Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Statistical Analysis
3. Results
3.1. Analysis of Clinical Response to Sorafenib Administration
3.2. Differential Oncological Outcomes Based on the Presence of Organ-Specific Target Lesions and ALBI Grade
3.3. Sequential Target Therapy Resulted in Better Survival Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cha, C.; Fong, Y.; Jarnagin, W.R.; Blumgart, L.H.; DeMatteo, R.P. Predictors and Patterns of Recurrence After Resection of Hepatocellular Carcinoma. J. Am. Coll. Surg. 2003, 197, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Cleary, S.P.; Wei, A.C.; Yang, I.; Taylor, B.R.; Hemming, A.W.; Langer, B.; Grant, D.R.; Greig, P.D.; Gallinger, S. Recurrence After Liver Resection for Hepatocellular Carcinoma: Risk Factors, Treatment, and Outcomes. Surgery 2007, 141, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Peng, T.; Guan, R.; Zhou, Y.; Zeng, C.; Lin, Y.; Wu, Z.; Tan, H. Development of a Novel Prognostic Nomogram for the Early Recurrence of Liver Cancer After Curative Hepatectomy. Ann. Transl. Med. 2021, 9, 1541. [Google Scholar] [CrossRef]
- Wu, J.C.; Huang, Y.H.; Chau, G.Y.; Su, C.W.; Lai, C.R.; Lee, P.C.; Huo, T.I.; Sheen, I.J.; Lee, S.D.; Lui, W.Y. Risk Factors for Early and Late Recurrence in Hepatitis B-Related Hepatocellular Carcinoma. J. Hepatol. 2009, 51, 890–897. [Google Scholar] [CrossRef]
- Hayashi, M.; Shimizu, T.; Hirokawa, F.; Inoue, Y.; Komeda, K.; Asakuma, M.; Miyamoto, Y.; Takeshita, A.; Shibayama, Y.; Tanigawa, N. Clinicopathological Risk Factors for Recurrence Within One Year After Initial Hepatectomy for Hepatocellular Carcinoma. Am. Surg. 2011, 77, 572–578. [Google Scholar] [CrossRef]
- Shen, A.; Tang, C.; Wang, Y.; Chen, Y.; Yan, X.; Zhang, C.; Liu, R.; Wei, X.; Zhu, Y.; Zhang, H.; et al. A Systematic Review of Sorafenib in Child-Pugh A Patients with Unresectable Hepatocellular Carcinoma. J. Clin. Gastroenterol. 2013, 47, 871–880. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Sherrow, C.; Attwood, K.; Zhou, K.; Mukherjee, S.; Iyer, R.; Fountzilas, C. Sequencing Systemic Therapy Pathways for Advanced Hepatocellular Carcinoma: A Cost Effectiveness Analysis. Liver Cancer 2020, 9, 549–562. [Google Scholar] [CrossRef]
- Takada, H.; Kurosaki, M.; Tsuchiya, K.; Komiyama, Y.; Itakura, J.; Takahashi, Y.; Nakanishi, H.; Yasui, Y.; Tamaki, N.; Maeyashiki, C.; et al. Baseline and Early Predictors of Good Patient Candidates for Second-Line After Sorafenib Treatment in Unresectable Hepatocellular Carcinoma. Cancers 2019, 11, 1256. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, S.S.; Wang, H.J.; Kim, B.W.; Cho, H.; Jung, J.; Cho, S.S.; Kim, J.K.; Lee, J.H.; Kim, Y.B.; et al. Detection of Novel Genomic Markers for Predicting Prognosis in Hepatocellular Carcinoma Patients by Integrative Analysis of Copy Number Aberrations and Gene Expression Profiles: Results from a Long-Term Follow-Up. DNA Cell Biol. 2016, 35, 71–80. [Google Scholar] [CrossRef]
- Zhu, Z.Z.; Bao, L.L.; Zhao, K.; Xu, Q.; Zhu, J.Y.; Zhu, K.X.; Wen, B.J.; Ye, Y.Q.; Wan, X.X.; Wang, L.L.; et al. Copy Number Aberrations of Multiple Genes Identified as Prognostic Markers for Extrahepatic Metastasis-Free Survival of Patients with Hepatocellular Carcinoma. Curr. Med. Sci. 2019, 39, 759–765. [Google Scholar] [CrossRef]
- Yu, M.C.; Lee, C.W.; Lee, Y.S.; Lian, J.H.; Tsai, C.L.; Liu, Y.P.; Wu, C.H.; Tsai, C.N. Prediction of Early-Stage Hepatocellular Carcinoma Using OncoScan Chromosomal Copy Number Aberration Data. World J. Gastroenterol. 2017, 23, 7818–7829. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of Liver Function in Patients with Hepatocellular Carcinoma: A New Evidence-Based Approach-the ALBI Grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Shimose, S.; Hiraoka, A.; Nakano, M.; Iwamoto, H.; Tanaka, M.; Tanaka, T.; Noguchi, K.; Aino, H.; Ogata, K.; Kajiwara, M.; et al. First-Line Sorafenib Sequential Therapy and Liver Disease Etiology for Unresectable Hepatocellular Carcinoma Using Inverse Probability Weighting: A Multicenter Retrospective Study. Cancer Med. 2021, 10, 8530–8541. [Google Scholar] [CrossRef] [PubMed]
- Mai, R.Y.; Wang, Y.Y.; Bai, T.; Chen, J.; Xiang, B.D.; Wu, G.B.; Wu, F.X.; Li, L.Q.; Ye, J.Z. Combination of ALBI and Apri to Predict Post-hepatectomy Liver Failure After Liver Resection for HBV-Related HCC Patients. Cancer Manag. Res. 2019, 11, 8799–8806. [Google Scholar] [CrossRef]
- Carling, U.; Røsok, B.; Line, P.D.; Dorenberg, E.J. ALBI and P-ALBI grade in Child-Pugh A patients treated with drug eluting embolic chemoembolization for hepatocellular carcinoma. Acta Radiol. 2019, 60, 702–709. [Google Scholar] [CrossRef]
- Kudo, M.; Galle, P.R.; Brandi, G.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Llovet, J.M.; Assenat, E.; Merle, P.; Chan, S.L.; et al. Effect of ramucirumab on ALBI grade in patients with advanced HCC: Results from REACH and REACH-2. JHEP Rep. 2021, 3, 100215. [Google Scholar] [CrossRef]
- Zhang, W. Sorafenib in adjuvant setting: Call for precise and personalized therapy. Transl. Gastroenterol. Hepatol. 2016, 1, 13. [Google Scholar] [CrossRef]
- Kudo, M.; Galle, P.R.; Llovet, J.M.; Finn, R.S.; Vogel, A.; Motomura, K.; Assenat, E.; Merle, P.; Brandi, G.; Daniele, B.; et al. Ramucirumab in elderly patients with hepatocellular carcinoma and elevated alpha-fetoprotein after sorafenib in REACH and REACH-2. Liver Int. 2020, 40, 2008–2020. [Google Scholar] [CrossRef]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beg, M.S.; Brower, S.T.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Harris, W.P.; et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J. Clin. Oncol. 2020, 20, 4317–4345. [Google Scholar] [CrossRef]
- Wang, H.W.; Chuang, P.H.; Su, W.P.; Kao, J.T.; Hsu, W.F.; Lin, C.C.; Huang, G.T.; Lin, J.T.; Lai, H.C.; Peng, C.Y. On-Treatment Albumin-Bilirubin Grade: Predictor of Response and Outcome of Sorafenib-Regorafenib Sequential Therapy in Patients with Unresectable Hepatocellular Carcinoma. Cancers 2021, 13, 3758. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.C.; Chao, Y.; Lee, P.C.; Chen, S.C.; Chi, C.T.; Wu, C.J.; Wu, K.C.; Hou, M.C.; Huang, Y.H. Determinants of Survival and Post-Progression Outcomes by Sorafenib-Regorafenib Sequencing for Unresectable Hepatocellular Carcinoma. Cancers 2022, 14, 2014. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.C.; Chan, K.M.; Lee, C.F.; Lee, Y.S.; Eldeen, F.Z.; Chou, H.S.; Lee, W.C.; Chen, M.F. Alkaline phosphatase: Does it have a role in predicting hepatocellular carcinoma recurrence? J. Gastrointest. Surg. 2011, 15, 1440–1449. [Google Scholar] [CrossRef]
- Llovet, J.M.; Villanueva, A.; Marrero, J.A.; Schwartz, M.; Meyer, T.; Galle, P.R.; Lencioni, R.; Greten, T.F.; Kudo, M.; Mandrekar, S.J.; et al. Trial design and endpoints in hepatocellular carcinoma: AASLD consensus conference. Hepatology 2021, 73, 158–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Jiang, M.J.; Deng, Z.J.; Li, L.; Huang, J.L.; Liu, Z.X.; Li, L.Q.; Zhong, J.H. Immune checkpoint inhibitors in hepatocellular carcinoma: Current progresses and challenges. Front. Oncol. 2021, 11, 4456. [Google Scholar] [CrossRef]
- Peterson-Dana, C. Shared decisions and agency: Better engagement tools. Psychiatr. Serv. 2019, 1, 857. [Google Scholar] [CrossRef]
- Mou, L.; Tian, X.; Zhou, B.; Zhan, Y.; Chen, J.; Lu, Y.; Deng, J.; Deng, Y.; Wu, Z.; Li, Q.; et al. Improving outcomes of tyrosine kinase inhibitors in hepatocellular carcinoma: New data and ongoing trials. Front. Oncol. 2021, 11, 4183. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. REACH-2 study investigators Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Lee, C.W.; Yu, M.C.; Lin, G.; Chiu, J.C.; Chiang, M.H.; Sung, C.M.; Hsieh, Y.C.; Kuo, T.; Lin, C.Y.; Tsai, H.I. Serum metabolites may be useful markers to assess vascular invasion and identify normal alpha-fetoprotein in hepatocellular carcinoma undergoing liver resection: A pilot study. World J. Surg. Oncol. 2020, 18, 121. [Google Scholar] [CrossRef]
- Kudo, M.; Kawamura, Y.; Hasegawa, K.; Tateishi, R.; Kariyama, K.; Shiina, S.; Toyoda, H.; Imai, Y.; Hiraoka, A.; Ikeda, M.; et al. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer 2021, 10, 181–223. [Google Scholar] [CrossRef]
- Piñero, F.; Dirchwolf, M.; Pessôa, M.G. Biomarkers in Hepatocellular Carcinoma: Diagnosis, Prognosis and Treatment Response Assessment. Cells 2020, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lai, J.; Lyu, N.; Xie, Q.; Cao, H.; Chen, D.; He, M.; Zhang, B.; Zhao, M. Effects of Antiviral Therapy on HBV Reactivation and Survival in Hepatocellular Carcinoma Patients Undergoing Hepatic Artery Infusion Chemotherapy. Front. Oncol. 2020, 10, 582504. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.I.; Kim, B.H.; Kim, Y.J.; Yoon, J.H.; Jung, Y.J.; Chie, E.K. Role of radiotherapy in Barcelona Clinic Liver Cancer stage C hepatocellular carcinoma treated with sorafenib. J. Gastroenterol. Hepatol. 2022, 37, 387–394. [Google Scholar] [CrossRef]
- Lee, C.W.; Chan, K.M.; Lee, C.F.; Yu, M.C.; Lee, W.C.; Wu, T.J.; Chen, M.F. Hepatic resection for hepatocellular carcinoma with lymph node metastasis: Clinicopathological analysis and survival outcome. Asian J. Surg. 2011, 34, 53–62. [Google Scholar] [CrossRef] [Green Version]
Variables | All | Best Clinical Response (CR PR) | Best Clinical Response (SD) | Best Clinical Response (PD) | p-Value |
---|---|---|---|---|---|
n = 377 | n = 73 (19.3) | n = 133 (35.3) | n = 171 (45.4) | ||
Age (years) | 62.1 ± 12.1 | 60.4 ± 13.3 | 64.4 ± 10.9 | 62.2 ± 12.3 | 0.066 |
Gender (male) | 311 (82.5) | 63 (86.3) | 107 (80.5) | 141 (82.5) | 0.572 |
Comorbidity(yes) | 170 (45.1) | 28 (38.4) | 65 (48.9) | 77 (45.0) | 0.349 |
HBV positive | 231 (61.3) | 42 (57.5) | 79 (59.4) | 110 (64.3) | 0.522 |
HCV positive | 112 (29.7) | 27 (37.0) | 41 (30.8) | 44 (25.7) | 0.199 |
WBC (1000/μL) | 6040.8 ± 2553.1 | 5918.1 ± 3550.2 | 5927.1 ± 2153.5 | 6163.6 ± 2333.3 | 0.669 |
AST (U/L) | 59.9 ± 44.2 | 49.5 ± 30.0 | 54.8 ± 38.5 | 68.5 ± 51.7 | 0.002 * |
ALB(g/dL) | 4.0 ± 0.5 | 4.0 ± 0.6 | 4.1 ± 0.5 | 3.9 ± 0.5 | 0.002 * |
Bilirubin (mg/dL) | 0.9 ± 0.7 | 0.9 ± 0.5 | 0.8 ± 0.4 | 0.9 ± 0.9 | 0.296 |
Platelet (103/μL) | 164.8 ± 82.3 | 153.6 ± 72.1 | 159.9 ± 71.5 | 173.3 ± 93.1 | 0.161 |
ALBI grade 1 | 215 (57.5) | 36 (63.0) | 87 (66.4) | 82 (48.2) | 0.011 * |
2 | 150 (40.1) | 26 (35.6) | 43 (32.8) | 81 (47.6) | |
3 | 9 (2.4) | 1 (1.4) | 1 (0.8) | 7 (4.1) | |
AFP (ng/mL) | 14,094.3 ± 65,809.4 | 8165.9 ± 28,501.9 | 4154.2 ± 37,767.2 | 24,239.9 ± 88,872.8 | 0.021 * |
AFP (>400 ng/mL) | 133 (35.5) | 21 (28.8) | 32 (24.4) | 80 (46.8) | <0.001 *** |
Cirrhosis | 177 (56.4) | 30 (56.6) | 56 (50.0) | 91 (61.1) | 0.203 |
Target lesions | |||||
Liver | 148 (39.3) | 25 (34.2) | 56 (42.1) | 67 (39.2) | 0.543 |
Bone | 48 (12.7) | 7 (9.6) | 11 (8.3) | 30 (17.5) | 0.037 * |
Lung | 123 (32.6) | 14 (19.2) | 43 (32.3) | 66 (38.6) | 0.012 * |
Thrombus | 98 (26.0 | 16 (21.9) | 31 (23.3) | 51 (29.8) | 0.296 |
LN | 83 (22.0) | 18 (24.7) | 31 (23.3) | 34 (19.9) | 0.644 |
Peritoneum | 45 (11.9) | 12 (16.4) | 14 (10.5) | 19 (11.1) | 0.413 |
Brain | 4 (1.1) | 2 (2.7) | 0 | 2 (1.2) | NA |
Multiple | 157 (41.6) | 22 (30.1) | 52 (39.1) | 83 (48.6) | 0.022 * |
AE | 90 (23.9) | 16 (21.9) | 35 (26.3) | 39 (22.8) | 0.706 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age (years), >65 vs. ≤65 | 0.853 | 0.674–1.078 | 0.183 | |||
Sex (M/F), M vs. F | 0.735 | 0.775–1.430 | 0.741 | |||
Comorbidity, Yes vs. No | 1.090 | 0.864–1.375 | 0.469 | |||
HBV, Yes vs. No | 1.194 | 0.939–1.518 | 0.148 | |||
HCV, Yes vs. No | 0.833 | 0.646–1.074 | 0.159 | |||
Multiple targets, Yes vs. No | 1.365 | 1.079–1.727 | 0.009 ** | 0.941 | 0.717–1.236 | 0.663 |
Liver (no MVI), Yes vs. No | 1.049 | 0.824–1.334 | 0.699 | |||
Bone, Yes vs. No | 1.478 | 1.060–2.059 | 0.021 * | 1.868 | 1.287–2.712 | 0.001 ** |
Lung, Yes vs. No | 1.298 | 1.017–1.657 | 0.036 * | 1.509 | 1.111–2.041 | 0.008 ** |
Lymph Nodes, Yes vs. No | 0.791 | 0.594–1.053 | 0.108 | |||
Peritoneum, Yes vs. No | 0.875 | 0.608–1.258 | 0.471 | |||
MVI, Yes vs. No | 1.314 | 1.015–1.700 | 0.038 * | 1.511 | 1.115–2.048 | 0.008 ** |
Cirrhosis, Yes vs. No | 1.170 | 0.903–2.558 | 1.513 | |||
ALBI grades, 2, 3 vs. 1 | 1.694 | 1.369–2.094 | <0.001 *** | 1.674 | 1.292–2.169 | <0.001 *** |
AFP (400 ng/mL), >400 vs. ≤400 | 1.446 | 1.140–1.834 | 0.002 ** | 1.408 | 1.094–1.811 | 0.008 ** |
AST (IU/L) 2 ULN, >68 vs. ≤68 | 1.452 | 1.126–1.873 | 0.004 ** | 1.237 | 0.932–1.642 | 0.140 |
ALT (IU/L) 2 ULN, >72 vs. ≤72 | 1.238 | 0.932–1.644 | 0.140 | |||
Combined treatment, Yes vs. No | 0.755 | 0.596–0.955 | 0.019 * | 0.754 | 0.587–0.967 | 0.026 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-F.; Chong, S.-W.; Huang, C.-W.; Hsu, H.-Y.; Pan, K.-T.; Hung, C.-F.; Wu, T.-H.; Lee, C.-W.; Hsieh, C.-H.; Wang, C.-T.; et al. Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma. Biomedicines 2022, 10, 2277. https://doi.org/10.3390/biomedicines10092277
Huang S-F, Chong S-W, Huang C-W, Hsu H-Y, Pan K-T, Hung C-F, Wu T-H, Lee C-W, Hsieh C-H, Wang C-T, et al. Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma. Biomedicines. 2022; 10(9):2277. https://doi.org/10.3390/biomedicines10092277
Chicago/Turabian StyleHuang, Song-Fong, Sio-Wai Chong, Chun-Wei Huang, Heng-Yuan Hsu, Kuang-Tse Pan, Chien-Fu Hung, Tsung-Han Wu, Chao-Wei Lee, Chia-Hsun Hsieh, Ching-Ting Wang, and et al. 2022. "Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma" Biomedicines 10, no. 9: 2277. https://doi.org/10.3390/biomedicines10092277
APA StyleHuang, S. -F., Chong, S. -W., Huang, C. -W., Hsu, H. -Y., Pan, K. -T., Hung, C. -F., Wu, T. -H., Lee, C. -W., Hsieh, C. -H., Wang, C. -T., Chai, P. -M., & Yu, M. -C. (2022). Differential Response to Sorafenib Administration for Advanced Hepatocellular Carcinoma. Biomedicines, 10(9), 2277. https://doi.org/10.3390/biomedicines10092277