) |
|
Gravesteijn et al. [30] |
| 11022 |
| 6 months mortalityand unfavorable outcome (GOS < 3, or GOS-e < 5). | 80%/80% | N.R. |
Eftekhar et al. [32] |
| 1271 |
| Mortality | 96.37%/95.09% | N.R. |
Chong et al. [35] |
| 39 children with TBI | For both methods:
| CT scan | 93%/98% |
|
Stroke Patients | ||||||
---|---|---|---|---|---|---|
Authors | Algorithms | Sample (n°) | Data Type | Outcome | Accuracy Regression vs. ML Models | Best Features Extracted |
Rafiei et al. [36] |
| 47 |
| Multidimensional assessment (Motor Activity Log, Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, and Montreal Cognitive Assessment). | 40–51%/85–91% |
|
Scrutinio et al. [37] |
| 1207 |
| Death | 75.7%/86.1% |
|
Kim et al. [38] |
| 1056 |
| Modified Brunnstrom classification and Functional Ambulation Category | 84.9%/90% (Deep Neural Network 90%),87–91% (Random Forest) |
|
Iosa et al. [39] |
| 2522 |
| Barthel Index | 76.6%/74% |
|
Iosa et al. [28] |
| 33 |
| Return to Work | 81.3%/93.9% |
|
Imura et al. [40] |
| 481 |
| Home discharge | 79.9%/84.0% (k-Nearest Neighbors), 82.6% (Support Vector Machine), 79.9% (Decision Tree), 79.9% (Latent Dirichlet Allocation), 81.9% (Random Forest) | N.R. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerasa, A.; Tartarisco, G.; Bruschetta, R.; Ciancarelli, I.; Morone, G.; Calabrò, R.S.; Pioggia, G.; Tonin, P.; Iosa, M. Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics. Biomedicines 2022, 10, 2267. https://doi.org/10.3390/biomedicines10092267
Cerasa A, Tartarisco G, Bruschetta R, Ciancarelli I, Morone G, Calabrò RS, Pioggia G, Tonin P, Iosa M. Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics. Biomedicines. 2022; 10(9):2267. https://doi.org/10.3390/biomedicines10092267
Chicago/Turabian StyleCerasa, Antonio, Gennaro Tartarisco, Roberta Bruschetta, Irene Ciancarelli, Giovanni Morone, Rocco Salvatore Calabrò, Giovanni Pioggia, Paolo Tonin, and Marco Iosa. 2022. "Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics" Biomedicines 10, no. 9: 2267. https://doi.org/10.3390/biomedicines10092267
APA StyleCerasa, A., Tartarisco, G., Bruschetta, R., Ciancarelli, I., Morone, G., Calabrò, R. S., Pioggia, G., Tonin, P., & Iosa, M. (2022). Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics. Biomedicines, 10(9), 2267. https://doi.org/10.3390/biomedicines10092267