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Abstract: As marijuana use during adolescence has been increasing, the need to understand the effects
of its long-term use becomes crucial. Previous research suggested that marijuana consumption during
adolescence increases the risk of developing mental illnesses, such as schizophrenia, depression,
and anxiety. Ghrelin is a peptide produced primarily in the gut and is important for feeding
behavior. Recent studies have shown that ghrelin and its receptor, the growth hormone secretagogue
receptor (GHSR), play important roles in mediating stress, as well as anxiety and depression-like
behaviors in animal models. Here, we investigated the effects of chronic tetrahydrocannabinol (THC)
administration during late adolescence (P42–55) in GHSR (GHSR −/−) knockout mice and their wild-
type littermates in relation to anxiety-like behaviors. We determined that continuous THC exposure
during late adolescence did not lead to any significant alterations in the anxiety-like behaviors of
adult mice, regardless of genotype, following a prolonged period of no exposure (1 month). These
data indicate that in the presence of intact or impaired ghrelin/GHSR signaling, THC exposure
during late adolescence has limited if any long-term impact on anxiety-like behaviors in mice.

Keywords: ghrelin; tetrahydrocannabinol (THC); GHSR signaling; late adolescence; endocannabinoid
system

1. Introduction

Adolescence is the developmental period of transition between childhood and adult-
hood, on average starting at age 12 and ending at age 18 [1,2]. This period is marked by
significant neuroplasticity in the prefrontal cortex and limbic regions, two brain regions
involved in development of adult behavior and cognitive functions [1,3].

Cannabis use among adolescents is very high, with 9.4% of 8th graders, 23.9% of 10th
graders, and 36.5% of 12th graders reporting cannabis use in the last 12 months in 2016 [4].
This event is concerning as cannabis abuse can lead to persistent cognitive impairments
in learning, attention and memory [5–10]. Moreover, early cannabis use before 16 years
of age increases the risk of developing psychiatric disorders, including anxiety-related
symptoms [11–13]. Anxiety appears to be the most common complication arising from
heavy cannabis use, with up to 20% of cannabis users experiencing anxiety [14] while the
prevalence of anxiety in the general population is estimated to be around 6–17% [15].

The primary psychoactive component of cannabis is delta-9-tetrahydrocannabinol
(THC). The biological effects of THC are mainly mediated by members of the G protein-
coupled receptor (GPCR) family, such as cannabinoid receptors (CB1R and CB2R).

The cannabinoid receptors together with their naturally occurring ligands (anan-
damide and 2-arachidonoyl glycerol) and the enzymes responsible for their biosynthesis
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constitute the endocannabinoid system [16,17]. This system plays a critical role in the
maturation of brain circuits during adolescence by regulating excitatory and inhibitory
neurotransmission [18]. Further, CB1R expression increases dramatically in regions such
as the prefrontal cortex, striatum, and hippocampus [19]. Imaging studies have shown
decreased cortical thickness in the right superior prefrontal cortex (PFC), bilateral insula
and bilateral superior cortices in adolescent cannabis users compared to adolescents who
do not use cannabis [20], as well as a decrease in volume of the right medial orbitofrontal
cortex [21] and bilateral hippocampus [22,23].

Ghrelin is a hormone mainly produced in the gut [24]. It stimulates potent orexigenic
effects through metabolic homeostatic regulatory mechanisms in the hypothalamus and
by increasing food reward and motivation through mesolimbic activation [25,26]. Ghrelin
mediates both peripheral and central physiological functions through the growth hormone
secretagogue receptor (GHSR) [27]. Ghrelin’s role in regulating mood is very complex and
it has a dual role in regulating anxiety. In some cases, injecting ghrelin centrally increased
anxiety-like behaviors assessed by elevated plus maze [28], while other reports suggest
the opposite effect, with ghrelin injections showing a decrease in anxiety-like behaviors
as assessed by elevated plus maze [29]. This discrepancy might be related to the timing
of the behavioral experiments. Another factor that contributes to modulateing ghrelin’s
effect on behavior is food availability, with ghrelin increasing locomotion in the absence
of food [30] and decreasing locomotion in the presence of food [31]. Findings in ghrelin
knockout mice also demonstrate the controversial relationship between ghrelin and anxiety.
Ghrelin knockout (Ghr −/−) mice appear to be less anxious than their wild-type counter-
parts under non-stressed conditions, but display more anxious behavior under mild stress
conditions (15 min restraint) [32]. Of note is that stress increases ghrelin and corticosterone
concurrently. GHSR and ghrelin knockout mice showed decreased plasma levels of corti-
costerone after chronic social defeat stress and acute restraint stress, as well as increased
anxiety-like behavior [32,33]. Taken together, these findings suggest that ghrelin and GHSR
are important for the ability of animals to cope with anxiety-inducing stressors. GHSR and
the cannabinoid CB1R are expressed within overlapping brain regions that are crucial for
feeding (hypothalamus), reward and motivation (Ventral tegmental area/VTA, nucleus
accubens/NAC). Both systems mutually interact to a significant extent in the regulation of
homeostatic as well as hedonic food intake [34–37]. Further, systemic pretreatment with the
CB1R antagonist rimonabant significantly reduced intracerebroventricular ghrelin-induced
NAC dopamine release and hyperlocomotion in mice [38]. Despite this knowledge, there
are limited data on the mutual role of cannabis and ghrelin in promoting anxiety-like
behaviors. Therefore, we aim to test the way in which GHSR −/− mice (and their wild-
type counterparts) would respond to chronic THC administration during adolescence. To
investigate the long-term effects of THC on behavior relating to anxiety, we exposed the
animals to 10 mg of THC daily (via pulmonary route) during sexual maturation (6–8 weeks
old mice), which roughly corresponds to adolescence in humans. After 14 days of THC
administration, animals (male and female mice) could recover for additional 4 weeks. At
12 weeks of age, behavioral testing was performed to evaluate any long-term effects from
THC administration (Figure 1A).
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Figure 1. Experiment design and equipment for THC administration. (A) Experimental design, 
time course for THC (or vehicle) administration and behavioral testing. (B) Entire apparatus used 
to administer THC and vehicle under a chemical hood. (C) Tubing leading from administration box 
to activated charcoal trap. (D) Tubing leading from activated charcoal trap to the activated charcoal 
filter, which then leads to the vacuum line. (E) Open-ended tube with Volcano mouthpiece at-
tached. (F) Balloon attached to the open-ended mouthpiece, sealed with parafilm. 

2. Materials and Methods 
2.1. Materials 

To closely mimic human THC consumption, we used a formulation of THC (3.62% 
THC, 6.47% tetrahydrocannabinolic acid (THCA), a total of 101 mg/ml of THC) with a 
minimal content of terpenes (β-myrcene 0.06%, β-caryophyllene 0.64%, humulene 0.39%; 

Figure 1. Experiment design and equipment for THC administration. (A) Experimental design, time
course for THC (or vehicle) administration and behavioral testing. (B) Entire apparatus used to
administer THC and vehicle under a chemical hood. (C) Tubing leading from administration box to
activated charcoal trap. (D) Tubing leading from activated charcoal trap to the activated charcoal
filter, which then leads to the vacuum line. (E) Open-ended tube with Volcano mouthpiece attached.
(F) Balloon attached to the open-ended mouthpiece, sealed with parafilm.

2. Materials and Methods
2.1. Materials

To closely mimic human THC consumption, we used a formulation of THC (3.62%
THC, 6.47% tetrahydrocannabinolic acid (THCA), a total of 101 mg/ml of THC) with a
minimal content of terpenes (β-myrcene 0.06%, β-caryophyllene 0.64%, humulene 0.39%; a
total of 1.09% terpenes) dissolved in Polyethylenglycol (PEG 400), designed for use with a
commercially available vaporization apparatus.
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PEG 400 with terpenes was used as the vehicle for the control group. Connecticut
Pharmaceutical Solutions, LLC, Portland, CT, USA (a state-licensed grower) provided the
compounds through the Connecticut Medical Marijuana Research Program.

2.2. Animals

The Institutional Animal Care and Use Committee of Yale University approved all
experiments (protocol code 2019-07942). Mice were kept under standard laboratory condi-
tions with free access to standard chow food and water except during behavioral testing.
Mice were generated by breeding C57BL/6J (n. 000664 Jackson Lab) with GHSR −/+ mice
in order to obtain an F1 generation of heterozygous GHSR knock-out animals. These
progenies were subsequently used to generate GHSR +/+ (WT) and GHSR −/− (KO) ani-
mals used in this study. All animals were generated, bred and weaned by our laboratory
and housed in the same animal room. Further details can be obtained from our previous
publication [39]. THC was administered to animals from 6 to 8 weeks of age and behavioral
testing was performed at 12 to 13 weeks of age (Figure 1A). Animals were placed into
2 treatment groups (vehicle and 10 mg THC) for each genotype (wild type and knock-out).
Since we did not have a strict hypothesis of what sort of difference we can expect, we used
the “resource equation” method for defining our sample size, a commonly used way of
establishing sample size in exploratory studies [40]. We did not control for the estrous cycle
in female mice.

2.3. THC Administration

Most adolescents smoke cannabis; therefore, we decided to mimic smoking as a
method of administration of THC. We used commercially available vaporization equip-
ment for marijuana administration, commonly used by marijuana consumers. Previously
described experiments used the Volcano® Vapourization device (Storz and Bickel, GmbH
and Co., Tuttlingen, Germany) to administer ethanol-dissolved THC to lab animals in
a consistent and reproducible manner, and presented similar dose-dependent and time-
dependent changes for both pulmonary and parenteral administration [41,42]. We followed
their procedure, except for the following modifications. In our study, the THC containing
formulation and vehicle were vaporized at 175 ◦C in order to avoid excessive formation and
vaporization of cannabinol (CBN, a psychoactive metabolite of THC which may confound
results) and reaching the flashpoint of the vehicle (PEG400, 250 ◦C).

THC and vehicle were administered under a chemical hood to prevent cross-contamination
due to leakage of vapor, as well as maintaining a consistent experimental environment (Figure 1B).
Mice were placed, in groups of 2–4, inside a closed chamber (33 cm × 20.3 cm × 10.2 cm) with
valves and tubing on two of the narrower sides. To further minimize vapor escaping, on
one side the tubing led to an improvised activated charcoal trap, leading to an activated
charcoal filter, leading to the vacuum line (Figure 1C,D). On the other side, tubing was
open-ended with a Volcano Vaporizer mouthpiece fixed to it (Figure 1E). The mouthpiece
was used to release the seal on the balloons, which were filled with a vapor containing THC
(or vehicle; note that the content of the balloons is mostly air so that the animal was always
normoxic while in the chamber). Parafilm was used to seal the connection making it airtight
(Figure 1F). Animals were exposed to the vapor for 5 min, with half of the balloon being
emptied at the beginning and the other half being emptied after 2 or 3 minutes of exposure.
We separated the evacuation of the vapor-filled balloon into 2 parts to prevent excessive
leaking of vapors caused by increasing pressure inside of the box which exacerbates cracks
in the boxes’ seal during balloon evacuation. The vacuum pump line was not efficient
enough at maintaining a stable pressure to avoid side leakage and posed a danger to the
animals inside the box if activated when they were still inside. The leakage was minimized
to our satisfaction by splitting the balloon evacuation into 2 parts. After the exposure,
animals were quickly removed from the chamber, and the vacuum line was turned on to
remove any residual vapor. The inside of the box was cleaned with 70% ethanol between
each group of animals.
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2.4. Behavioral Assessments

Open field and elevated zero maze were used to establish behavioral phenotypes
induced by THC administration. Behavioral testing was performed during the light phase
of the cycle from 1 pm to 7 pm.

2.4.1. Open Field

The open field apparatus (Stoelting Company, Wood Dale, IL, USA) is a square,
polyurethane box (35.5 cm × 35.5 cm × 30 cm). The animal was placed in the center of
the apparatus. General locomotion parameters (distance traveled, locomotion speed, time
mobile) and parameters relating to anxiety (freezing time; time spent, distance travelled,
and entries into central and periphery zones) were recorded for 10 min. The apparatus was
cleaned with 70% ethanol after each animal’s exposure. ANY-Maze software (Stoelting
Company, Wood Dale, IL, USA) was used to record and analyze the behavioral data.

2.4.2. Elevated Zero Maze

The elevated zero maze apparatus is an elevated (60 cm high) ring-shaped runway
(5 cm wide), with 2 equally sized (25% of the runway length) sections closed off by walls
(40 cm high) opposite each other. The other two sections are open (Stoelting Company,
Wood Dale, IL, USA). The maze was equally illuminated in all four sections. Mice were
placed in the center of one of the open sections, facing one of the closed sections, and
allowed to explore the maze for 5 min. The apparatus was cleaned with 70% ethanol after
each animal’s exposure. ANY-Maze SoftwareTM (Stoelting Company, Wood Dale, IL, USA)
was used to record and analyze the behavioral data.

2.5. Statistics

GraphPad Prism 8.0 and Microsoft Excel 14.4.2 were used to analyze data and plot
figures. Since our goal was to compare the means of more than two groups of animals,
while controlling for two variables (genotype and THC treatment), two-way ANOVA was
used to analyze the results. When results were significant, a multiple comparison test was
performed, comparing the means of all groups, regardless of the variable in question. Data
are expressed as the mean ± standard error of the mean (SEM), and a p value ≤ 0.5. was
considered statistically significant.

3. Results
3.1. Open Field

The open field exploration test represents a unique opportunity to systematically
assess novel environment exploration and general locomotor activity and provides initial
screening for anxiety-related behaviors in rodents [43]. Two factors influence anxiety-
like behaviors in the open field. The first is social isolation resulting from the physical
separation from cage mates when performing the test. The second is the stress created
by the brightly lit, unprotected, novel test environment [44,45]. To assess the behavioral
effects of adolescent exposure to THC, we treated female and male mice of two different
genotypes (GHSR +/+ WT) and GHSR −/− (KO) during adolescence. We assessed anxiety-
like behaviors in young adulthood (Figure 1A).

In our experimental setting, parameters that evaluate general locomotion showed no
differences amongst the groups, suggesting locomotion was unaffected by THC exposure
(Figure 2A–E). Further, we did not observe significant differences in the in the open field
parameters indicative of anxiety-like behaviors in all groups independently of genotype
and/or treatment (Figure 3A–E). For all main effects and interaction, p ≥ 0.05.
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(C) Average speed. (D) Freezing time. (E) Number of freezing episodes. Data are expressed as 
mean ± SEM Two-way ANOVA plus post hoc comparison test. 

Figure 2. Open field, general locomotion. WT-vehicle n = 19, WT-THC n = 18, KO-vehicle n = 19,
KO-THC n = 18; Male and female mice were included. (A) Time mobile. (B) Total distance travelled.
(C) Average speed. (D) Freezing time. (E) Number of freezing episodes. Data are expressed
as mean ± SEM Two-way ANOVA plus post hoc comparison test.

3.2. Elevated Zero Maze

Elevated zero maze is the master test for assessing anxiety-like behaviors in mice. The
test exploits the natural tendencies of mice to explore novel environments [46].

We did not observe significant differences in the willingness of mice to explore open
environments in all groups independently of genotype and/or treatment. For all main
effects and interaction, p ≥ 0.05 Figure 4A–E.
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Figure 3. Open field, anxiety-related parameters. WT-vehicle n = 19, WT-THC n = 18, KO-vehicle
n = 19, KO-THC n = 18; Male and female mice were included. (A,B) Number of entries in the central
or peripheral zone. (C,D) Time spent in central or peripheral zone. (E,F) Total distance traveled in
central or peripheral zone. Data are expressed as mean ± SEM. Two-way ANOVA plus post hoc
comparison tests.
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Figure 4. Elevated Zero Maze. WT-vehicle n = 19, WT-THC n = 18, KO-vehicle n = 19, KO-THC
n = 18. Male and female mice were included. (A) Entries in open arms. (B) Time spent in open arms.
(C) Distance travelled in open arms. (D) Average speed in open arms. (E) Time spent freezing in
open arms. Data are expressed as mean ± SEM. Two-way ANOVA plus post hoc comparison test.

4. Discussion

In this study, we demonstrated that administration of THC to adolescent mice does
not cause anxiety-like behavior in adult mice nor affect basic locomotor activity. Further,
we showed that impairment of the ghrelin signaling through the knockout of the GHRS
does not confer an increased risk of developing THC induced anxiety in adult mice. Our
results are consistent with previous reports in rodent models that concluded that pro-
longed adolescent THC exposure in mice does not have substantive negative impacts on
several mPFC-mediated behaviors [47–50]. In particular, Chen et al. [49] treated 28-day-old
C57BL6/J mice of both sexes for three weeks with 3 mg/kg THC (daily intraperitoneal
injections i.p.). One week after recovery, they analyzed several cognitive behaviors and
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detected little effect on anxiety-like behaviors. In another study, Zuo et al. [48] treated
female and male mice with 10 mg/kg of THC in early adolescence (1 i.p. for 21 consecutive
days during postnatal weeks 5–7) and assessed the impact on anxiety-like behaviors two
weeks later. Their behavioral analysis demonstrated that adolescent exposure to THC in
mice led to long-term impairments in object recognition, memory and social interaction, but
not in anxiety-like behaviors. The experimental evidence on long-term effect of cannabis
exposure during adolescence includes cannabidiol (CBD) as well, a non-intoxicating phyto-
cannabinoid. Prolonged adolescent CBD exposure had no detrimental effects on locomotor
activity in the open field and anxiety-like behaviors on the elevated plus maze in male
and female C57BL/6J mice treated for 20 days mg/kg with two daily i.p. injections of
CBD (20 mg/kg) [47].

Our exposure period starting at postnatal day (PND) 42 and ending at PND 55 rep-
resents the mouse brain development period similar to human adolescence [51]. Earlier
findings identified this period as the critical time window for persistent detrimental effects
of cannabis misuse [52,53]. Cannabis mainly acts on the developing cerebral cortex, espe-
cially the medial prefrontal cortex, a late-developing brain region whose volume decreases
dramatically during adolescence as it undergoes synaptic refinement [54].

Interestingly, our results show that impairing ghrelin signaling through GHSR knock-
out does not affect the long-term outcome of the THC treatment. Since ghrelin and THC
often act synergistically in many pathways [37], the results on GHRS KO mice further
corroborate the lack of significant long-term alterations of anxiety-like behavior induced by
THC in our experimental setting.

Preclinical studies collectively suggest that ghrelin/GHSR reinforces the action of
cannabinoids and CB1 agonists [55,56].

These studies imply the potential interaction of the ghrelin signaling with other
neurotransmitter systems (the endocannabinoid, and GABA systems) within the NAC in
the reinforcing effects of cannabinoids [57].

For example, the GHSR antagonist JMV2959 significantly reduced several parameters
of cannabinoid reward and attenuated cannabinoid intake and drug-seeking behavior [56].

The ghrelin receptor can interact with the CB2 cannabinoid receptor in both heterolo-
gous cells and cells of the central nervous system [58].

Overall, the long-term outcomes of cannabis exposure during adolescence are complex
and can result from multiple factors. Early life interferences such as maternal depriva-
tion or immune system activation could increase the vulnerability to cannabis-related
developmental insults [59,60]. Investigations into the neurodevelopmental exposure to
THC in translational animal models could provide insights into various neural pathways
and biomarkers involved in THC-related pathological outcomes, identifying potential
molecular targets for novel pharmacotherapeutic approaches [61].

Limitations and Future Studies

In this study, we used the vaporization method to administer THC. Compared to
i.p. injections, the pharmacodynamics of the THC following vaporization is less known.
Future research should establish the dose and plasma level relationship for the vaporiza-
tion method using the liquid chromatography–mass spectrometry (LC/MS) method, as
performed before [41,42]. Moreover, we used a lower temperature for the vaporizations,
thus we should assume that less of the material was vaporized compared to the original
papers [41,42]. Most of our animals exposed to THC displayed instant changes in behavior,
such as headshakes (similar to hallucinogen-induced headshakes), hyperactivity, or mild
somnolence. Considering that the experiments on rats, from the original study, showed a
hyperactivity phenotype at 1 mg and hypomobility/somnolence with 10 mg of vaporized
THC, we assumed that in our experiments, active THC reached levels between these two
reported doses.

Changing conditions such as dose, the time of THC exposure, concomitant stress
exposure, and presence/lack of food could clarify if there are any relevant conditions under
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which THC can significantly alter long-term anxiety-like behaviors with or without an
intact Ghrelin/GHRS signaling. Male and female mice might be affected differently by
THC exposure since the literature suggests that females may be more vulnerable to THC’s
effect on anxiety [62,63]. To address the possible sex differences and ghrelin’s role in them,
THC exposure should be coupled with a variety of adjunct treatments, such as sex hormone
inhibitors and ghrelin. Lastly, additional behavioral tests, such as pre-pulse inhibition,
marble burying, and tail suspension, should be employed to investigate whether THC
exposure in late adolescence affects behaviors related to sensory gating, compulsiveness,
and mood regulation.
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