Percutaneous Treatment Approaches in Atrial Fibrillation: Current Landscape and Future Perspectives
Abstract
:1. Introduction
2. Atrial Fibrillation Catheter Ablation
2.1. Catheter Ablation Types
2.1.1. Radiofrequency Ablation
2.1.2. Cryoablation
2.1.3. Laser Balloon Ablation
2.1.4. Pulsed Field Ablation
2.1.5. Hot Balloon Ablation
2.2. Catheter Ablation in Persistent Atrial Fibrillation
2.3. Catheter Ablation in Heart Failure
3. Left Atrial Appendage Closure
3.1. Percutaneous LAAC
3.1.1. Watchman and Watchman FLX
3.1.2. Amplatzer Cardiac Plug and Amulet
3.1.3. Other Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Green, J.B.; Halperin, J.L.; Piccini, J.P. Atrial Fibrillation and Diabetes Mellitus: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Angeli, F.; Reboldi, G. Hypertension and Atrial Fibrillation: Doubts and Certainties From Basic and Clinical Studies. Circ. Res. 2018, 122, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Gupta, D.; Lip, G.Y.H. Obesity and atrial fibrillation: Making inroads through fat. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 59–67. [Google Scholar] [CrossRef]
- Sagris, M.; Vardas, E.P.; Theofilis, P.; Antonopoulos, A.S.; Oikonomou, E.; Tousoulis, D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int. J. Mol. Sci. 2021, 23, 6. [Google Scholar] [CrossRef]
- Rydén, L.; Sacuiu, S.; Wetterberg, H.; Najar, J.; Guo, X.; Kern, S.; Zettergren, A.; Shams, S.; Pereira, J.B.; Wahlund, L.-O.; et al. Atrial Fibrillation, Stroke, and Silent Cerebrovascular Disease: A Population-based MRI Study. Neurology 2021, 97, e1608–e1619. [Google Scholar] [CrossRef]
- Carlisle, M.A.; Fudim, M.; DeVore, A.D.; Piccini, J.P. Heart Failure and Atrial Fibrillation, Like Fire and Fury. JACC: Heart Fail. 2019, 7, 447–456. [Google Scholar] [CrossRef]
- Madhavan, M.; Graff-Radford, J.; Piccini, J.P.; Gersh, B.J. Cognitive dysfunction in atrial fibrillation. Nat. Rev. Cardiol. 2018, 15, 744–756. [Google Scholar] [CrossRef]
- Randolph, T.C.; Simon, D.N.; Thomas, L.; Allen, L.A.; Fonarow, G.; Gersh, B.J.; Kowey, P.R.; Reiffel, J.A.; Naccarelli, G.V.; Chan, P.S.; et al. Patient factors associated with quality of life in atrial fibrillation. Am. Heart J. 2016, 182, 135–143. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Michal, M.; Wilde, S.; Wiltink, J.; Wild, P.S.; Sinning, C.R.; Lubos, E.; Ojeda, F.M.; Zeller, T.; Munzel, T.; et al. Depression in Atrial Fibrillation in the General Population. PLoS ONE 2013, 8, e79109. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.V.; Wang, Y.; Akar, J.; Desai, N.; Krumholz, H. National Trends in Atrial Fibrillation Hospitalization, Readmission, and Mortality for Medicare Beneficiaries, 1999–2013. Circulation 2017, 135, 1227–1239. [Google Scholar] [CrossRef]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Willems, S.; Borof, K.; Brandes, A.; Breithardt, G.; Camm, A.J.; Crijns, H.J.G.M.; Eckardt, L.; Gessler, N.; Goette, A.; Haegeli, L.M.; et al. Systematic, early rhythm control strategy for atrial fibrillation in patients with or without symptoms: The EAST-AFNET 4 trial. Eur. Heart J. 2022, 43, 1219–1230. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Pappone, C.; Oreto, G.; Lamberti, F.; Vicedomini, G.; Loricchio, M.L.; Shpun, S.; Rillo, M.; Calabrò, M.P.; Conversano, A.; Ben-Haim, S.A.; et al. Catheter Ablation of Paroxysmal Atrial Fibrillation Using a 3D Mapping System. Circulation 1999, 100, 1203–1208. [Google Scholar] [CrossRef]
- Arentz, T.; Weber, R.; Bürkle, G.; Herrera, C.; Blum, T.; Stockinger, J.; Minners, J.; Neumann, F.J.; Kalusche, D. Small or Large Isolation Areas Around the Pulmonary Veins for the Treatment of Atrial Fibrillation? Results from a prospective randomized study. Circulation 2007, 115, 3057–3063. [Google Scholar] [CrossRef]
- Proietti, R.; Santangeli, P.; Di Biase, L.; Joza, J.; Bernier, M.L.; Wang, Y.; Sagone, A.; Viecca, M.; Essebag, V.; Natale, A. Comparative Effectiveness of Wide Antral Versus Ostial Pulmonary Vein Isolation: A systematic review and meta-analysis. Circ. Arrhythmia Electrophysiol. 2014, 7, 39–45. [Google Scholar] [CrossRef]
- Redfearn, D.P.; Skanes, A.C.; Gula, L.J.; Griffith, M.J.; Marshall, H.J.; Stafford, P.J.; Krahn, A.D.; Yee, R.; Klein, G.J. Noninvasive Assessment of Atrial Substrate Change after Wide Area Circumferential Ablation: A Comparison with Segmental Pulmonary Vein Isolation. Ann. Noninvasive Electrocardiol. 2007, 12, 329–337. [Google Scholar] [CrossRef]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.-H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017, 14, e275–e444. [Google Scholar] [CrossRef]
- Kino, T.; Kagimoto, M.; Yamada, T.; Ishii, S.; Asai, M.; Asano, S.; Yano, H.; Ishikawa, T.; Ishigami, T. Optimal Anticoagulant Strategy for Periprocedural Management of Atrial Fibrillation Ablation: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2022, 11, 1872. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Y.; Liu, C.; Wang, Y. Radiofrequency ablation for treatment of atrial fibrillation with the use of intracardiac echocardiography versus without intracardiac echocardiography: A meta-analysis of observational and randomized studies. J. Cardiovasc. Electrophysiol. 2022, 33, 897–907. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Q.; Ye, L.; Zheng, Y.; Wang, L. The comparison of catheter ablation on hard outcomes versus medical treatment for atrial fibrillation patients: A meta-analysis of randomized, controlled trials with trial sequential analysis. PLoS ONE 2022, 17, e0262702. [Google Scholar] [CrossRef]
- Leung, L.W.M.; Imhoff, R.J.; Marshall, H.J.; Frame, D.; Mallow, P.J.; Goldstein, L.; Wei, T.; Velleca, M.; Taylor, H.; Gallagher, M.M. Cost-effectiveness of catheter ablation versus medical therapy for the treatment of atrial fibrillation in the United Kingdom. J. Cardiovasc. Electrophysiol. 2022, 33, 164–175. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Bahnson, T.D.; Giczewska, A.; Mark, D.B.; Russo, A.M.; Monahan, K.H.; Al-Khalidi, H.R.; Silverstein, A.P.; Poole, J.E.; Lee, K.L.; Packer, D.L.; et al. Association Between Age and Outcomes of Catheter Ablation Versus Medical Therapy for Atrial Fibrillation: Results From the CABANA Trial. Circulation 2022, 145, 796–804. [Google Scholar] [CrossRef]
- Poole, J.E.; Bahnson, T.D.; Monahan, K.H.; Johnson, G.; Rostami, H.; Silverstein, A.P.; Al-Khalidi, H.R.; Rosenberg, Y.; Mark, D.B.; Lee, K.L.; et al. Recurrence of Atrial Fibrillation After Catheter Ablation or Antiarrhythmic Drug Therapy in the CABANA Trial. J. Am. Coll. Cardiol. 2020, 75, 3105–3118. [Google Scholar] [CrossRef]
- Lee, W.; Wu, P.; Fang, C.; Chen, H.; Chen, M. Impact of chronic kidney disease on atrial fibrillation recurrence following radiofrequency and cryoballoon ablation: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e14173. [Google Scholar] [CrossRef]
- Garvanski, I.; Simova, I.; Angelkov, L.; Matveev, M. Predictors of Recurrence of AF in Patients After Radiofrequency Ablation. Eur. Cardiol. Rev. 2019, 14, 165–168. [Google Scholar] [CrossRef]
- Du, H.; Yang, L.; Hu, Z.; Zhang, H. Anxiety is associated with higher recurrence of atrial fibrillation after catheter ablation: A meta-analysis. Clin. Cardiol. 2022, 45, 243–250. [Google Scholar] [CrossRef]
- Rettmann, M.E.; Holmes, D.R., 3rd; Monahan, K.H.; Breen, J.F.; Bahnson, T.D.; Mark, D.B.; Poole, J.E.; Ellis, A.M.; Silverstein, A.P.; Al-Khalidi, H.R.; et al. Treatment-Related Changes in Left Atrial Structure in Atrial Fibrillation: Findings From the CABANA Imaging Substudy. Circ. Arrhythmia Electrophysiol. 2021, 14, e008540. [Google Scholar] [CrossRef]
- Boyalla, V.; Harling, L.; Snell, A.; Kralj-Hans, I.; Barradas-Pires, A.; Haldar, S.; Khan, H.R.; Cleland, J.G.F.; Athanasiou, T.; Harding, S.E.; et al. Biomarkers as predictors of recurrence of atrial fibrillation post ablation: An updated and expanded systematic review and meta-analysis. Clin. Res. Cardiol. 2022, 111, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, Y. Circulating Galectin-3 and Atrial Fibrillation Recurrence after Catheter Ablation: A Meta-Analysis. Cardiovasc. Ther. 2019, 2019, 4148129. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Musikantow, D.; Whang, W.; Koruth, J.S.; Miller, M.A.; Langan, M.-N.; Sofi, A.; Choudry, S.; Dukkipati, S.R.; Reddy, V.Y. Assessment of Catheter Ablation or Antiarrhythmic Drugs for First-line Therapy of Atrial Fibrillation: A Meta-analysis of Randomized Clinical Trials. JAMA Cardiol. 2021, 6, 697–705. [Google Scholar] [CrossRef]
- Saglietto, A.; Ballatore, A.; Xhakupi, H.; De Ferrari, G.M.; Anselmino, M. Association of Catheter Ablation and Reduced Incidence of Dementia among Patients with Atrial Fibrillation during Long-Term Follow-Up: A Systematic Review and Meta-Analysis of Observational Studies. J. Cardiovasc. Dev. Dis. 2022, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Kuck, K.-H.; Lebedev, D.S.; Mikhaylov, E.N.; Romanov, A.; Gellér, L.; Kalējs, O.; Neumann, T.; Davtyan, K.; On, Y.K.; Popov, S.; et al. Catheter ablation or medical therapy to delay progression of atrial fibrillation: The randomized controlled atrial fibrillation progression trial (ATTEST). Europace 2021, 23, 362–369a. [Google Scholar] [CrossRef] [PubMed]
- de Vos, C.B.; Pisters, R.; Nieuwlaat, R.; Prins, M.H.; Tieleman, R.G.; Coelen, R.-J.S.; Heijkant, A.C.V.D.; Allessie, M.A.; Crijns, H.J. Progression From Paroxysmal to Persistent Atrial Fibrillation: Clinical Correlates and Prognosis. J. Am. Coll. Cardiol. 2010, 55, 725–731. [Google Scholar] [CrossRef]
- Tang, P.-T.; Davies, M.; Bashir, Y.; Betts, T.R.; Pedersen, M.; Rajappan, K.; Ginks, M.R.; Wijesurendra, R.S. Efficacy and safety of same-day discharge after atrial fibrillation ablation compared with post-procedural overnight stay: A systematic review and meta-analysis. Europace 2022, euac068. [Google Scholar] [CrossRef]
- Ejima, K.; Kato, K.; Okada, A.; Wakisaka, O.; Kimura, R.; Ishizawa, M.; Imai, T.; Toyama, Y.; Shoda, M.; Hagiwara, N. Comparison Between Contact Force Monitoring and Unipolar Signal Modification as a Guide for Catheter Ablation of Atrial Fibrillation: Prospective Multi-Center Randomized Study. Circ. Arrhythmia Electrophysiol. 2019, 12, e007311. [Google Scholar] [CrossRef]
- Kim, T.-H.; Park, J.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Pak, H.-N. Pulmonary vein reconnection predicts good clinical outcome after second catheter ablation for atrial fibrillation. Europace 2017, 19, 961–967. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Karim, N.; Williams, J.; Garcia, J.; Creta, A.; Ang, R.; Srinivasan, N.; Providencia, R.; Hunter, R.J.; Dhinoja, M.; et al. Initial experience of the High-Density Grid catheter in patients undergoing catheter ablation for atrial fibrillation. J. Interv. Card. Electrophysiol. 2022, 63, 259–266. [Google Scholar] [CrossRef]
- Das, M.; Loveday, J.J.; Wynn, G.J.; Gomes, S.; Saeed, Y.; Bonnett, L.J.; Waktare, J.E.; Todd, D.M.; Hall, M.C.; Snowdon, R.L.; et al. Ablation index, a novel marker of ablation lesion quality: Prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace 2017, 19, 775–783. [Google Scholar] [CrossRef]
- Duytschaever, M.; De Pooter, J.; Demolder, A.; El Haddad, M.; Phlips, T.; Strisciuglio, T.; Debonnaire, P.; Wolf, M.; Vandekerckhove, Y.; Knecht, S.; et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: The CLOSE to CURE study. Heart Rhythm 2020, 17, 535–543. [Google Scholar] [CrossRef]
- Prasad, K.V.; Bonso, A.; Woods, C.E.; Goya, M.; Matsuo, S.; Padanilam, B.J.; Kreis, I.; Yang, F.; Williams, C.G.; Tranter, J.H.; et al. Lesion Index–guided workflow for the treatment of paroxysmal atrial fibrillation is safe and effective—Final results from the LSI Workflow Study. Heart Rhythm O2, 2022; in press. [Google Scholar] [CrossRef]
- Kim, D.; Yu, H.T.; Kim, T.-H.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Pak, H.-N. Electrical Posterior Box Isolation in Repeat Ablation for Atrial Fibrillation: A Prospective Randomized Clinical Study. JACC Clin. Electrophysiol. 2022, 8, 582–592. [Google Scholar] [CrossRef]
- Chieng, D.; Sugumar, H.; Ling, L.-H.; Segan, L.; Azzopardi, S.; Prabhu, S.; Al-Kaisey, A.; Voskoboinik, A.; Parameswaran, R.; Morton, J.B.; et al. Catheter ablation for persistent atrial fibrillation: A multicenter randomized trial of pulmonary vein isolation (PVI) versus PVI with posterior left atrial wall isolation (PWI)—The CAPLA study. Am. Heart J. 2022, 243, 210–220. [Google Scholar] [CrossRef]
- Aryana, A.; Pujara, D.K.; Allen, S.L.; Baker, J.H.; Espinosa, M.A.; Buch, E.F.; Srivatsa, U.; Ellis, E.; Makati, K.; Kowalski, M.; et al. Left atrial posterior wall isolation in conjunction with pulmonary vein isolation using cryoballoon for treatment of persistent atrial fibrillation (PIVoTAL): Study rationale and design. J. Interv. Card. Electrophysiol. 2021, 62, 187–198. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Coyle, C.; Tomlinson, D.R.; Sikkel, M.B.; Sohaib, A.; Luther, V.; Leong, K.M.; Malcolme-Lawes, L.; Low, B.; Sandler, B.; et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm 2022, 19, 516–524. [Google Scholar] [CrossRef]
- Rackley, J.; Nudy, M.; Gonzalez, M.D.; Naccarelli, G.; Maheshwari, A. Pulmonary vein isolation with adjunctive left atrial ganglionic plexus ablation for treatment of atrial fibrillation: A meta-analysis of randomized controlled trials. J. Interv. Card. Electrophysiol. 2022, 1–10. [Google Scholar] [CrossRef]
- Li, F.; Sun, J.-Y.; Wu, L.-D.; Zhang, L.; Qu, Q.; Wang, C.; Qian, L.-L.; Wang, R.-X. The Long-Term Outcomes of Ablation With Vein of Marshall Ethanol Infusion vs. Ablation Alone in Patients With Atrial Fibrillation: A Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 871654. [Google Scholar] [CrossRef]
- Leshem, E.; Zilberman, I.; Tschabrunn, C.M.; Barkagan, M.; Contreras-Valdes, F.M.; Govari, A.; Anter, E. High-Power and Short-Duration Ablation for Pulmonary Vein Isolation. JACC Clin. Electrophysiol. 2018, 4, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Chen, X.; Pehrson, S.; Svendsen, J.H. The effectiveness of a high output/short duration radiofrequency current application technique in segmental pulmonary vein isolation for atrial fibrillation. Europace 2006, 8, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.G.; Ahn, J.; Han, S.-J.; Lim, H.E. Efficacy of high-power and short-duration ablation in patients with atrial fibrillation: A prospective randomized controlled trial. EP Eurospace 2020, 22, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Yavin, H.D.; Leshem, E.; Shapira-Daniels, A.; Sroubek, J.; Barkagan, M.; Haffajee, C.I.; Cooper, J.M.; Anter, E. Impact of High-Power Short-Duration Radiofrequency Ablation on Long-Term Lesion Durability for Atrial Fibrillation Ablation. JACC Clin. Electrophysiol. 2020, 6, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Francke, A.; Scharfe, F.; Schoen, S.; Wunderlich, C.; Christoph, M. Reconnection patterns after CLOSE-guided 50 W high-power-short-duration circumferential pulmonary vein isolation and substrate modification—PV reconnection might no longer be an issue. J. Cardiovasc. Electrophysiol. 2022, 33, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, K.; Toyama, H. High-power, short-duration ablation during Box isolation for atrial fibrillation. J. Arrhythmia 2020, 36, 899–904. [Google Scholar] [CrossRef]
- Kusa, S.; Hachiya, H.; Sato, Y.; Hara, S.; Ohya, H.; Miwa, N.; Yamao, K.; Iesaka, Y.; Sasano, T. Superior vena cava isolation with 50 W high power, short duration ablation strategy. J. Cardiovasc. Electrophysiol. 2021, 32, 1602–1609. [Google Scholar] [CrossRef]
- Junarta, J.; Dikdan, S.J.; Upadhyay, N.; Bodempudi, S.; Shvili, M.Y.; Frisch, D.R. High-power short-duration versus standard-power standard-duration settings for repeat atrial fibrillation ablation. Heart Vessel. 2022, 37, 1003–1009. [Google Scholar] [CrossRef]
- Ravi, V.; Poudyal, A.; Abid, Q.-U.; Larsen, T.; Krishnan, K.; Sharma, P.S.; Trohman, R.G.; Huang, H.D. High-power short duration vs. conventional radiofrequency ablation of atrial fibrillation: A systematic review and meta-analysis. Europace 2021, 23, 710–721. [Google Scholar] [CrossRef]
- Kaneshiro, T.; Kamioka, M.; Hijioka, N.; Yamada, S.; Yokokawa, T.; Misaka, T.; Hikichi, T.; Yoshihisa, A.; Takeishi, Y. Characteristics of Esophageal Injury in Ablation of Atrial Fibrillation Using a High-Power Short-Duration Setting. Circ. Arrhythmia. Electrophysiol. 2020, 13, e008602. [Google Scholar] [CrossRef]
- Ayoub, T.; El Hajjar, A.H.; Sidhu, G.D.S.; Bhatnagar, A.; Zhang, Y.; Mekhael, M.; Noujaim, C.; Dagher, L.; Pottle, C.; Marrouche, N. Esophageal temperature during atrial fibrillation ablation poorly predicts esophageal injury: An observational study. Heart Rhythm O2 2021, 2, 570–577. [Google Scholar] [CrossRef]
- Müller, J.; Berkovitz, A.; Halbfass, P.; Nentwich, K.; Ene, E.; Sonne, K.; Simu, G.; Chakarov, I.; Barth, S.; Waechter, C.; et al. Acute oesophageal safety of high-power short duration with 50 W for atrial fibrillation ablation. Europace 2022, 24, 928–937. [Google Scholar] [CrossRef]
- Chen, S.; Chun, K.J.; Tohoku, S.; Bordignon, S.; Urbanek, L.; Willems, F.; Plank, K.; Hilbert, M.; Konstantinou, A.; Tsianakas, N.; et al. Esophageal Endoscopy After Catheter Ablation of Atrial Fibrillation Using Ablation-Index Guided High-Power: Frankfurt AI-HP ESO-I. JACC Clin. Electrophysiol. 2020, 6, 1253–1261. [Google Scholar] [CrossRef]
- Francke, A.; Taha, N.S.; Scharfe, F.; Schoen, S.; Wunderlich, C.; Christoph, M. Procedural efficacy and safety of standardized, ablation index guided fixed 50 W high-power short-duration pulmonary vein isolation and substrate modification using the CLOSE protocol. J. Cardiovasc. Electrophysiol. 2021, 32, 2408–2417. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Grimaldi, M.; De Potter, T.; Vijgen, J.M.; Bulava, A.; Duytschaever, M.F.; Martinek, M.; Natale, A.; Knecht, S.; Neuzil, P.; et al. Pulmonary Vein Isolation With Very High Power, Short Duration, Temperature-Controlled Lesions: The QDOT-FAST Trial. JACC Clin. Electrophysiol. 2019, 5, 778–786. [Google Scholar] [CrossRef]
- Tilz, R.R.; Sano, M.; Vogler, J.; Fink, T.; Saraei, R.; Sciacca, V.; Kirstein, B.; Phan, H.-L.; Hatahet, S.; Lopez, L.D.; et al. Very high-power short-duration temperature-controlled ablation versus conventional power-controlled ablation for pulmonary vein isolation: The fast and furious—AF study. IJC Heart Vasc. 2021, 35, 100847. [Google Scholar] [CrossRef]
- Kottmaier, M.; Popa, M.-A.; Bourier, F.; Reents, T.; Cifuentes, J.; Semmler, V.; Telishevska, M.; Otgonbayar, U.; Koch-Büttner, K.; Lennerz, C.; et al. Safety and outcome of very high-power short-duration ablation using 70 W for pulmonary vein isolation in patients with paroxysmal atrial fibrillation. Europace 2020, 22, 388–393. [Google Scholar] [CrossRef]
- Halbfass, P.; Wielandts, J.-Y.; Knecht, S.; Waroux, J.-B.L.P.D.; Tavernier, R.; De Wilde, V.; Sonne, K.; Nentwich, K.; Ene, E.; Berkovitz, A.; et al. Safety of very high-power short-duration radiofrequency ablation for pulmonary vein isolation: A two-centre report with emphasis on silent oesophageal injury. EP Eurospace 2021, 24, 400–405. [Google Scholar] [CrossRef]
- Velagić, V.; de Asmundis, C.; Mugnai, G.; Hünük, B.; Hacioğlu, E.; Ströker, E.; Moran, D.; Ruggiero, D.; Poelaert, J.; Verborgh, C.; et al. Learning curve using the second-generation cryoballoon ablation. J. Cardiovasc. Med. 2017, 18, 518–527. [Google Scholar] [CrossRef]
- Osório, T.G.; Coutiño, H.-E.; Brugada, P.; Chierchia, G.-B.; De Asmundis, C. Recent advances in cryoballoon ablation for atrial fibrillation. Expert Rev. Med. Devices 2019, 16, 799–808. [Google Scholar] [CrossRef]
- Andrade, J.G.; Wells, G.A.; Deyell, M.W.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; Khaykin, Y.; et al. Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 305–315. [Google Scholar] [CrossRef]
- Kuniss, M.; Pavlovic, N.; Velagic, V.; Hermida, J.S.; Healey, S.; Arena, G.; Badenco, N.; Meyer, C.; Chen, J.; Iacopino, S.; et al. Cryoballoon ablation vs. antiarrhythmic drugs: First-line therapy for patients with paroxysmal atrial fibrillation. Europace 2021, 23, 1033–1041. [Google Scholar] [CrossRef]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon Ablation as Initial Therapy for Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef]
- Wazni, O.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Quality of life after the initial treatment of atrial fibrillation with cryoablation versus drug therapy. Heart Rhythm 2022, 19, 197–205. [Google Scholar] [CrossRef]
- Pavlovic, N.; Chierchia, G.-B.; Velagic, V.; Hermida, J.S.; Healey, S.; Arena, G.; Badenco, N.; Meyer, C.; Chen, J.; Iacopino, S.; et al. Initial rhythm control with cryoballoon ablation vs drug therapy: Impact on quality of life and symptoms. Am. Heart J. 2021, 242, 103–114. [Google Scholar] [CrossRef]
- Vrachatis, D.A.; Papathanasiou, K.A.; Kossyvakis, C.; Kazantzis, D.; Giotaki, S.G.; Deftereos, G.; Sanz-Sánchez, J.; Raisakis, K.; Kaoukis, A.; Avramides, D.; et al. Early arrhythmia recurrence after cryoballoon ablation in atrial fibrillation: A systematic review and meta-analysis. J. Cardiovasc. Electrophysiol. 2022, 33, 527–539. [Google Scholar] [CrossRef]
- Andrade, J.G.; Champagne, J.; Dubuc, M.; Deyell, M.W.; Verma, A.; Macle, L.; Leong-Sit, P.; Novak, P.; Badra-Verdu, M.; Sapp, J.; et al. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation Assessed by Continuous Monitoring: A Randomized Clinical Trial. Circulation 2019, 140, 1779–1788. [Google Scholar] [CrossRef]
- Pak, H.-N.; Park, J.-W.; Yang, S.-Y.; Kim, T.-H.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Yu, H.T. Cryoballoon Versus High-Power, Short-Duration Radiofrequency Ablation for Pulmonary Vein Isolation in Patients With Paroxysmal Atrial Fibrillation: A Single-Center, Prospective, Randomized Study. Circ. Arrhythmia Electrophysiol. 2021, 14, e010040. [Google Scholar] [CrossRef]
- Lavallaz, J.D.F.D.; Badertscher, P.; Kobori, A.; Kuck, K.-H.; Brugada, J.; Boveda, S.; Providência, R.; Khoueiry, Z.; Luik, A.; Squara, F.; et al. Sex-specific efficacy and safety of cryoballoon versus radiofrequency ablation for atrial fibrillation: An individual patient data meta-analysis. Heart Rhythm 2020, 17, 1232–1240. [Google Scholar] [CrossRef]
- Chun, J.K.; Bordignon, S.; Last, J.; Mayer, L.; Tohoku, S.; Zanchi, S.; Bianchini, L.; Bologna, F.; Nagase, T.; Urbanek, L.; et al. Cryoballoon Versus Laserballoon: Insights From the First Prospective Randomized Balloon Trial in Catheter Ablation of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2021, 14, e009294. [Google Scholar] [CrossRef]
- Schmidt, B.; Neuzil, P.; Luik, A.; Osca Asensi, J.; Schrickel, J.W.; Deneke, T.; Bordignon, S.; Petru, J.; Merkel, M.; Sediva, L.; et al. Laser Balloon or Wide-Area Circumferential Irrigated Radiofrequency Ablation for Persistent Atrial Fibrillation: A Multicenter Prospective Randomized Study. Circ. Arrhythm. Electrophysiol. 2017, 10, e005767. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, M.; Gasperetti, A.; Montemerlo, E.; Pozzi, M.; Sabato, F.; Piazzi, E.; Ruggiero, D.; De Ceglia, S.; Viecca, M.; Calkins, H.; et al. Long-term comparisons of atrial fibrillation ablation outcomes with a cryoballoon or laser-balloon: A propensity-matched analysis based on continuous rhythm monitoring. Hell. J. Cardiol. 2022, 65, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Üçer, E.; Fredersdorf, S.; Seegers, J.; Poschenrieder, F.; Hauck, C.; Maier, L.; Jungbauer, C. High Predictive Value of Adenosine Provocation in Predicting Atrial Fibrillation Recurrence After Pulmonary Vein Isolation With Visually Guided Laser Balloon Compared With Radiofrequency Ablation. Circ. J. 2020, 84, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Figueras i Ventura, R.M.; Mǎrgulescu, A.D.; Benito, E.M.; Alarcón, F.; Enomoto, N.; Prat-Gonzalez, S.; Perea, R.J.; Borràs, R.; Chipa, F.; Arbelo, E.; et al. Postprocedural LGE-CMR comparison of laser and radiofrequency ablation lesions after pulmonary vein isolation. J. Cardiovasc. Electrophysiol. 2018, 29, 1065–1072. [Google Scholar] [CrossRef]
- Skeete, J.; Sharma, P.S.; Kenigsberg, D.; Pietrasik, G.; Osman, A.F.; Ravi, V.; Du-Fay-De-Lavallaz, J.M.; Post, Z.; Wasserlauf, J.; Larsen, T.R.; et al. Wide area circumferential ablation for pulmonary vein isolation using radiofrequency versus laser balloon ablation. J. Arrhythmia 2022, 38, 336–345. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kobori, A.; Ishikura, M.; Murai, R.; Okada, T.; Toyota, T.; Taniguchi, T.; Kim, K.; Ehara, N.; Kinoshita, M.; et al. Effectiveness of a manual dragging laser irradiation technique using the first-generation endoscopic laser balloon ablation system for pulmonary vein isolation. J. Arrhythmia 2022, 38, 327–335. [Google Scholar] [CrossRef]
- Guenancia, C.; Hammache, N.; Docq, C.; Benali, K.; Hooks, D.; Echivard, M.; Pace, N.; Magnin-Poull, I.; de Chillou, C.; Sellal, J.-M. Efficacy and Safety of Second and Third-Generation Laser Balloon for Paroxysmal Atrial Fibrillation Ablation Compared to Radiofrequency Ablation: A Matched-Cohort. J. Cardiovasc. Dev. Dis. 2021, 8, 183. [Google Scholar] [CrossRef]
- Tohoku, S.; Bordignon, S.; Chen, S.; Bologna, F.; Urbanek, L.; Operhalski, F.; Chun, K.J.; Schmidt, B. Validation of lesion durability following pulmonary vein isolation using the new third-generation laser balloon catheter in patients with recurrent atrial fibrillation. J. Cardiol. 2021, 78, 388–396. [Google Scholar] [CrossRef]
- Nakatani, Y.; Sridi-Cheniti, S.; Cheniti, G.; Ramirez, F.D.; Goujeau, C.; André, C.; Nakashima, T.; Eggert, C.; Schneider, C.; Viswanathan, R.; et al. Pulsed field ablation prevents chronic atrial fibrotic changes and restrictive mechanics after catheter ablation for atrial fibrillation. Europace 2021, 23, 1767–1776. [Google Scholar] [CrossRef]
- Kuroki, K.; Whang, W.; Eggert, C.; Lam, J.; Leavitt, J.; Kawamura, I.; Reddy, A.; Morrow, B.; Schneider, C.; Petru, J.; et al. Ostial dimensional changes after pulmonary vein isolation: Pulsed field ablation vs radiofrequency ablation. Heart Rhythm 2020, 17, 1528–1535. [Google Scholar] [CrossRef]
- Stewart, M.T.; Haines, D.E.; Verma, A.; Kirchhof, N.; Barka, N.; Grassl, E.; Howard, B. Intracardiac pulsed field ablation: Proof of feasibility in a chronic porcine model. Heart Rhythm 2019, 16, 754–764. [Google Scholar] [CrossRef]
- Koruth, J.; Kuroki, K.; Iwasawa, J.; Enomoto, Y.; Viswanathan, R.; Brose, R.; Buck, E.D.; Speltz, M.; Dukkipati, S.R.; Reddy, V. Preclinical Evaluation of Pulsed Field Ablation: Electrophysiological and Histological Assessment of Thoracic Vein Isolation. Circ. Arrhythmia Electrophysiol. 2019, 12, e007781. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Koruth, J.; Jais, P.; Petru, J.; Timko, F.; Skalsky, I.; Hebeler, R.; Labrousse, L.; Barandon, L.; Kralovec, S.; et al. Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation. JACC Clin. Electrophysiol. 2018, 4, 987–995. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Neuzil, P.; Koruth, J.S.; Petru, J.; Funosako, M.; Cochet, H.; Sediva, L.; Chovanec, M.; Dukkipati, S.R.; Jais, P. Pulsed Field Ablation for Pulmonary Vein Isolation in Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 74, 315–326. [Google Scholar] [CrossRef]
- Ekanem, E.; Reddy, V.Y.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Multi-national survey on the methods, efficacy, and safety on the post-approval clinical use of pulsed field ablation (MANIFEST-PF). Europace 2022, 24, 1256–1266. [Google Scholar] [CrossRef]
- Bohnen, M.; Weber, R.; Minners, J.; Jadidi, A.; Eichenlaub, M.; Neumann, F.J.; Arentz, T.; Lehrmann, H. Characterization of circumferential antral pulmonary vein isolation areas resulting from pulsed-field catheter ablation. Europace 2022, euac111. [Google Scholar] [CrossRef]
- Verma, A.; Boersma, L.; Haines, D.E.; Natale, A.; Marchlinski, F.E.; Sanders, P.; Calkins, H.; Packer, D.L.; Hummel, J.; Onal, B.; et al. First-in-Human Experience and Acute Procedural Outcomes Using a Novel Pulsed Field Ablation System: The PULSED AF Pilot Trial. Circ. Arrhythmia Electrophysiol. 2022, 15, e010168. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Anter, E.; Rackauskas, G.; Peichl, P.; Koruth, J.S.; Petru, J.; Funasako, M.; Minami, K.; Natale, A.; Jaïs, P.; et al. Lattice-Tip Focal Ablation Catheter That Toggles Between Radiofrequency and Pulsed Field Energy to Treat Atrial Fibrillation: A First-in-Human Trial. Circ. Arrhythmia Electrophysiol. 2020, 13, e008718. [Google Scholar] [CrossRef]
- Kueffer, T.; Baldinger, S.H.; Servatius, H.; Madaffari, A.; Seiler, J.; Muhl, A.; Franzeck, F.; Thalmann, G.; Asatryan, B.; Haeberlin, A.; et al. Validation of a multipolar pulsed-field ablation catheter for endpoint assessment in pulmonary vein isolation procedures. Europace 2022, 24, 1248–1255. [Google Scholar] [CrossRef]
- Sohara, H.; Takeda, H.; Ueno, H.; Oda, T.; Satake, S. Feasibility of the Radiofrequency Hot Balloon Catheter for Isolation of the Posterior Left Atrium and Pulmonary Veins for the Treatment of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2009, 2, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Sohara, H.; Takeda, H.; Nakamura, Y.; Ihara, M.; Higuchi, S.; Satake, S. Long-Term Results of Radiofrequency Hot Balloon Ablation in Patients With Paroxysmal Atrial Fibrillation: Safety and Rhythm Outcomes. J. Cardiovasc. Electrophysiol. 2015, 26, 1298–1306. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Aonuma, K.; Shinoda, Y.; Komatsu, Y.; Masuda, K.; Hashimoto, N.; Sai, E.; Yamagami, F.; Okabe, Y.; Tsumagari, Y.; et al. Initial Result of Antrum Pulmonary Vein Isolation Using the Radiofrequency Hot-Balloon Catheter With Single-Shot Technique. JACC Clin. Electrophysiol. 2019, 5, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, S.; Wakamatsu, Y.; Fukuda, R.; Hori, Y.; Nishiyama, N.; Sato, H.; Nagashima, K.; Mizutani, Y.; Ishikawa, T.; Kobayashi, S.; et al. Utility of hot-balloon-based pulmonary vein isolation under balloon surface temperature monitoring: First clinical experience. J. Cardiovasc. Electrophysiol. 2021, 32, 2625–2635. [Google Scholar] [CrossRef] [PubMed]
- Sohara, H.; Satake, S.; Takeda, H.; Yamaguchi, Y.; Nagasu, N. Prevalence of Esophageal Ulceration After Atrial Fibrillation Ablation with the Hot Balloon Ablation Catheter: What is the Value of Esophageal Cooling? J. Cardiovasc. Electrophysiol. 2014, 25, 686–692. [Google Scholar] [CrossRef]
- Peng, X.; Liu, X.; Tian, H.; Chen, Y.; Li, X. Effects of Hot Balloon vs. Cryoballoon Ablation for Atrial Fibrillation: A Systematic Review, Meta-Analysis, and Meta-Regression. Front. Cardiovasc. Med. 2021, 8, 787270. [Google Scholar] [CrossRef]
- Hojo, R.; Fukamizu, S.; Tokioka, S.; Inagaki, D.; Miyazawa, S.; Kawamura, I.; Kitamura, T.; Sakurada, H.; Hiraoka, M. Comparison of touch-up ablation rate and pulmonary vein isolation durability between hot balloon and cryoballoon. J. Cardiovasc. Electrophysiol. 2020, 31, 1298–1306. [Google Scholar] [CrossRef]
- Wu, G.; Huang, H.; Cai, L.; Yang, Y.; Liu, X.; Yu, B.; Tang, Y.; Jiang, H.; Huang, C.; Investigators, C.S. Long-term observation of catheter ablation vs. pharmacotherapy in the management of persistent and long-standing persistent atrial fibrillation (CAPA study). Europace 2021, 23, 731–739. [Google Scholar] [CrossRef]
- Yang, G.; Zheng, L.; Jiang, C.; Fan, J.; Liu, X.; Zhan, X.; Li, J.; Wang, L.; Yang, H.; Zhu, W.; et al. Circumferential Pulmonary Vein Isolation Plus Low-Voltage Area Modification in Persistent Atrial Fibrillation: The STABLE-SR-II Trial. JACC Clin. Electrophysiol. 2022, 8, 882–891. [Google Scholar] [CrossRef]
- Junarta, J.; Siddiqui, M.U.; Riley, J.M.; Dikdan, S.J.; Patel, A.; Frisch, D.R. Low-voltage area substrate modification for atrial fibrillation ablation: A systematic review and meta-analysis of clinical trials. Europace 2022, euac089. [Google Scholar] [CrossRef]
- Hwang, J.; Park, H.-S.; Han, S.; Lee, C.H.; Kim, I.-C.; Cho, Y.-K.; Yoon, H.-J.; Chung, J.W.; Kim, H.; Nam, C.-W.; et al. Ablation of persistent atrial fibrillation based on high density voltage mapping and complex fractionated atrial electrograms: A randomized controlled trial. Medicine 2021, 100, e26702. [Google Scholar] [CrossRef]
- Martin, C.A.; Curtain, J.P.; Gajendragadkar, P.R.; Begley, D.A.; Fynn, S.P.; Grace, A.A.; Heck, P.M.; Virdee, M.S.; Agarwal, S. Ablation of Complex Fractionated Electrograms Improves Outcome in Persistent Atrial Fibrillation of Over 2 Years’ Duration. J. Atr. Fibrillation 2018, 10, 1607. [Google Scholar] [CrossRef]
- Fink, T.; Schlüter, M.; Heeger, C.-H.; Lemes, C.; Maurer, T.; Reissmann, B.; Riedl, J.; Rottner, L.; Santoro, F.; Schmidt, B.; et al. Stand-Alone Pulmonary Vein Isolation Versus Pulmonary Vein Isolation With Additional Substrate Modification as Index Ablation Procedures in Patients With Persistent and Long-Standing Persistent Atrial Fibrillation: The Randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation). Circ. Arrhythmia Electrophysiol. 2017, 10, e005114. [Google Scholar] [CrossRef]
- Kim, T.; Uhm, J.; Kim, J.-Y.; Joung, B.; Lee, M.-H.; Pak, H. Does Additional Electrogram-Guided Ablation After Linear Ablation Reduce Recurrence After Catheter Ablation for Longstanding Persistent Atrial Fibrillation? A Prospective Randomized Study. J. Am. Heart Assoc. 2017, 6, e004811. [Google Scholar] [CrossRef]
- Kochhäuser, S.; Verma, A.; Dalvi, R.; Suszko, A.; Alipour, P.; Sanders, P.; Champagne, J.; Macle, L.; Nair, G.M.; Calkins, H.; et al. Spatial Relationships of Complex Fractionated Atrial Electrograms and Continuous Electrical Activity to Focal Electrical Sources: Implications for Substrate Ablation in Human Atrial Fibrillation. JACC Clin. Electrophysiol. 2017, 3, 1220–1228. [Google Scholar] [CrossRef]
- Baher, A.; Buck, B.; Fanarjian, M.; Mounsey, J.P.; Gehi, A.; Chung, E.; Akar, F.G.; Webber, C.L., Jr.; Akar, J.G.; Hummel, J.P. Recurrence quantification analysis of complex-fractionated electrograms differentiates active and passive sites during atrial fibrillation. J. Cardiovasc. Electrophysiol. 2019, 30, 2229–2238. [Google Scholar] [CrossRef]
- Lee, J.M.; Shim, J.; Park, J.; Yu, H.T.; Kim, T.-H.; Park, J.-K.; Uhm, J.-S.; Kim, J.-B.; Joung, B.; Lee, M.-H.; et al. The Electrical Isolation of the Left Atrial Posterior Wall in Catheter Ablation of Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2019, 5, 1253–1261. [Google Scholar] [CrossRef]
- Kanitsoraphan, C.; Rattanawong, P.; Techorueangwiwat, C.; Kewcharoen, J.; Mekritthikrai, R.; Prasitlumkum, N.; Shah, P.; El Masry, H. The efficacy of posterior wall isolation in atrial fibrillation ablation: A systematic review and meta-analysis of randomized controlled trials. J. Arrhythmia 2022, 38, 275–286. [Google Scholar] [CrossRef]
- Valderrábano, M.; Peterson, L.E.; Swarup, V.; Schurmann, P.A.; Makkar, A.; Doshi, R.N.; DeLurgio, D.; Athill, C.A.; Ellenbogen, K.A.; Natale, A.; et al. Effect of Catheter Ablation With Vein of Marshall Ethanol Infusion vs Catheter Ablation Alone on Persistent Atrial Fibrillation: The VENUS Randomized Clinical Trial. JAMA 2020, 324, 1620–1628. [Google Scholar] [CrossRef]
- Haldar, S.; Khan, H.R.; Boyalla, V.; Kralj-Hans, I.; Jones, S.; Lord, J.; Onyimadu, O.; Satishkumar, A.; Bahrami, T.; De Souza, A.; et al. Catheter ablation vs. thoracoscopic surgical ablation in long-standing persistent atrial fibrillation: CASA-AF randomized controlled trial. Eur. Heart J. 2020, 41, 4471–4480. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients With Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef]
- Tilz, R.R.; Yalin, K.; Lyan, E.; Heeger, C.; Schlüter, M.; Fink, T.; Sciacca, V.; Liosis, S.; Kuck, K.; Popescu, S.; et al. Stand-alone Focal Impulse and Rotor Modulation (FIRM) ablation versus second-generation cryoballoon pulmonary vein isolation for paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 2022, 33, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Tilz, R.R.; Lenz, C.; Sommer, P.; Roza, M.-S.; Sarver, A.E.; Williams, C.G.; Heeger, C.; Hindricks, G.; Vogler, J.; Eitel, C. Focal Impulse and Rotor Modulation Ablation vs. Pulmonary Vein isolation for the treatment of paroxysmal Atrial Fibrillation: Results from the FIRMAP AF study. Europace 2021, 23, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, S.G.; Károlyi, L.; Rämmler, C.; Scharfe, F.; Weinmann, T.; Zieschank, M.; Langbein, A. Treatment of Recurrent Nonparoxysmal Atrial Fibrillation Using Focal Impulse and Rotor Mapping (FIRM)-Guided Rotor Ablation: Early Recurrence and Long-Term Outcomes. J. Cardiovasc. Electrophysiol. 2017, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.; Lin, Y.; Lo, M.; Chen, Y.; Lin, C.; Lin, C.; Chung, F.; Lo, L.; Chang, S.; Chao, T.; et al. Optimal substrate modification strategies using catheter ablation in patients with persistent atrial fibrillation: 3-year follow-up outcomes. J. Cardiovasc. Electrophysiol. 2021, 32, 1561–1571. [Google Scholar] [CrossRef]
- Romero, J.; Gabr, M.; Alviz, I.; Briceno, D.; Diaz, J.C.; Rodriguez, D.; Patel, K.; Polanco, D.; Trivedi, C.; Mohanty, S.; et al. Focal impulse and rotor modulation guided ablation versus pulmonary vein isolation for atrial fibrillation: A meta-analysis of head-to-head comparative studies. J. Cardiovasc. Electrophysiol. 2021, 32, 1822–1832. [Google Scholar] [CrossRef]
- Atienza, F.; Almendral, J.; Ormaetxe, J.M.; Moya, A.; Martínez-Alday, J.D.; Hernández-Madrid, A.; Castellanos, E.; Arribas, F.; Arias, M.; Tercedor, L.; et al. Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation: A noninferiority randomized multicenter RADAR-AF trial. J. Am. Coll. Cardiol. 2014, 64, 2455–2467. [Google Scholar] [CrossRef]
- Kumagai, K.; Minami, K.; Sugai, Y.; Oshima, S. Evaluation of the atrial substrate based on low-voltage areas and dominant frequencies after pulmonary vein isolation in nonparoxysmal atrial fibrillation. J. Arrhythmia 2018, 34, 230–238. [Google Scholar] [CrossRef]
- Kumagai, K.; Minami, K.; Sugai, Y.; Sumiyoshi, T.; Komaru, T. Effect of ablation at high-dominant frequency sites overlapping with low-voltage areas after pulmonary vein isolation of nonparoxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol. 2019, 30, 1850–1859. [Google Scholar] [CrossRef]
- Li, X.; Chu, G.S.; Almeida, T.P.; Vanheusden, F.J.; Salinet, J.; Dastagir, N.; Mistry, A.R.; Vali, Z.; Sidhu, B.; Stafford, P.J.; et al. Automatic Extraction of Recurrent Patterns of High Dominant Frequency Mapping During Human Persistent Atrial Fibrillation. Front. Physiol. 2021, 12, 649486. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Yi, S.; Yao, J.; Chen, X. Comparing the efficacy of catheter ablation strategies for persistent atrial fibrillation: A Bayesian analysis of randomized controlled trials. J. Interv. Card. Electrophysiol. 2022, 1–14. [Google Scholar] [CrossRef]
- Hao, J.; Xi, Y.; Chen, W.; Liang, Y.; Lin, Z.; Wei, W. Hybrid ablation procedure for the treatment of nonparoxysmal atrial fibrillation: A systematic review and meta-analysis. Pacing Clin. Electrophysiol. 2022. [Google Scholar] [CrossRef]
- Delurgio, D.B.; Crossen, K.J.; Gill, J.; Blauth, C.; Oza, S.R.; Magnano, A.R.; Mostovych, M.A.; Halkos, M.E.; Tschopp, D.R.; Kerendi, F.; et al. Hybrid Convergent Procedure for the Treatment of Persistent and Long-Standing Persistent Atrial Fibrillation: Results of CONVERGE Clinical Trial. Circ. Arrhythmia Electrophysiol. 2020, 13, e009288. [Google Scholar] [CrossRef]
- Kodali, S.; Santangeli, P. How, When, and Why: High-Density Mapping of Atrial Fibrillation. Card. Electrophysiol. Clin. 2020, 12, 155–165. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Brachmann, J.; Andresen, D.; Siebels, J.; Boersma, L.; Jordaens, L.; Merkely, B.; Pokushalov, E.; Sanders, P.; Proff, J.; et al. Catheter Ablation for Atrial Fibrillation with Heart Failure. N. Engl. J. Med. 2018, 378, 417–427. [Google Scholar] [CrossRef]
- Sohns, C.; Zintl, K.; Zhao, Y.; Dagher, L.; Andresen, D.; Siebels, J.; Wegscheider, K.; Sehner, S.; Boersma, L.; Merkely, B.; et al. Impact of Left Ventricular Function and Heart Failure Symptoms on Outcomes Post Ablation of Atrial Fibrillation in Heart Failure: CASTLE-AF Trial. Circ. Arrhythmia Electrophysiol. 2020, 13, e008461. [Google Scholar] [CrossRef]
- Brachmann, J.; Sohns, C.; Andresen, D.; Siebels, J.; Sehner, S.; Boersma, L.; Merkely, B.; Pokushalov, E.; Sanders, P.; Schunkert, H.; et al. Atrial Fibrillation Burden and Clinical Outcomes in Heart Failure: The CASTLE-AF Trial. JACC Clin. Electrophysiol. 2021, 7, 594–603. [Google Scholar] [CrossRef]
- Noseworthy, P.A.; Van Houten, H.K.; Gersh, B.J.; Packer, D.L.; Friedman, P.A.; Shah, N.D.; Dunlay, S.M.; Siontis, K.C.; Piccini, J.P.; Yao, X. Generalizability of the CASTLE-AF trial: Catheter ablation for patients with atrial fibrillation and heart failure in routine practice. Heart Rhythm 2020, 17, 1057–1065. [Google Scholar] [CrossRef]
- Parkash, R.; Wells, G.A.; Rouleau, J.; Talajic, M.; Essebag, V.; Skanes, A.; Wilton, S.B.; Verma, A.; Healey, J.S.; Sterns, L.; et al. Randomized Ablation-Based Rhythm-Control Versus Rate-Control Trial in Patients With Heart Failure and Atrial Fibrillation: Results from the RAFT-AF trial. Circulation 2022, 145, 1693–1704. [Google Scholar] [CrossRef]
- Prabhu, S.; Taylor, A.J.; Costello, B.T.; Kaye, D.M.; McLellan, A.J.; Voskoboinik, A.; Sugumar, H.; Lockwood, S.M.; Stokes, M.B.; Pathik, B.; et al. Catheter Ablation Versus Medical Rate Control in Atrial Fibrillation and Systolic Dysfunction: The CAMERA-MRI Study. J. Am. Coll. Cardiol. 2017, 70, 1949–1961. [Google Scholar] [CrossRef]
- Sugumar, H.; Prabhu, S.; Costello, B.; Chieng, D.; Azzopardi, S.; Voskoboinik, A.; Parameswaran, R.; Wong, G.R.; Anderson, R.; Al-Kaisey, A.M.; et al. Catheter Ablation Versus Medication in Atrial Fibrillation and Systolic Dysfunction: Late Outcomes of CAMERA-MRI Study. JACC Clin. Electrophysiol. 2020, 6, 1721–1731. [Google Scholar] [CrossRef]
- Kuck, K.-H.; Merkely, B.; Zahn, R.; Arentz, T.; Seidl, K.; Schlüter, M.; Tilz, R.R.; Piorkowski, C.; Gellér, L.; Kleemann, T.; et al. Catheter Ablation Versus Best Medical Therapy in Patients With Persistent Atrial Fibrillation and Congestive Heart Failure: The Randomized AMICA Trial. Circ. Arrhythmia Electrophysiol. 2019, 12, e007731. [Google Scholar] [CrossRef]
- Gu, G.; Wu, J.; Gao, X.; Liu, M.; Jin, C.; Xu, Y. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction: A meta-analysis. Clin. Cardiol. 2022, 45, 786–793. [Google Scholar] [CrossRef]
- Androulakis, E.; Sohrabi, C.; Briasoulis, A.; Bakogiannis, C.; Saberwal, B.; Siasos, G.; Tousoulis, D.; Ahsan, S.; Papageorgiou, N. Catheter Ablation for Atrial Fibrillation in Patients with Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 288. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Xia, Y.; Li, X.; Liu, J.; Fang, P. The differences of atrial thrombus locations and variable response to anticoagulation in nonvalvular atrial fibrillation with ventricular cardiomyopathy. J. Arrhythmia 2020, 36, 1016–1022. [Google Scholar] [CrossRef]
- Al-Saady, N.M.; Obel, O.A.; Camm, A.J. Left atrial appendage: Structure, function, and role in thromboembolism. Heart 1999, 82, 547–554. [Google Scholar] [CrossRef]
- Whitlock, R.P.; Belley-Cote, E.P.; Paparella, D.; Healey, J.S.; Brady, K.; Sharma, M.; Reents, W.; Budera, P.; Baddour, A.J.; Fila, P.; et al. Left Atrial Appendage Occlusion during Cardiac Surgery to Prevent Stroke. N. Engl. J. Med. 2021, 384, 2081–2091. [Google Scholar] [CrossRef]
- Nso, N.; Nassar, M.; Zirkiyeva, M.; Lakhdar, S.; Shaukat, T.; Guzman, L.; Alshamam, M.; Foster, A.; Bhangal, R.; Badejoko, S.; et al. Outcomes of cardiac surgery with left atrial appendage occlusion versus no Occlusion, direct oral Anticoagulants, and vitamin K Antagonists: A systematic review with Meta-analysis. IJC Heart Vasc. 2022, 40, 100998. [Google Scholar] [CrossRef]
- Radinovic, A.; Falasconi, G.; Marzi, A.; D’Angelo, G.; Limite, L.; Paglino, G.; Peretto, G.; Frontera, A.; Fierro, N.; Sala, S.; et al. Long-term outcome of left atrial appendage occlusion with multiple devices. Int. J. Cardiol. 2021, 344, 66–72. [Google Scholar] [CrossRef]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. Left Atrial Appendage Closure Versus Direct Oral Anticoagulants in High-Risk Patients With Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 75, 3122–3135. [Google Scholar] [CrossRef] [PubMed]
- Bayard, Y.L.; Omran, H.; Neuzil, P.; Thuesen, L.; Pichler, M.; Rowland, E.; Ramondo, A.; Ruzyllo, W.; Budts, W.; Montalescot, G.; et al. PLAATO (Percutaneous Left Atrial Appendage Transcatheter Occlusion) for prevention of cardioembolic stroke in non-anticoagulation eligible atrial fibrillation patients: Results from the European PLAATO study. EuroIntervention 2010, 6, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Sievert, H.; Halperin, J.; Doshi, S.K.; Buchbinder, M.; Neuzil, P.; Huber, K.; Whisenant, B.; Kar, S.; Swarup, V.; et al. Percutaneous Left Atrial Appendage Closure vs Warfarin for Atrial Fibrillation: A randomized clinical trial. JAMA 2014, 312, 1988–1998. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.R., Jr.; Reddy, V.Y.; Gordon, N.T.; Delurgio, D.; Doshi, S.K.; Desai, A.J.; Stone, J.E., Jr.; Kar, S. Long-Term Safety and Efficacy in Continued Access Left Atrial Appendage Closure Registries. J. Am. Coll. Cardiol. 2019, 74, 2878–2889. [Google Scholar] [CrossRef]
- Price, M.J.; Slotwiner, D.; Du, C.; Freeman, J.V.; Turi, Z.; Rammohan, C.; Kusumoto, F.M.; Kavinsky, C.; Akar, J.; Varosy, P.D.; et al. Clinical Outcomes at 1 Year Following Transcatheter Left Atrial Appendage Occlusion in the United States. JACC Cardiovasc. Interv. 2022, 15, 741–750. [Google Scholar] [CrossRef]
- Alli, O.; Doshi, S.; Kar, S.; Reddy, V.; Sievert, H.; Mullin, C.; Swarup, V.; Whisenant, B.; Holmes, D., Jr. Quality of Life Assessment in the Randomized PROTECT AF (Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation) Trial of Patients at Risk for Stroke With Nonvalvular Atrial Fibrillation. J. Am. Coll. Cardiol. 2013, 61, 1790–1798. [Google Scholar] [CrossRef]
- Coisne, A.; Pilato, R.; Brigadeau, F.; Klug, D.; Marquie, C.; Souissi, Z.; Richardson, M.; Mouton, S.; Polge, A.-S.; Lancellotti, P.; et al. Percutaneous left atrial appendage closure improves left atrial mechanical function through Frank–Starling mechanism. Heart Rhythm 2017, 14, 710–716. [Google Scholar] [CrossRef]
- Viles-Gonzalez, J.F.; Kar, S.; Douglas, P.; Dukkipati, S.; Feldman, T.; Horton, R.; Holmes, D.; Reddy, V.Y. The Clinical Impact of Incomplete Left Atrial Appendage Closure With the Watchman Device in Patients With Atrial Fibrillation: A PROTECT AF (Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation) Substudy. J. Am. Coll. Cardiol. 2012, 59, 923–929. [Google Scholar] [CrossRef]
- Dukkipati, S.R.; Holmes, D.R., Jr.; Doshi, S.K.; Kar, S.; Singh, S.M.; Gibson, D.; Price, M.J.; Natale, A.; Mansour, M.; Sievert, H.; et al. Impact of Peridevice Leak on 5-Year Outcomes After Left Atrial Appendage Closure. J. Am. Coll. Cardiol. 2022, 80, 469–483. [Google Scholar] [CrossRef]
- Dukkipati, S.R.; Kar, S.; Holmes, D.R.; Doshi, S.K.; Swarup, V.; Gibson, D.N.; Maini, B.; Gordon, N.T.; Main, M.L.; Reddy, V.Y. Device-Related Thrombus After Left Atrial Appendage Closure: Incidence, Predictors, and Outcomes. Circulation 2018, 138, 874–885. [Google Scholar] [CrossRef]
- Simard, T.; Jung, R.G.; Lehenbauer, K.; Piayda, K.; Pracoń, R.; Jackson, G.G.; Flores-Umanzor, E.; Faroux, L.; Korsholm, K.; Chun, J.K.; et al. Predictors of Device-Related Thrombus Following Percutaneous Left Atrial Appendage Occlusion. J. Am. Coll. Cardiol. 2021, 78, 297–313. [Google Scholar] [CrossRef]
- Murtaza, G.; Turagam, M.K.; Dar, T.; Akella, K.; Yarlagadda, B.; Gloekler, S.; Meier, B.; Saw, J.; Kim, J.S.; Lim, H.E.; et al. Left Atrial Appendage Occlusion Device Embolization (The LAAODE Study): Understanding the Timing and Clinical Consequences from a Worldwide Experience. J. Atr. Fibrillation 2021, 13, 2516. [Google Scholar] [CrossRef]
- Cruz-González, I.; Korsholm, K.; Trejo-Velasco, B.; Thambo, J.B.; Mazzone, P.; Rioufol, G.; Grygier, M.; Möbius-Winkler, S.; Betts, T.; Meincke, F.; et al. Procedural and Short-Term Results With the New Watchman FLX Left Atrial Appendage Occlusion Device. JACC: Cardiovasc. Interv. 2020, 13, 2732–2741. [Google Scholar] [CrossRef]
- Korsholm, K.; Samaras, A.; Andersen, A.; Jensen, J.M.; Nielsen-Kudsk, J.E. The Watchman FLX Device: First European Experience and Feasibility of Intracardiac Echocardiography to Guide Implantation. JACC Clin. Electrophysiol. 2020, 6, 1633–1642. [Google Scholar] [CrossRef]
- Kar, S.; Doshi, S.K.; Sadhu, A.; Horton, R.; Osorio, J.; Ellis, C.; Stone, J., Jr.; Shah, M.; Dukkipati, S.R.; Adler, S.; et al. Primary Outcome Evaluation of a Next-Generation Left Atrial Appendage Closure Device: Results From the PINNACLE FLX Trial. Circulation 2021, 143, 1754–1762. [Google Scholar] [CrossRef]
- Ellis, C.R.; Jackson, G.G.; Kanagasundram, A.N.; Mansour, M.; Sutton, B.; Houle, V.M.; Kar, S.; Doshi, S.; Osorio, J. Left atrial appendage closure in patients with prohibitive anatomy: Insights from PINNACLE FLX. Heart Rhythm 2021, 18, 1153–1161. [Google Scholar] [CrossRef]
- Paitazoglou, C.; Meincke, F.; Bergmann, M.W.; Eitel, I.; Fink, T.; Vireca, E.; Wohlmuth, P.; Veliqi, E.; Willems, S.; Markiewicz, A.; et al. The ALSTER-FLX Registry: 3-Month outcomes after left atrial appendage occlusion using a next-generation device, a matched-pair analysis to EWOLUTION. Heart Rhythm 2022, 19, 917–926. [Google Scholar] [CrossRef]
- Vizzari, G.; Grasso, C.; Sardone, A.; Mazzone, P.; Laterra, G.; Frazzetto, M.; Sacchetta, G.; Micari, A.; Tamburino, C.; Contarini, M. Real-world experience with the new Watchman FLX device: Data from two high-volume Sicilian centers. The FLX-iEST registry. Catheter. Cardiovasc. Interv. 2022, 100, 154–160. [Google Scholar] [CrossRef]
- Galea, R.; Mahmoudi, K.; Gräni, C.; Elhadad, S.; Huber, A.T.; Heg, D.; Siontis, G.C.M.; Brugger, N.; Sebag, F.; Windecker, S.; et al. Watchman FLX vs. Watchman 2.5 in a Dual-Center Left Atrial Appendage Closure Cohort: The WATCH-DUAL study. Europace 2022, euac021. [Google Scholar] [CrossRef]
- Meier, B.; Palacios, I.; Windecker, S.; Rotter, M.; Cao, Q.-L.; Keane, D.; Ruiz, C.E.; Hijazi, Z.M. Transcatheter left atrial appendage occlusion with Amplatzer devices to obviate anticoagulation in patients with atrial fibrillation. Catheter. Cardiovasc. Interv. 2003, 60, 417–422. [Google Scholar] [CrossRef]
- Park, J.-W.; Bethencourt, A.; Sievert, H.; Santoro, G.; Meier, B.; Walsh, K.; Lopez-Minquez, J.R.; Meerkin, D.; Valdés, M.; Ormerod, O.; et al. Left atrial appendage closure with amplatzer cardiac plug in atrial fibrillation: Initial european experience. Catheter. Cardiovasc. Interv. 2011, 77, 700–706. [Google Scholar] [CrossRef]
- Lam, Y.-Y.; Yip, G.; Yu, C.-M.; Chan, W.W.; Cheng, B.C.; Yan, B.P.; Clugston, R.; Yong, G.; Gattorna, T.; Paul, V. Left atrial appendage closure with Amplatzer cardiac plug for stroke prevention in atrial fibrillation: Initial Asia-Pacific experience. Catheter. Cardiovasc. Interv. 2012, 79, 794–800. [Google Scholar] [CrossRef]
- Urena, M.; Rodés-Cabau, J.; Freixa, X.; Saw, J.; Webb, J.G.; Freeman, M.; Horlick, E.; Osten, M.; Chan, A.; Marquis, J.-F.; et al. Percutaneous Left Atrial Appendage Closure With the AMPLATZER Cardiac Plug Device in Patients With Nonvalvular Atrial Fibrillation and Contraindications to Anticoagulation Therapy. J. Am. Coll. Cardiol. 2013, 62, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Tzikas, A.; Shakir, S.; Gafoor, S.; Omran, H.; Berti, S.; Santoro, G.; Kefer, J.; Landmesser, U.; Nielsen-Kudsk, J.E.; Cruz-Gonzalez, I.; et al. Left atrial appendage occlusion for stroke prevention in atrial fibrillation: Multicentre experience with the AMPLATZER Cardiac Plug. EuroIntervention 2016, 11, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Santoro, G.; Meucci, F.; Stolcova, M.; Rezzaghi, M.; Mori, F.; Palmieri, C.; Paradossi, U.; Pastormerlo, L.E.; Rosso, G.; Berti, S. Percutaneous left atrial appendage occlusion in patients with non-valvular atrial fibrillation: Implantation and up to four years follow-up of the AMPLATZER Cardiac Plug. EuroIntervention 2016, 11, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Freixa, X.; Gafoor, S.; Regueiro, A.; Cruz-Gonzalez, I.; Shakir, S.; Omran, H.; Berti, S.; Santoro, G.; Kefer, J.; Landmesser, U.; et al. Comparison of Efficacy and Safety of Left Atrial Appendage Occlusion in Patients Aged <75 to ≥75 Years. Am. J. Cardiol. 2016, 117, 84–90. [Google Scholar] [CrossRef]
- Kefer, J.; Tzikas, A.; Freixa, X.; Shakir, S.; Gafoor, S.; Nielsen-Kudsk, J.E.; Berti, S.; Santoro, G.; Aminian, A.; Landmesser, U.; et al. Impact of chronic kidney disease on left atrial appendage occlusion for stroke prevention in patients with atrial fibrillation. Int. J. Cardiol. 2016, 207, 335–340. [Google Scholar] [CrossRef]
- Plicht, B.; Konorza, T.F.; Kahlert, P.; Al-Rashid, F.; Kaelsch, H.; Jánosi, R.A.; Buck, T.; Bachmann, H.S.; Siffert, W.; Heusch, G.; et al. Risk Factors for Thrombus Formation on the Amplatzer Cardiac Plug After Left Atrial Appendage Occlusion. JACC: Cardiovasc. Interv. 2013, 6, 606–613. [Google Scholar] [CrossRef]
- Clemente, A.; Avogliero, F.; Berti, S.; Paradossi, U.; Jamagidze, G.; Rezzaghi, M.; Della Latta, D.; Chiappino, D. Multimodality imaging in preoperative assessment of left atrial appendage transcatheter occlusion with the Amplatzer Cardiac Plug. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 1276–1287. [Google Scholar] [CrossRef]
- Saw, J.; Tzikas, A.; Shakir, S.; Gafoor, S.; Omran, H.; Nielsen-Kudsk, J.E.; Kefer, J.; Aminian, A.; Berti, S.; Santoro, G.; et al. Incidence and Clinical Impact of Device-Associated Thrombus and Peri-Device Leak Following Left Atrial Appendage Closure With the Amplatzer Cardiac Plug. JACC Cardiovasc. Interv. 2017, 10, 391–399. [Google Scholar] [CrossRef]
- Hildick-Smith, D.; Landmesser, U.; Camm, A.J.; Diener, H.-C.; Paul, V.; Schmidt, B.; Settergren, M.; Teiger, E.; Nielsen-Kudsk, J.E.; Tondo, C. Left atrial appendage occlusion with the Amplatzer™ Amulet™ device: Full results of the prospective global observational study. Eur. Heart J. 2020, 41, 2894–2901. [Google Scholar] [CrossRef]
- Tarantini, G.; D’Amico, G.; Schmidt, B.; Mazzone, P.; Berti, S.; Fischer, S.; Lund, J.; Montorfano, M.; Della Bella, P.; Lam, S.C.C.; et al. The Impact of CHA2DS2-VASc and HAS-BLED Scores on Clinical Outcomes in the Amplatzer Amulet Study. JACC Cardiovasc. Interv. 2020, 13, 2099–2108. [Google Scholar] [CrossRef]
- Freixa, X.; Schmidt, B.; Mazzone, P.; Berti, S.; Fischer, S.; Lund, J.; Montorfano, M.; Della Bella, P.; Lam, S.C.C.; Cruz-Gonzalez, I.; et al. Comparative data on left atrial appendage occlusion efficacy and clinical outcomes by age group in the Amplatzer™ Amulet™ Occluder Observational Study. Europace 2021, 23, 238–246. [Google Scholar] [CrossRef]
- Aminian, A.; Schmidt, B.; Mazzone, P.; Berti, S.; Fischer, S.; Montorfano, M.; Lam, S.C.C.; Lund, J.; Asch, F.M.; Gage, R.; et al. Incidence, Characterization, and Clinical Impact of Device-Related Thrombus Following Left Atrial Appendage Occlusion in the Prospective Global AMPLATZER Amulet Observational Study. JACC Cardiovasc. Interv. 2019, 12, 1003–1014. [Google Scholar] [CrossRef]
- Kleinecke, C.; Cheikh-Ibrahim, M.; Schnupp, S.; Fankhauser, M.; Nietlispach, F.; Park, J.; Brachmann, J.; Windecker, S.; Meier, B.; Gloekler, S. Long-term clinical outcomes of Amplatzer cardiac plug versus Amulet occluders for left atrial appendage closure. Catheter. Cardiovasc. Interv. 2020, 96, E324–E331. [Google Scholar] [CrossRef]
- Gloekler, S.; Fürholz, M.; de Marchi, S.; Kleinecke, C.; Streit, S.R.; Buffle, E.; Fankhauser, M.; Häner, J.D.; Nietlispach, F.; Galea, R.; et al. Left atrial appendage closure versus medical therapy in patients with atrial fibrillation: The APPLY study. EuroIntervention 2020, 16, e767–e774. [Google Scholar] [CrossRef]
- Nielsen-Kudsk, J.E.; Korsholm, K.; Damgaard, D.; Valentin, J.B.; Diener, H.-C.; Camm, A.J.; Johnsen, S.P. Clinical Outcomes Associated With Left Atrial Appendage Occlusion Versus Direct Oral Anticoagulation in Atrial Fibrillation. JACC Cardiovasc. Interv. 2021, 14, 69–78. [Google Scholar] [CrossRef]
- Ledwoch, J.; Franke, J.; Akin, I.; Geist, V.; Weiß, C.; Zeymer, U.; Pleger, S.; Hochadel, M.; Mudra, H.; Senges, J.; et al. WATCHMAN versus ACP or Amulet devices for left atrial appendage occlusion: A sub-analysis of the multicentre LAARGE registry. EuroIntervention 2020, 16, e942–e949. [Google Scholar] [CrossRef]
- Kleinecke, C.; Yu, J.; Neef, P.; Buffle, E.; de Marchi, S.; Fuerholz, M.; Nietlispach, F.; Valgimigli, M.; Streit, S.R.; Fankhauser, M.; et al. Clinical outcomes of Watchman vs. Amplatzer occluders for left atrial appendage closure (WATCH at LAAC). Europace 2020, 22, 916–923. [Google Scholar] [CrossRef]
- Lakkireddy, D.; Thaler, D.; Ellis, C.R.; Swarup, V.; Sondergaard, L.; Carroll, J.; Gold, M.R.; Hermiller, J.; Diener, H.-C.; Schmidt, B.; et al. Amplatzer Amulet Left Atrial Appendage Occluder Versus Watchman Device for Stroke Prophylaxis (Amulet IDE): A Randomized, Controlled Trial. Circulation 2021, 144, 1543–1552. [Google Scholar] [CrossRef]
- Price, M.J.; Gibson, D.N.; Yakubov, S.J.; Schultz, J.C.; Di Biase, L.; Natale, A.; Burkhardt, J.D.; Pershad, A.; Byrne, T.J.; Gidney, B.; et al. Early Safety and Efficacy of Percutaneous Left Atrial Appendage Suture Ligation. J. Am. Coll. Cardiol. 2014, 64, 565–572. [Google Scholar] [CrossRef]
- Miller, M.A.; Gangireddy, S.R.; Doshi, S.K.; Aryana, A.; Koruth, J.S.; Sennhauser, S.; D’Avila, A.; Dukkipati, S.R.; Neuzil, P.; Reddy, V.Y. Multicenter study on acute and long-term safety and efficacy of percutaneous left atrial appendage closure using an epicardial suture snaring device. Heart Rhythm 2014, 11, 1853–1859. [Google Scholar] [CrossRef]
- Gunda, S.; Reddy, M.; Nath, J.; Nagaraj, H.; Atoui, M.; Rasekh, A.; Ellis, C.R.; Badhwar, N.; Lee, R.J.; Di Biase, L.; et al. Impact of Periprocedural Colchicine on Postprocedural Management in Patients Undergoing a Left Atrial Appendage Ligation Using LARIAT. J. Cardiovasc. Electrophysiol. 2016, 27, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Lakkireddy, D.; Afzal, M.R.; Lee, R.J.; Nagaraj, H.; Tschopp, D.; Gidney, B.; Ellis, C.; Altman, E.; Lee, B.; Kar, S.; et al. Short and long-term outcomes of percutaneous left atrial appendage suture ligation: Results from a US multicenter evaluation. Heart Rhythm 2016, 13, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.R.; Kanmanthareddy, A.; Earnest, M.; Reddy, M.; Atkins, D.; Bommana, S.; Bartus, K.; Rasekh, A.; Han, F.; Badhwar, N.; et al. Impact of left atrial appendage exclusion using an epicardial ligation system (LARIAT) on atrial fibrillation burden in patients with cardiac implantable electronic devices. Heart Rhythm 2015, 12, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.; Atkins, D.; Earnest, M.; Lee, R.; Nath, J.; Ferrell, R.; Bartus, K.; Badhwar, N.; Rasekh, A.; Cheng, J.; et al. Anatomical and electrical remodeling with incomplete left atrial appendage ligation: Results from the LAALA-AF registry. J. Cardiovasc. Electrophysiol. 2017, 28, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Dar, T.; Afzal, M.R.; Yarlagadda, B.; Kutty, S.; Shang, Q.; Gunda, S.; Samanta, A.; Thummaluru, J.; Arukala, K.S.; Kanmanthareddy, A.; et al. Mechanical function of the left atrium is improved with epicardial ligation of the left atrial appendage: Insights from the LAFIT-LARIAT Registry. Heart Rhythm 2018, 15, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Kreidieh, B.; Rojas, F.; Schurmann, P.; Dave, A.S.; Kashani, A.; Rodríguez-Mañero, M.; Valderrábano, M. Left Atrial Appendage Remodeling After Lariat Left Atrial Appendage Ligation. Circ. Arrhythmia Electrophysiol. 2015, 8, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Litwinowicz, R.; Bartus, M.; Burysz, M.; Brzeziński, M.; Suwalski, P.; Kapelak, B.; Vuddanda, V.; Lakkireddy, D.; Lee, R.J.; Trabka, R.; et al. Long term outcomes after left atrial appendage closure with the LARIAT device—Stroke risk reduction over five years follow-up. PLoS ONE 2018, 13, e0208710. [Google Scholar] [CrossRef]
- Parikh, V.; Bartus, K.; Litwinowicz, R.; Turagam, M.K.; Sadowski, J.; Kapelak, B.; Bartus, M.; Podolec, J.; Brzezinski, M.; Musat, D.; et al. Long-term clinical outcomes from real-world experience of left atrial appendage exclusion with LARIAT device. J. Cardiovasc. Electrophysiol. 2019, 30, 2849–2857. [Google Scholar] [CrossRef]
- Litwinowicz, R.; Bartus, M.; Kapelak, B.; Suwalski, P.; Lakkireddy, D.; Lee, R.J.; Bartus, K. Reduction in risk of stroke and bleeding after left atrial appendage closure with LARIAT device in patients with increased risk of stroke and bleeding: Long term results. Catheter. Cardiovasc. Interv. 2019, 94, 837–842. [Google Scholar] [CrossRef]
- Mohanty, S.; Gianni, C.; Trivedi, C.; Gadiyaram, V.; Della Rocca, D.; MacDonald, B.; Horton, R.; Al-Ahmad, A.; Gibson, D.N.; Price, M.; et al. Risk of thromboembolic events after percutaneous left atrial appendage ligation in patients with atrial fibrillation: Long-term results of a multicenter study. Heart Rhythm 2020, 17, 175–181. [Google Scholar] [CrossRef]
- Gianni, C.; Di Biase, L.; Trivedi, C.; Mohanty, S.; Gökoğlan, Y.; Güneş, M.F.; Bai, R.; Al-Ahmad, A.; Burkhardt, J.D.; Horton, R.P.; et al. Clinical Implications of Leaks Following Left Atrial Appendage Ligation With the LARIAT Device. JACC Cardiovasc. Interv. 2016, 9, 1051–1057. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Horton, R.P.; Tarantino, N.; Van Niekerk, C.J.; Trivedi, C.; Chen, Q.; Mohanty, S.; Anannab, A.; Murtaza, G.; Akella, K.; et al. Use of a Novel Septal Occluder Device for Left Atrial Appendage Closure in Patients With Postsurgical and Postlariat Leaks or Anatomies Unsuitable for Conventional Percutaneous Occlusion. Circ. Cardiovasc. Interv. 2020, 13, e009227. [Google Scholar] [CrossRef]
- Vuddanda, V.L.; Turagam, M.K.; Umale, N.A.; Shah, Z.; Lakkireddy, D.R.; Bartus, K.; McCausland, F.R.; Velagapudi, P.; Mansour, M.; Heist, E.K. Incidence and causes of in-hospital outcomes and 30-day readmissions after percutaneous left atrial appendage closure: A US nationwide retrospective cohort study using claims data. Heart Rhythm 2020, 17, 374–382. [Google Scholar] [CrossRef]
- Litwinowicz, R.; Burysz, M.; Mazur, P.; Kapelak, B.; Bartus, M.; Lakkireddy, D.; Lee, R.J.; Malec-Litwinowicz, M.; Bartus, K.; Mazur, P. Endocardial versus epicardial left atrial appendage exclusion for stroke prevention in patients with atrial fibrillation: Midterm follow-up. J. Cardiovasc. Electrophysiol. 2021, 32, 93–101. [Google Scholar] [CrossRef]
- Tilz, R.R.; Fink, T.; Bartus, K.; Wong, T.; Vogler, J.; Nentwich, K.; Panniker, S.; Fang, Q.; Piorkowski, C.; Liosis, S.; et al. A collective European experience with left atrial appendage suture ligation using the LARIAT+ device. Europace 2020, 22, 924–931. [Google Scholar] [CrossRef]
- Bartus, K.; Gafoor, S.; Tschopp, D.; Foran, J.P.; Tilz, R.; Wong, T.; Lakkireddy, D.; Sievert, H.; Lee, R.J. Left atrial appendage ligation with the next generation LARIAT+ suture delivery device: Early clinical experience. Int. J. Cardiol. 2016, 215, 244–247. [Google Scholar] [CrossRef]
- So, C.-Y.; Li, S.; Fu, G.-H.; Chen, W.; Kam, K.K.-H.; Lee, A.P.-W.; Chu, H.-M.; Xu, Y.-W.; Yan, B.P.; Lam, Y.-Y. Procedural and short-term outcomes of occluding large left atrial appendages with the LAmbre device. EuroIntervention 2021, 17, 90–92. [Google Scholar] [CrossRef]
- Wang, G.; Kong, B.; Qin, T.; Liu, Y.; Huang, C.; Huang, H. Incidence, risk factors, and clinical impact of peridevice leak following left atrial appendage closure with the LAmbre device—Data from a prospective multicenter clinical study. J. Cardiovasc. Electrophysiol. 2021, 32, 354–359. [Google Scholar] [CrossRef]
- Llagostera-Martín, M.; Cubero-Gallego, H.; Mas-Stachurska, A.; Salvatella, N.; Sánchez-Carpintero, A.; Tizon-Marcos, H.; Garcia-Guimaraes, M.; Calvo-Fernandez, A.; Molina, L.; Vaquerizo, B. Left Atrial Appendage Closure with a New Occluder Device: Efficacy, Safety and Mid-Term Performance. J. Clin. Med. 2021, 10, 1421. [Google Scholar] [CrossRef]
- Wang, G.; Kong, B.; Liu, Y.; Huang, H. Long-Term Safety and Efficacy of Percutaneous Left Atrial Appendage Closure with the LAmbre Device. J. Interv. Cardiol. 2020, 2020, 6613683. [Google Scholar] [CrossRef]
- Schnupp, S.; Liu, X.; Buffle, E.; Gloekler, S.; Mohrez, Y.; Cheikh-Ibrahim, M.; Allakkis, W.; Brachmann, J.; Park, J.; Kleinecke, C. Late clinical outcomes of lambre versus amplatzer occluders for left atrial appendage closure. J. Cardiovasc. Electrophysiol. 2020, 31, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chun, K.J.; Bordignon, S.; Weise, F.K.; Nagase, T.; Perrotta, L.; Bologna, F.; Schmidt, B. Left atrial appendage occlusion using LAmbre Amulet and Watchman in atrial fibrillation. J. Cardiol. 2019, 73, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial | Patient Number | Study Population | Control Group | Follow-up | Primary Endpoint | Other |
---|---|---|---|---|---|---|
CASTLE-AF [134,135,136] | 363 | Symptomatic AF HF (LVEF < 35%) NYHA class II-IV ICD | AADs | 37.8 months | All-cause mortality or HF hospitalization (HR 0.62, 95% CI 0.43–0.87, p = 0.007) | Effect irrespective of LVEF Less severe functional status led to greater improvement ↓ AF burden |
RAFT-AF [138] | 411 | High-burden PAF or PeAF NYHA class II-III Elevated NT-proBNP | MRC | 37.4 months | All-cause mortality or HF events (HR 0.71, 95% CI 0.49–1.03, p = 0.066) | ↑ LVEF ↓ NT-proBNP ↑ QoL ↑ 6MWT |
CAMERA-MRI [139,140] | 68 | Persistent AF LVEF ≤ 45% without identifiable cause | MRC | 6 months | Change in cMRI-LVEF (MD 14.0, 95% CI 8.5–19.5, p < 0.0001) LVEF normalization (CA 58% vs. MRC 9%, p = 0.0002) | ↓ NYHA class ↓ BNP ↓ LAVi ↓ AF recurrence-burden |
AMICA | 140 | PeAF LVEF ≤ 35% | BMT | 12 months | Increase in LVEF (No difference) | ↓ AF recurrence-burden ↔ BNP ↔ 6MWT ↔ QoL |
ACP | Amulet | WM | WM FLX | |
---|---|---|---|---|
Description | Self-expanding, double-disc device consisting of a nitinol mesh with polyester fabric | Self-expanding nitinol 10-strut frame with a 160-μm polyethylene terephthalate fabric mesh cap | ||
Device size, mm | 16-30 | 16-34 | 21–33 | 20–35 |
Implant success (%) | 97.3 | 99.1 | 95.1 | 98.8 |
Periprocedural MAE (%) | 5.0 | 4 | 2.2 | 0.5 |
Device embolization (%) | 0.8 | 0.2 | 0.7 | 0 |
DRT (%) | 4.4 | 1.6 (1-year) | 3.7 | 1.8 |
Risk factor for DRT | Large LAA orifice width | Hypercoagulability disorders Pericardial effusion Renal impairment Implantation depth >10 mm from the pulmonary vein limbus Nonparoxysmal AF | NA | |
PDL ≥ 3 mm (%) | 1.9 | 1.6 | 13.1 | 7.4 (>0mm) |
All-cause mortality (%) | 4.2 (1-year) | NA | 3.6 (5-year) | 6.6 (1-year) |
Ischemic stroke (%) | 0.9 (1-year) | 2.2/year | 1.6 (5-year) | 2.6 (1-year) |
Major bleeding (%) | 1.5 (1-year) | 7.2/year | 1.7 (5-year) | 7.9 (1-year) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theofilis, P.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. Percutaneous Treatment Approaches in Atrial Fibrillation: Current Landscape and Future Perspectives. Biomedicines 2022, 10, 2268. https://doi.org/10.3390/biomedicines10092268
Theofilis P, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. Percutaneous Treatment Approaches in Atrial Fibrillation: Current Landscape and Future Perspectives. Biomedicines. 2022; 10(9):2268. https://doi.org/10.3390/biomedicines10092268
Chicago/Turabian StyleTheofilis, Panagiotis, Evangelos Oikonomou, Alexios S. Antonopoulos, Gerasimos Siasos, Konstantinos Tsioufis, and Dimitris Tousoulis. 2022. "Percutaneous Treatment Approaches in Atrial Fibrillation: Current Landscape and Future Perspectives" Biomedicines 10, no. 9: 2268. https://doi.org/10.3390/biomedicines10092268
APA StyleTheofilis, P., Oikonomou, E., Antonopoulos, A. S., Siasos, G., Tsioufis, K., & Tousoulis, D. (2022). Percutaneous Treatment Approaches in Atrial Fibrillation: Current Landscape and Future Perspectives. Biomedicines, 10(9), 2268. https://doi.org/10.3390/biomedicines10092268