Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators
Abstract
:1. Introduction
2. Classification of Delayed-Type Drug Hypersensitivity
3. Proposed Models of Molecular Recognition in Delayed Drug Hypersensitivity
- (1)
- The hapten/pro-hapten hypothesis describes that the causative drugs or the reactive metabolites are too small, with a molecular weight of fewer than 1000 daltons, to be immunogenic and recognized by the immune receptors. The haptens become immunogenic by the covalent binding of drug/metabolite to the endogenous peptides or proteins to form a hapten–carrier complex. The antigenic complex could be recognized by an antibody, or be presented on the HLA molecule and then recognized by TCR, resulting in the induction of drug-specific cellular or humoral immune responses. This hypothesis has been valid in cases of penicillin-induced ADRs [25,26,27]. The major antigenic determinant of penicillin-induced hypersensitivity is penicilloyl polylysine. This structure is formed by the covalent bond of a β-lactam ring to lysine residues in proteins [27,28]. Regarding the delayed drug hypersensitivty, penicilloyl peptides were found to be recognized as T-cell antigenic determinants in the penicillin allergy [25].
- (2)
- The pharmacological interaction with the immune receptor (p-i) concept postulates that drugs may noncovalently interact with the HLA, TCR, or endogenous proteins (or peptides) [29]. Our previous studies showed that carbamazepine (CBZ), one of the aromatic antiepileptic drugs, directly interacts with HLA-B*15:02 protein. This interaction of CBZ presentation on HLA-B*15:02 does not involve intracellular antigen processing or drug metabolism [30]. In addition, we showed another similar example for the interaction between oxypurinol and HLA-B*58:01. Oxypurinol, a reactive metabolite of allopurinol, can directly and immediately activate specific T cells through HLA-B*58:01; this is without intracellular antigen processing [31]. We demonstrated the key residuals of oxypurinol recognition on the HLA-B*58:01 cleft [32].
- (3)
- The altered peptide repertoire model refers to the causative drugs occupying a position in the peptide-binding groove of the HLA protein, the alteration of the properties of the binding cleft, and the peptide specificity of HLA binding. This model has been suggested by studies on abacavir hypersensitivity [33,34]. Abacavir binds to the F-pocket of HLA-B*57:01 and changes the properties of conformation and structure in the antigen-binding cleft. The interaction between the drug and HLA causes the altered peptide repertoire, resulting in TCR recognition, T cell activation, and a drug hypersensitivity reaction. The altered peptide repertoire causes a polyclonal activation of T cells and systemic manifestations resembling an autoimmune response [33,34].
- (4)
- The altered TCR repertoire model proposes that culprit drugs directly interact with TCR, and not with the peptides nor the HLA molecules. The antigenic molecules bind to specific TCRs and cause conformational change. The antigen-bound TCRs can interact with HLA-endogenous peptide complexes and elicit immune reactions [35]. In this model, the TCR repertoire is altered upon interaction with the drug/metabolite antigen. The drug antigen-bound TCR is essential in this model to induce drug hypersensitivity reactions [35].
4. Genetic Susceptibility of Delayed Drug Hypersensitivity
4.1. Genetic Susceptibility of Antiepileptics-Induced Hypersensitivity Reactions
Causative Drugs | Reactions | Genetic Factors | Ethnicity | OR (95% CI) | p-Value | Reference |
---|---|---|---|---|---|---|
Carbamazepine (CBZ) | SJS/TEN | HLA-B*15:02 | Han Chinese | 2504 (126–49,522) | 3.13 × 10−27 | [36] |
Thai | 25.5 (2.68–242.61) | 0.0005 | [40] | |||
7.27 (2.04–25.97) | 4.46 × 10−13 | [43] | ||||
Indian | 71.40 (3.0–1698) | 0.0014 | [42] | |||
Malaysian | 16.15 (4.57–62.4) | 7.87 × 10−6 | [41] | |||
Vietnamese | 33.78 (7.55–151.03) | <0.0001 | [39] | |||
Singaporean | 27.20 (2.67–∞) | 0.004 | [38] | |||
HLA-B*57:01 | European | 9.0 (4.2–19.4) | 9.62 × 10−7 | [45] | ||
DRESS | HLA-A*31:01 | Han Chinese | 23.0 (4.2–125) | <0.001 | [47] | |
6.86 (2.4–19.9) | 2.7 × 10−3 | [50] | ||||
European | 49.9 (12.9–193.6) | 4.0 × 10−8 | [45] | |||
13.2 (8.4–20.8) | <0.001 | [47] | ||||
12.41 (1.27–121.03) | 3.5 × 10−8 | [48] | ||||
22.00 (1.03–1190.36) | 0.047 | [49] | ||||
Japanese | 10.8 (5.9–19.6) | 3.64 × 10−15 | [51] | |||
MPE/DRESS | HLA-A*31:01 | Han Chinese | 17.5 (4.6–66.5) | 0.0022 | [46] | |
MPE | HLA-B*15:02 | Thai | 7.27 (2.04–25.97) | 0.0022 | [43] | |
Oxcarbazepine (OXC) | SJS/TEN | HLA-B*15:02 | Han Chinese | 27.90 (7.84–99.23) | 1.12 × 10−9 | [52] |
80.7 (3.8–1714.4) | 8.4 × 10−4 | [53] | ||||
MPE | HLA-A*32:01 | Han Chinese | 15.877 (1.817–138.720) | 0.004 | [57] | |
Phenytoin (PHT) | SCARs | CYP2C9*3 | Taiwanese | 14.00 (6.75–29.02) | 0.00001 | [58] |
Japanese | 8.88 (2.20–35.83) | |||||
Malaysian | 5.60 (0.56–56.20) | |||||
Thai | 4.30 (1.41–13.09) | <0.05 | [59] | |||
Taiwanese, Japanese, Thai | 20.86 (9.03–48.20) | 1.22 × 10−13 | [60] | |||
HLA-B*15:02 | Asian (Han Chinese, Japanese, Malaysian) | 5.0 (2.0–13) | 0.025 | [58] | ||
SJS/TEN | HLA-B*15:02 | Han Chinese | 5.1 (1.8–15.1) | 0.0041 | [53] | |
3.50 (1.10–11.18) | 0.045 | [55] | ||||
Thai | 18.5 (1.82–188.40) | 0.005 | [40] | |||
Malaysian | 5.71 (1.41–23.10) | 0.016 | [54] | |||
Lamotrigine (LTG) | SCARs | HLA-A*31:01 | Korean | 11.43 (1.95–59.77) | 0.0037 | [61] |
HLA-B*38:01 | European | 147.00 (1.88–483) | 0.001 | [49] | ||
SJS/TEN | HLA-B*15:02 | Han Chinese | 4.98 (1.43–17.28) | 0.01 | [56] | |
AEDs (CBZ, LTG, PHT, etc.) | SCARs | HLA-B*15:02 | Han Chinese | 17.6 (2.9–105.2) | 0.001 | [37] |
4.2. Genetic Susceptibility of Allopurinol Hypersensitivity
Reactions | Genetic Factors | Ethnicity | OR (95% CI) | p-Value | Reference |
---|---|---|---|---|---|
SJS/TEN | HLA-B*58:01 | Han Chinese | 580.3 (34.4–9780.9) | 4.7 × 10−24 | [62] |
European | 80 (34–187) | <10−6 | [63] | ||
Japanese | 62.8 (21.2–185.8) | 5.388 × 10−12 | [67] | ||
Thai | 348.3 (19.2–6336.9) | 1.6 × 10−13 | [65] | ||
579.0 (29.5–11,362.7) | <0.001 | [66] | |||
DRESS | HLA-B*58:01 | Han Chinese | 47.7 (18.2–125.4) | 1.0 × 10−26 | [71] |
Thai | 430.3 (22.6–8958.9) | <0.001 | [66] | ||
SCARs | HLA-B*58:01 | Korean | 97.8 (18.3–521.5) | 2.45 × 10−11 | [68] |
HLA-B*58:01 | Han Chinese | 44.0 (21.5–90.3) | 2.6 × 10−41 | [71] | |
European | 39.11 (4.49–340.51) | 5.9 × 10−4 | [64] | ||
DILI | HLA-B*58:01, HLA-B*53:01 cluster | African-American, Caucasian, Hispanic | NA | 0.0007 | [69] |
MPE | HLA-B*58:01 | Thai | 144.0 (13.9–1497.0) | <0.001 | [66] |
Han Chinese | 8.5 (4.2–17.5) | 2.3 × 10−9 | [71] |
4.3. Genetic Susceptibility of Antibiotics-Induced Hypersensitivity Reactions
Causative Drugs | Reactions | Genetic Factors | Ethnicity | OR (95% CI) | p-Value | Reference |
---|---|---|---|---|---|---|
Amoxicillin | MPE | HLA-DRB3*02:02 | European | 8.88 (3.37–23.32) 1 | <0.0001 | [72] |
Co-amoxiclav | DILI | HLA-DRB1*15:01 | European | 2.59 (1.44–4.68) | 0.002 | [73] |
Flucloxacillin | DILI | HLA-B*57:01 | European | 80.6 (22.8–284.9) | 8.97 × 10−19 | [74] |
Sulfamethoxazole (SMX) | SJS/TEN | HLA-B*38 | European | 8.6 (3.5–21) | <0.003 | [63] |
Co-trimoxazole (SMX/TMP) | SJS/TEN | HLA-B*15:02 | Thai | 3.91 (1.42–10.92) | 0.0037 | [75] |
HLA-C*06:02 | 11.84 (1.24–566.04) | 0.0131 | ||||
HLA-C*08:01 | 3.53 (1.21–10.40) | 0.0108 | ||||
SCARs | HLA-A*11:01-B*15:02 haplotype, | Thai (HIV-infected patients only) | 4.36 (1.43–13.34) | 0.0108 | [77] | |
HLA-B*13:01-C*03:04 haplotype | 3.77 (1.27–11.19) | 0.0251 | ||||
HLA-B*13:01 | Han Chinese, Thai, Malaysia | 11.7 (5.7–24) | 1.3 × 10−13 | [76] | ||
Vancomycin | DRESS | HLA-A*32:01 | European | NA | 1 × 10−8 | [84] |
Dapsone | SCARs | HLA-B*13:01 | Thai | 39.00 (7.67–198.21) | 5.34 × 10−7 | [85] |
54.00 (7.96–366.16) | 0.0001 | [88] | ||||
DRESS | HLA-B*13:01 | Han Chinese | 20.53 (11.55–36.48) | 6.84 × 10−25 | [86] | |
Taiwanese, Malaysian | 49.64 (5.89–418.13) | 2.92 × 10−4 | [87] | |||
HLA-B*13:01 | Korean | 73.67 (2.56–2119.93) | 0.012 | [89] | ||
HLA-B*13:01 | Papua | 233.46 (1.7–67.7) | 7.11 × 10−9 | [90] |
4.4. Genetic Susceptibility of Antiviral Agents-Induced Hypersensiticity
Causative Drugs | Reactions | Genetic Factors | Ethnicity | OR (95% CI) | p-Value | Reference |
---|---|---|---|---|---|---|
Abacavir | DiHS | HLA-B*57:01 | Caucasians | 23.6 (8.0–70.0) | <0.0001 | [92] |
117 (29–481) | <0.0001 | [93] | ||||
NA | NA | [94] | ||||
Nevirapine | SJS/TEN | rs3099844 (HCP5) | Mozambique | 2.03 (na) | 0.039 | [102] |
HLA-C*04:01 | African | 4.84 (2.71–8.61) | 8.47 × 10−8 | [97] | ||
DiHS | HLA-Cw*04 | Thai | 2.43(1.22–4.84) | 0.17 | [96] | |
NA | 0.0088 | [104] | ||||
Asians, Blacks, Whites | 2.51 (1.73–3.62) | 8.7 × 10−6 | [96] | |||
Han Chinese | 3.611 (1.135–11.489) | 0.030 | [101] | |||
HLA-B*35:05 | Thai | 18.96 (4.87–73.44) | 4.6 × 10−6 | [95] | ||
HLA-B*35 | Asians | 3.47 (1.58–7.61) | 0.053 | [96] | ||
HLA-DRB1*01 | Whites | 3.02 (1.66–5.49) | 0.0074 | [96] | ||
4.8 (na) | 0.14 | [98] | ||||
HLA-Cw*08 | Sardinian | NA | 0.05 | [99] | ||
Japanese | NA | 0.03 | [100] | |||
Raltegravir | DRESS | HLA-B*53:01 | African | NA | NA | [103] |
4.5. Genetic Susceptibility of Hypersensitivity Reactions to Anti-Thyroid Drugs and Methazolamide
Causative Drugs | Reactions | Genetic Factors | Ethnicity | OR//break//(95% CI) | p-Value | Reference |
---|---|---|---|---|---|---|
Methimazole | DIA | HLA-DRB1*08:03:02 | Japanese | 5.42 (na) | 0.002 | [105] |
HLA-B*38:02, DRB1*08:03 haplotype | Han Chinese | 48.41 (21.66–108.22) | 3.32 × 10−21 | [107] | ||
HLA-B*38:02 | 21.48 (11.13–41.48) | 6.75 × 10−32 | ||||
HLA-DRB1*08:03 | 6.13 (3.28–11.46) | 1.83 × 10−9 | ||||
Carbimazole/Methimazole | DIA | HLA-B*38:02:01 | Han Chinese | 265.5 (27.87–2528.0) | 2.5 × 10−14 | [108] |
Carbimazole, Methimazole, Propylthiouracil | DIA | HLA-B*27:05 | Caucasian | 7.30 (3.81–13.96) | 1.91 × 10−9 | [109] |
Methimazole, Propylthiouracil | DIA | HLA-B*27:05 | Han Chinese | 60.11 (3.27–1104.4) | 1.1 × 10−4 | [110] |
HLA-B*38:02 | 6.55 (2.11–20.36) | 2.41 × 10−4 | ||||
HLA-DRB1*08:03 | 3.95 (1.60–9.79) | 1.57 × 10−3 | ||||
Methazolamide | SJS/TEN | HLA-B*59:01 | Han Chinese | 305.0 (11.3–8259.9) | 6.3 × 10−7 | [111] |
Korean | 249.8 (13.4–4813.5) | <0.001 | [112] | |||
Japanese | NA | NA | [114] | |||
HLA-B*59:01 | Han Chinese | 146.00 (16.12–1321.98) | 6.19 × 10−10 | [113] | ||
HLA-B*55:02 | 71.00 (7.84–643.10) | 1.43 × 10−4 |
5. T Cell Receptor (TCR) Usage in Delayed Drug Hypersensitivity
6. Key Immune Mediators Involved in Delayed Drug Hypersensitivity
- (1)
- Granulysin
- (2)
- Perforin and granzyme B
- (3)
- Fas/FasL signaling pathway
- (4)
- Thymus and activation-regulated chemokine (TARC) and type 2 helper T cells (TH2)
- (5)
- Regulatory T cell (Treg)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Demoly, P.; Adkinson, N.F.; Brockow, K.; Castells, M.; Chiriac, A.M.; Greenberger, P.A.; Khan, D.A.; Lang, D.M.; Park, H.S.; Pichler, W.; et al. International Consensus on drug allergy. Allergy 2014, 69, 420–437. [Google Scholar] [CrossRef]
- World Health Organization. International drug monitoring: The role of national centres. Report of a WHO meeting. World Health Organ Tech. Rep. Ser. 1972, 498, 1–25. [Google Scholar]
- Gomes, E.R.; Demoly, P. Epidemiology of hypersensitivity drug reactions. Curr. Opin. Allergy Clin. Immunol. 2005, 5, 309–316. [Google Scholar] [CrossRef]
- Johansson, S.G.; Bieber, T.; Dahl, R.; Friedmann, P.S.; Lanier, B.Q.; Lockey, R.F.; Motala, C.; Ortega Martell, J.A.; Platts-Mills, T.A.; Ring, J.; et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol. 2004, 113, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Abe, R.; Pan, R.Y.; Wang, C.W.; Hung, S.I.; Tsai, Y.G.; Chung, W.H. An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity. J. Immunol. Res. 2018, 2018, 6431694. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.F.; Phillips, E.J.; Wiese, M.D.; Heddle, R.J.; Brown, S.G. Immediate-type hypersensitivity drug reactions. Br. J. Clin. Pharmacol. 2014, 78, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Brockow, K.; Ardern-Jones, M.R.; Mockenhaupt, M.; Aberer, W.; Barbaud, A.; Caubet, J.C.; Spiewak, R.; Torres, M.J.; Mortz, C.G. EAACI position paper on how to classify cutaneous manifestations of drug hypersensitivity. Allergy 2019, 74, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Mayorga, C.; Fernandez, T.D.; Montanez, M.I.; Moreno, E.; Torres, M.J. Recent developments and highlights in drug hypersensitivity. Allergy 2019, 74, 2368–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehloenya, R.J.; Peter, J.G.; Copascu, A.; Trubiano, J.A.; Phillips, E.J. Delabeling Delayed Drug Hypersensitivity: How Far Can You Safely Go? J. Allergy Clin. Immunol. Pract. 2020, 8, 2878–2895.E6. [Google Scholar] [CrossRef]
- Mockenhaupt, M. Epidemiology of cutaneous adverse drug reactions. Allergol. Sel. 2017, 1, 96–108. [Google Scholar] [CrossRef]
- Rattay, B.; Benndorf, R.A. Drug-Induced Idiosyncratic Agranulocytosis—Infrequent but Dangerous. Front. Pharmacol. 2021, 12, 727717. [Google Scholar] [CrossRef]
- Andres, E.; Maloisel, F. Idiosyncratic drug-induced agranulocytosis or acute neutropenia. Curr. Opin. Hematol. 2008, 15, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Kardaun, S.H.; Sekula, P.; Valeyrie-Allanore, L.; Liss, Y.; Chu, C.Y.; Creamer, D.; Sidoroff, A.; Naldi, L.; Mockenhaupt, M.; Roujeau, J.C.; et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): An original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 2013, 169, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Sekula, P.; Dunant, A.; Mockenhaupt, M.; Naldi, L.; Bouwes Bavinck, J.N.; Halevy, S.; Kardaun, S.; Sidoroff, A.; Liss, Y.; Schumacher, M.; et al. Comprehensive survival analysis of a cohort of patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J. Investig. Dermatol. 2013, 133, 1197–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Fontana, R.J.; Bonkovsky, H.L.; Watkins, P.B.; Davern, T.; Serrano, J.; Yang, H.; Rochon, J. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 2008, 135, 1924–1934. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.H.; Wang, C.W.; Dao, R.L. Severe cutaneous adverse drug reactions. J. Dermatol. 2016, 43, 758–766. [Google Scholar] [CrossRef]
- Posadas, S.J.; Pichler, W.J. Delayed drug hypersensitivity reactions—New concepts. Clin. Exp. Allergy 2007, 37, 989–999. [Google Scholar] [CrossRef]
- Pichler, W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef]
- De Groot, A. Allergic Contact Dermatitis From Topical Drugs: An Overview. Dermatitis 2021, 32, 197–213. [Google Scholar] [CrossRef]
- Kuruvilla, M.; Khan, D.A. Eosinophilic Drug Allergy. Clin. Rev. Allergy Immunol. 2016, 50, 228–239. [Google Scholar] [CrossRef]
- Zirwas, M.J. Contact Dermatitis to Cosmetics. Clin. Rev. Allergy Immunol. 2019, 56, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.A.; Yacoub, M.R.; Ripa, M.; Mannina, D.; Cariddi, A.; Saporiti, N.; Ciceri, F.; Castagna, A.; Colombo, G.; Dagna, L. Eosinophils from Physiology to Disease: A Comprehensive Review. Biomed. Res. Int. 2018, 2018, 9095275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoofnagle, J.H.; Bjornsson, E.S. Drug-Induced Liver Injury—Types and Phenotypes. N. Engl. J. Med. 2019, 381, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Warrington, R.; Silviu-Dan, F.; Wong, T. Drug allergy. Allergy Asthma Clin. Immunol. 2018, 14 (Suppl. 2), 60. [Google Scholar] [CrossRef] [PubMed]
- Padovan, E.; Bauer, T.; Tongio, M.M.; Kalbacher, H.; Weltzien, H.U. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur. J. Immunol. 1997, 27, 1303–1307. [Google Scholar] [CrossRef]
- White, K.D.; Chung, W.H.; Hung, S.I.; Mallal, S.; Phillips, E.J. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: The role of host, pathogens, and drug response. J. Allergy Clin. Immunol. 2015, 136, 219–234; quiz 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maker, J.H.; Stroup, C.M.; Huang, V.; James, S.F. Antibiotic Hypersensitivity Mechanisms. Pharmacy 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Castells, M.; Khan, D.A.; Phillips, E.J. Penicillin Allergy. N. Engl. J. Med. 2019, 381, 2338–2351. [Google Scholar] [CrossRef]
- Pichler, W.J. The p-i Concept: Pharmacological Interaction of Drugs With Immune Receptors. World Allergy Organ. J. 2008, 1, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.Y.; Chung, W.H.; Huang, H.W.; Chen, Y.T.; Hung, S.I. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 2012, 129, 1562–1569.e5. [Google Scholar] [CrossRef]
- Yun, J.; Marcaida, M.J.; Eriksson, K.K.; Jamin, H.; Fontana, S.; Pichler, W.J.; Yerly, D. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J. Immunol. 2014, 192, 2984–2993. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, J.K.; Ko, T.M.; Wei, C.Y.; Wu, J.Y.; Chung, W.H.; Chen, S.Y.; Liao, Y.D.; Hung, S.I.; Chen, Y.T. Immunologic basis for allopurinol-induced severe cutaneous adverse reactions: HLA-B*58:01-restricted activation of drug-specific T cells and molecular interaction. J. Allergy Clin. Immunol. 2015, 135, 1063–1065.e5. [Google Scholar] [CrossRef] [PubMed]
- Illing, P.T.; Vivian, J.P.; Dudek, N.L.; Kostenko, L.; Chen, Z.; Bharadwaj, M.; Miles, J.J.; Kjer-Nielsen, L.; Gras, S.; Williamson, N.A.; et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 2012, 486, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Ostrov, D.A.; Grant, B.J.; Pompeu, Y.A.; Sidney, J.; Harndahl, M.; Southwood, S.; Oseroff, C.; Lu, S.; Jakoncic, J.; de Oliveira, C.A.; et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc. Natl. Acad. Sci. USA 2012, 109, 9959–9964. [Google Scholar] [CrossRef] [Green Version]
- Watkins, S.; Pichler, W.J. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVbeta20-1, altering pHLA recognition. PLoS ONE 2013, 8, e76211. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.H.; Hung, S.I.; Hong, H.S.; Hsih, M.S.; Yang, L.C.; Ho, H.C.; Wu, J.Y.; Chen, Y.T. Medical genetics: A marker for Stevens-Johnson syndrome. Nature 2004, 428, 486. [Google Scholar] [CrossRef] [PubMed]
- Man, C.B.; Kwan, P.; Baum, L.; Yu, E.; Lau, K.M.; Cheng, A.S.; Ng, M.H. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007, 48, 1015–1018. [Google Scholar] [CrossRef]
- Chong, K.W.; Chan, D.W.; Cheung, Y.B.; Ching, L.K.; Hie, S.L.; Thomas, T.; Ling, S.; Tan, E.C. Association of carbamazepine-induced severe cutaneous drug reactions and HLA-B*1502 allele status, and dose and treatment duration in paediatric neurology patients in Singapore. Arch. Dis. Child. 2014, 99, 581–584. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Chu, H.C.; Nguyen, D.V.; Phan, M.H.; Craig, T.; Baumgart, K.; van Nunen, S. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac. Allergy 2015, 5, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Locharernkul, C.; Loplumlert, J.; Limotai, C.; Korkij, W.; Desudchit, T.; Tongkobpetch, S.; Kangwanshiratada, O.; Hirankarn, N.; Suphapeetiporn, K.; Shotelersuk, V. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 2008, 49, 2087–2091. [Google Scholar] [CrossRef]
- Chang, C.C.; Too, C.L.; Murad, S.; Hussein, S.H. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome in the multi-ethnic Malaysian population. Int. J. Dermatol. 2011, 50, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Mehta, T.Y.; Prajapati, L.M.; Mittal, B.; Joshi, C.G.; Sheth, J.J.; Patel, D.B.; Dave, D.M.; Goyal, R.K. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Sukasem, C.; Chaichan, C.; Nakkrut, T.; Satapornpong, P.; Jaruthamsophon, K.; Jantararoungtong, T.; Koomdee, N.; Sririttha, S.; Medhasi, S.; Oo-Puthinan, S.; et al. Association between HLA-B Alleles and Carbamazepine-Induced Maculopapular Exanthema and Severe Cutaneous Reactions in Thai Patients. J. Immunol. Res. 2018, 2018, 2780272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Lin, J.J.; Lu, C.S.; Ong, C.T.; Hsieh, P.F.; Yang, C.C.; Tai, C.T.; Wu, S.L.; Lu, C.H.; Hsu, Y.C.; et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 2011, 364, 1126–1133. [Google Scholar] [CrossRef]
- Mockenhaupt, M.; Wang, C.W.; Hung, S.I.; Sekula, P.; Schmidt, A.H.; Pan, R.Y.; Chen, C.B.; Dunant, A.; Gouvello, S.L.; Schumacher, M.; et al. HLA-B*57:01 confers genetic susceptibility to carbamazepine-induced SJS/TEN in Europeans. Allergy 2019, 74, 2227–2230. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.I.; Chung, W.H.; Jee, S.H.; Chen, W.C.; Chang, Y.T.; Lee, W.R.; Hu, S.L.; Wu, M.T.; Chen, G.S.; Wong, T.W.; et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharm. Genom. 2006, 16, 297–306. [Google Scholar] [CrossRef]
- Genin, E.; Chen, D.P.; Hung, S.I.; Sekula, P.; Schumacher, M.; Chang, P.Y.; Tsai, S.H.; Wu, T.L.; Bellón, T.; Tamouza, R.; et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: An international study and meta-analysis. Pharmacogenom. J. 2014, 14, 281–288. [Google Scholar] [CrossRef]
- McCormack, M.; Alfirevic, A.; Bourgeois, S.; Farrell, J.J.; Kasperavičiūtė, D.; Carrington, M.; Sills, G.J.; Marson, T.; Jia, X.; De Bakker, P.I.; et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 2011, 364, 1134–1143. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, E.; Bellón, T.; Tong, H.Y.; Borobia, A.M.; De Abajo, F.J.; Lerma, V.; Moreno Hidalgo, M.A.; Castañer, J.L.; Cabañas, R.; Fiandor, A.; et al. Significant HLA class I type associations with aromatic antiepileptic drug (AED)-induced SJS/TEN are different from those found for the same AED-induced DRESS in the Spanish population. Pharmacol. Res. 2017, 115, 168–178. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Hui, R.C.; Wu, T.; Chang, W.C.; Hsih, M.S.; Yang, C.H.; Ho, H.C.; Chang, Y.G.; Chen, M.J.; Lin, J.Y.; et al. Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: Strength and clinical correlations. J. Dermatol. Sci. 2014, 73, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, T.; Mushiroda, T.; Yowang, A.; Takahashi, A.; Kubo, M.; Shirakata, Y.; Ikezawa, Z.; Iijima, M.; Shiohara, T.; Hashimoto, K.; et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 2011, 20, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Hsiao, Y.H.; Wu, T.; Hsih, M.S.; Tassaneeyakul, W.; Jorns, T.P.; Sukasem, C.; Hsu, C.N.; Su, S.C.; Chang, W.C.; et al. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology 2017, 88, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.I.; Chung, W.H.; Liu, Z.S.; Chen, C.H.; Hsih, M.S.; Hui, R.C.; Chu, C.Y.; Chen, Y.T. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 2010, 11, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Ng, C.C.; Too, C.L.; Choon, S.E.; Lee, C.K.; Chung, W.H.; Hussein, S.H.; Lim, K.S.; Murad, S. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a Malay population. Pharmacogenom. J. 2017, 17, 170–173. [Google Scholar] [CrossRef]
- Cheung, Y.K.; Cheng, S.H.; Chan, E.J.; Lo, S.V.; Ng, M.H.; Kwan, P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013, 54, 1307–1314. [Google Scholar] [CrossRef]
- Zeng, T.; Long, Y.S.; Min, F.L.; Liao, W.P.; Shi, Y.W. Association of HLA-B*1502 allele with lamotrigine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese subjects: A meta-analysis. Int. J. Dermatol. 2015, 54, 488–493. [Google Scholar] [CrossRef]
- Xu, J.; Shi, X.; Qiu, Y.; Zhang, Y.; Chen, S.; Shi, Y.; Deng, Y. Association between HLA-A*3201 allele and oxcarbazepine-induced cutaneous adverse reactions in Eastern Han Chinese population. Seizure 2019, 65, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Chung, W.H.; Chang, W.C.; Lee, Y.S.; Wu, Y.Y.; Yang, C.H.; Ho, H.C.; Chen, M.J.; Lin, J.Y.; Hui, R.C.; Ho, J.C. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA 2014, 312, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Tassaneeyakul, W.; Prabmeechai, N.; Sukasem, C.; Kongpan, T.; Konyoung, P.; Chumworathayi, P.; Tiamkao, S.; Khunarkornsiri, U.; Kulkantrakorn, K.; Saksit, N.; et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population. Pharm. Genom. 2016, 26, 225–234. [Google Scholar] [CrossRef]
- Su, S.C.; Chen, C.B.; Chang, W.C.; Wang, C.W.; Fan, W.L.; Lu, L.Y.; Nakamura, R.; Saito, Y.; Ueta, M.; Kinoshita, S.; et al. HLA Alleles and CYP2C9*3 as Predictors of Phenytoin Hypersensitivity in East Asians. Clin. Pharmacol. Ther. 2019, 105, 476–485. [Google Scholar] [CrossRef]
- Kim, B.K.; Jung, J.W.; Kim, T.B.; Chang, Y.S.; Park, H.S.; Moon, J.; Lee, S.T.; Jung, K.H.; Jung, K.Y.; Chu, K.; et al. HLA-A*31:01 and lamotrigine-induced severe cutaneous adverse drug reactions in a Korean population. Ann. Allergy Asthma Immunol. 2017, 118, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.I.; Chung, W.H.; Liou, L.B.; Chu, C.C.; Lin, M.; Huang, H.P.; Lin, Y.L.; Lan, J.L.; Yang, L.C.; Hong, H.S.; et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA 2005, 102, 4134–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonjou, C.; Borot, N.; Sekula, P.; Ledger, N.; Thomas, L.; Halevy, S.; Naldi, L.; Bouwes-Bavinck, J.N.; Sidoroff, A.; de Toma, C.; et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharm. Genom. 2008, 18, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Goncalo, M.; Coutinho, I.; Teixeira, V.; Gameiro, A.R.; Brites, M.M.; Nunes, R.; Martinho, A. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br. J. Dermatol. 2013, 169, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Tassaneeyakul, W.; Jantararoungtong, T.; Chen, P.; Lin, P.Y.; Tiamkao, S.; Khunarkornsiri, U.; Chucherd, P.; Konyoung, P.; Vannaprasaht, S.; Choonhakarn, C.; et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharm. Genom. 2009, 19, 704–709. [Google Scholar] [CrossRef]
- Sukasem, C.; Jantararoungtong, T.; Kuntawong, P.; Puangpetch, A.; Koomdee, N.; Satapornpong, P.; Supapsophon, P.; Klaewsongkram, J.; Rerkpattanapipat, T. HLA-B (*) 58:01 for Allopurinol-Induced Cutaneous Adverse Drug Reactions: Implication for Clinical Interpretation in Thailand. Front. Pharmacol. 2016, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Tohkin, M.; Kaniwa, N.; Saito, Y.; Sugiyama, E.; Kurose, K.; Nishikawa, J.; Hasegawa, R.; Aihara, M.; Matsunaga, K.; Abe, M.; et al. A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenom. J. 2013, 13, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.R.; Jee, Y.K.; Kim, Y.S.; Lee, C.H.; Jung, J.W.; Kim, S.H.; Park, H.W.; Chang, Y.S.; Jang, I.J.; Cho, S.H.; et al. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharm. Genom. 2011, 21, 303–307. [Google Scholar] [CrossRef]
- Fontana, R.J.; Li, Y.J.; Phillips, E.; Saeed, N.; Barnhart, H.; Kleiner, D. Allopurinol hepatotoxicity is associated with human leukocyte antigen Class I alleles. Liver Int. 2021, 41, 1884–1893. [Google Scholar] [CrossRef]
- Ko, T.M.; Tsai, C.Y.; Chen, S.Y.; Chen, K.S.; Yu, K.H.; Chu, C.S.; Huang, C.M.; Wang, C.R.; Weng, C.T.; Yu, C.L.; et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: National prospective cohort study. BMJ 2015, 351, h4848. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.Y.; Yeh, Y.T.; Wang, C.W.; Hung, S.I.; Yang, C.H.; Chang, Y.C.; Chang, W.C.; Lin, Y.J.; Chang, C.J.; Su, S.C.; et al. Impact of the HLA-B(*)58:01 Allele and Renal Impairment on Allopurinol-Induced Cutaneous Adverse Reactions. J. Investig. Dermatol. 2016, 136, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Oussalah, A.; Chery, C.; Gueant-Rodriguez, R.M.; Gaeta, F.; Cornejo-Garcia, J.A.; Rouyer, P.; Josse, T.; Mayorga, C.; Torres, M.J.; et al. Next-generation sequencing and genotype association studies reveal the association of HLA-DRB3*02:02 with delayed hypersensitivity to penicillins. Allergy 2021, 77, 1827–1834. [Google Scholar] [CrossRef]
- Donaldson, P.T.; Daly, A.K.; Henderson, J.; Graham, J.; Pirmohamed, M.; Bernal, W.; Day, C.P.; Aithal, G.P. Human leucocyte antigen class II genotype in susceptibility and resistance to co-amoxiclav-induced liver injury. J. Hepatol. 2010, 53, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.K.; Donaldson, P.T.; Bhatnagar, P.; Shen, Y.; Pe’er, I.; Floratos, A.; Daly, M.J.; Goldstein, D.B.; John, S.; Nelson, M.R.; et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 2009, 41, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Kongpan, T.; Mahasirimongkol, S.; Konyoung, P.; Kanjanawart, S.; Chumworathayi, P.; Wichukchinda, N.; Kidkeukarun, R.; Preechakul, S.; Khunarkornsiri, U.; Bamrungram, W.; et al. Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharm. Genom. 2015, 25, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.W.; Tassaneeyakul, W.; Chen, C.B.; Chen, W.T.; Teng, Y.C.; Huang, C.Y.; Sukasem, C.; Lu, C.W.; Lee, Y.S.; Choon, S.E.; et al. Whole genome sequencing identifies genetic variants associated with co-trimoxazole hypersensitivity in Asians. J. Allergy Clin. Immunol. 2021, 147, 1402–1412. [Google Scholar] [CrossRef]
- Sukasem, C.; Pratoomwun, J.; Satapornpong, P.; Klaewsongkram, J.; Rerkpattanapipat, T.; Rerknimitr, P.; Lertpichitkul, P.; Puangpetch, A.; Nakkam, N.; Konyoung, P.; et al. Genetic Association of Co-Trimoxazole-Induced Severe Cutaneous Adverse Reactions Is Phenotype-Specific: HLA Class I Genotypes and Haplotypes. Clin. Pharmacol. Ther. 2020, 108, 1078–1089. [Google Scholar] [CrossRef]
- Wolkenstein, P.; Carriere, V.; Charue, D.; Bastuji-Garin, S.; Revuz, J.; Roujeau, J.C.; Beaune, P.; Bagot, M. A slow acetylator genotype is a risk factor for sulphonamide-induced toxic epidermal necrolysis and Stevens-Johnson syndrome. Pharmacogenetics 1995, 5, 255–258. [Google Scholar] [CrossRef]
- Pirmohamed, M.; Alfirevic, A.; Vilar, J.; Stalford, A.; Wilkins, E.G.; Sim, E.; Park, B.K. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenetics 2000, 10, 705–713. [Google Scholar] [CrossRef]
- Zielinska, E.; Niewiarowski, W.; Bodalski, J.; Rebowski, G.; Skretkowicz, J.; Mianowska, K.; Sekulska, M. Genotyping of the arylamine N-acetyltransferase polymorphism in the prediction of idiosyncratic reactions to trimethoprim-sulfamethoxazole in infants. Pharm. World Sci. 1998, 20, 123–130. [Google Scholar] [CrossRef]
- O’Neil, W.M.; MacArthur, R.D.; Farrough, M.J.; Doll, M.A.; Fretland, A.J.; Hein, D.W.; Crane, L.R.; Svensson, C.K. Acetylator phenotype and genotype in HIV-infected patients with and without sulfonamide hypersensitivity. J. Clin. Pharmacol. 2002, 42, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Alfirevic, A.; Stalford, A.C.; Vilar, F.J.; Wilkins, E.G.; Park, B.K.; Pirmohamed, M. Slow acetylator phenotype and genotype in HIV-positive patients with sulphamethoxazole hypersensitivity. Br. J. Clin. Pharmacol. 2003, 55, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Delomenie, C.; Mathelier-Fusade, P.; Longuemaux, S.; Rozenbaum, W.; Leynadier, F.; Krishnamoorthy, R.; Dupret, J.M. Glutathione S-transferase (GSTM1) null genotype and sulphonamide intolerance in acquired immunodeficiency syndrome. Pharmacogenetics 1997, 7, 519–520. [Google Scholar] [CrossRef] [PubMed]
- Konvinse, K.C.; Trubiano, J.A.; Pavlos, R.; James, I.; Shaffer, C.M.; Bejan, C.A.; Schutte, R.J.; Ostrov, D.A.; Pilkinton, M.A.; Rosenbach, M.; et al. HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J. Allergy Clin. Immunol. 2019, 144, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapornpong, P.; Pratoomwun, J.; Rerknimitr, P.; Klaewsongkram, J.; Nakkam, N.; Rungrotmongkol, T.; Konyoung, P.; Saksit, N.; Mahakkanukrauh, A.; Amornpinyo, W.; et al. HLA-B*13:01 Is a Predictive Marker of Dapsone-Induced Severe Cutaneous Adverse Reactions in Thai Patients. Front. Immunol. 2021, 12, 661135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.R.; Liu, H.; Irwanto, A.; Fu, X.A.; Li, Y.; Yu, G.Q.; Yu, Y.X.; Chen, M.F.; Low, H.Q.; Li, J.H.; et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N. Engl. J. Med. 2013, 369, 1620–1628. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Wang, C.W.; Lu, C.W.; Chen, C.B.; Lee, H.E.; Hung, S.I.; Choon, S.E.; Yang, C.H.; Liu, M.T.; Chen, T.J.; et al. The Function of HLA-B*13:01 Involved in the Pathomechanism of Dapsone-Induced Severe Cutaneous Adverse Reactions. J. Investig. Dermatol. 2018, 138, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Tempark, T.; Satapornpong, P.; Rerknimitr, P.; Nakkam, N.; Saksit, N.; Wattanakrai, P.; Jantararoungtong, T.; Koomdee, N.; Mahakkanukrauh, A.; Tassaneeyakul, W.; et al. Dapsone-induced severe cutaneous adverse drug reactions are strongly linked with HLA-B*13: 01 allele in the Thai population. Pharm. Genom. 2017, 27, 429–437. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.W. The HLA-B*13:01 and the dapsone hypersensitivity syndrome in Korean and Asian populations: Genotype- and meta-analyses. Expert Opin. Drug Saf. 2020, 19, 1349–1356. [Google Scholar] [CrossRef]
- Krismawati, H.; Irwanto, A.; Pongtiku, A.; Irwan, I.D. Validation study of HLA-B*13:01 as a biomarker of dapsone hypersensitivity syndrome in leprosy patients in Indonesia. PLoS Negl. Trop. Dis. 2020, 14, e0008746. [Google Scholar] [CrossRef]
- Hetherington, S.; McGuirk, S.; Powell, G.; Cutrell, A.; Naderer, O.; Spreen, B.; Lafon, S.; Pearce, G.; Steel, H. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin. Ther. 2001, 23, 1603–1614. [Google Scholar] [CrossRef]
- Hetherington, S.; Hughes, A.R.; Mosteller, M.; Shortino, D.; Baker, K.L.; Spreen, W.; Lai, E.; Davies, K.; Handley, A.; Dow, D.J.; et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002, 359, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Mallal, S.; Nolan, D.; Witt, C.; Masel, G.; Martin, A.M.; Moore, C.; Sayer, D.; Castley, A.; Mamotte, C.; Maxwell, D.; et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002, 359, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.M.; Workman, C.; Tomazic, J.; Jägel-Guedes, E.; Rugina, S.; Kozyrev, O.; Cid, J.F.; et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantarangsu, S.; Mushiroda, T.; Mahasirimongkol, S.; Kiertiburanakul, S.; Sungkanuparph, S.; Manosuthi, W.; Tantisiriwat, W.; Charoenyingwattana, A.; Sura, T.; Chantratita, W.; et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharm. Genom. 2009, 19, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Guo, S.; Hall, D.; Cammett, A.M.; Jayadev, S.; Distel, M.; Storfer, S.; Huang, Z.; Mootsikapun, P.; Ruxrungtham, K.; et al. Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 2011, 25, 1271–1280. [Google Scholar] [CrossRef]
- Carr, D.F.; Bourgeois, S.; Chaponda, M.; Takeshita, L.Y.; Morris, A.P.; Castro, E.M.; Alfirevic, A.; Jones, A.R.; Rigden, D.J.; Haldenby, S.; et al. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J. Antimicrob. Chemother. 2017, 72, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.M.; Nolan, D.; James, I.; Cameron, P.; Keller, J.; Moore, C.; Phillips, E.; Christiansen, F.T.; Mallal, S. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 2005, 19, 97–99. [Google Scholar] [CrossRef]
- Littera, R.; Carcassi, C.; Masala, A.; Piano, P.; Serra, P.; Ortu, F.; Corso, N.; Casula, B.; La Nasa, G.; Contu, L.; et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 2006, 20, 1621–1626. [Google Scholar] [CrossRef]
- Gatanaga, H.; Yazaki, H.; Tanuma, J.; Honda, M.; Genka, I.; Teruya, K.; Tachikawa, N.; Kikuchi, Y.; Oka, S. HLA-Cw8 primarily associated with hypersensitivity to nevirapine. AIDS 2007, 21, 264–265. [Google Scholar] [CrossRef]
- Gao, S.; Gui, X.E.; Liang, K.; Liu, Z.; Hu, J.; Dong, B. HLA-dependent hypersensitivity reaction to nevirapine in Chinese Han HIV-infected patients. AIDS Res. Hum. Retroviruses 2012, 28, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Borgiani, P.; Di Fusco, D.; Erba, F.; Marazzi, M.C.; Mancinelli, S.; Novelli, G.; Palombi, L.; Ciccacci, C. HCP5 genetic variant (RS3099844) contributes to Nevirapine-induced Stevens Johnsons Syndrome/Toxic Epidermal Necrolysis susceptibility in a population from Mozambique. Eur. J. Clin. Pharmacol. 2014, 70, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Hopkins, C.; Duffy, E.; Lee, D.; Loulergue, P.; Ripamonti, D.; Ostrov, D.A.; Phillips, E. Association of the HLA-B*53:01 Allele With Drug Reaction With Eosinophilia and Systemic Symptoms (DRESS) Syndrome During Treatment of HIV Infection With Raltegravir. Clin. Infect. Dis. 2017, 64, 1198–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likanonsakul, S.; Rattanatham, T.; Feangvad, S.; Uttayamakul, S.; Prasithsirikul, W.; Tunthanathip, P.; Nakayama, E.E.; Shioda, T. HLA-Cw*04 allele associated with nevirapine-induced rash in HIV-infected Thai patients. AIDS Res. Ther. 2009, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Tamai, H.; Sudo, T.; Kimura, A.; Mukuta, T.; Matsubayashi, S.; Kuma, K.; Nagataki, S.; Sasazuki, T. Association between the DRB1*08032 histocompatibility antigen and methimazole-induced agranulocytosis in Japanese patients with Graves disease. Ann. Intern. Med. 1996, 124, 490–494. [Google Scholar] [CrossRef]
- Chen, W.T.; Chi, C.C. Associations of HLA genotypes with antithyroid drug-induced agranulocytosis: A systematic review and meta-analysis of pharmacogenomics studies. Br. J. Clin. Pharmacol. 2019, 85, 1878–1887. [Google Scholar] [CrossRef]
- Chen, P.L.; Shih, S.R.; Wang, P.W.; Lin, Y.C.; Chu, C.C.; Lin, J.H.; Chen, S.C.; Chang, C.C.; Huang, T.S.; Tsai, K.S.; et al. Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat. Commun. 2015, 6, 7633. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.L.; Sing, C.W.; Tang, C.S.; Cheng, V.K.; Pirmohamed, M.; Choi, C.H.; Hung, C.S.; Lau, E.Y.; Lee, K.F.; Mak, M.W.; et al. HLA-B*38:02:01 predicts carbimazole/methimazole-induced agranulocytosis. Clin. Pharmacol. Ther. 2016, 99, 555–561. [Google Scholar] [CrossRef]
- Hallberg, P.; Eriksson, N.; Ibanez, L.; Bondon-Guitton, E.; Kreutz, R.; Carvajal, A.; Lucena, M.I.; Ponce, E.S.; Molokhia, M.; Martin, J.; et al. Genetic variants associated with antithyroid drug-induced agranulocytosis: A genome-wide association study in a European population. Lancet Diabetes Endocrinol. 2016, 4, 507–516. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zheng, J.; Zhang, Q.; Hou, P.; Zhu, F.; Yang, J.; Li, W.; Chen, P.; Liu, S.; Zhang, B.; et al. Association of HLA-B and HLA-DRB1 polymorphisms with antithyroid drug-induced agranulocytosis in a Han population from northern China. Sci. Rep. 2017, 7, 11950. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Xuan, J.; Chen, J.; Zhong, H.; Luo, H.; Zhou, P.; Sun, X.; He, L.; Chen, S.; Cao, Z.; et al. HLA-B*59:01: A marker for Stevens-Johnson syndrome/toxic epidermal necrolysis caused by methazolamide in Han Chinese. Pharm. J. 2016, 16, 83–87. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.; Lee, K.W.; Kim, S.H.; Kang, H.R.; Park, H.W.; Jee, Y.K. HLA-B*5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics 2010, 11, 879–884. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, F.; Zhang, L.; Xu, D.; Jia, Y.; Cheng, Y.; Han, S.; Wang, T.; Chen, Z.; Su, Y.; et al. Unique motif shared by HLA-B*59:01 and HLA-B*55:02 is associated with methazolamide-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 873–880. [Google Scholar] [CrossRef]
- Shirato, S.; Kagaya, F.; Suzuki, Y.; Joukou, S. Stevens-Johnson syndrome induced by methazolamide treatment. Arch. Ophthalmol. 1997, 115, 550–553. [Google Scholar] [CrossRef]
- Chung, W.H.; Pan, R.Y.; Chu, M.T.; Chin, S.W.; Huang, Y.L.; Wang, W.C.; Chang, J.Y.; Hung, S.I. Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions. J. Investig. Dermatol. 2015, 135, 2237–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, R.Y.; Chu, M.T.; Wang, C.W.; Lee, Y.S.; Lemonnier, F.; Michels, A.W.; Schutte, R.; Ostrov, D.A.; Chen, C.B.; Phillips, E.J.; et al. Identification of drug-specific public TCR driving severe cutaneous adverse reactions. Nat. Commun. 2019, 10, 3569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Wang, C.W.; Wang, Z.; Dai, Y.; Zhu, Y.; Lee, Y.S.; Cao, Y.; Chung, W.H.; Ouyang, S.; Wang, H. Functional and structural characteristics of HLA-B*13:01-mediated specific T cells reaction in dapsone-induced drug hypersensitivity. J. Biomed. Sci. 2022, 29, 58. [Google Scholar] [CrossRef] [PubMed]
- Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front. Physiol. 2019, 10, 1514. [Google Scholar] [CrossRef]
- Britschgi, M.; Pichler, W.J. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 325–331. [Google Scholar] [CrossRef]
- Biedermann, T.; Kneilling, M.; Mailhammer, R.; Maier, K.; Sander, C.A.; Kollias, G.; Kunkel, S.L.; Hültner, L.; Röcken, M. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 2000, 192, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, P.; Tanaka, T.I.; Alawi, F.; Alhendi, F.; Fadugba, O. Fixed Drug Eruption of the Tongue Due to Trimethoprim-Sulfamethoxazole. J. Allergy Clin. Immunol. Pract. 2020, 8, 328–329.e1. [Google Scholar] [CrossRef]
- Feldmeyer, L.; Heidemeyer, K.; Yawalkar, N. Acute Generalized Exanthematous Pustulosis: Pathogenesis, Genetic Background, Clinical Variants and Therapy. Int. J. Mol. Sci. 2016, 17, 1214. [Google Scholar] [CrossRef] [Green Version]
- Vallejo-Yague, E.; Martinez-De la Torre, A.; Mohamad, O.S.; Sabu, S.; Burden, A.M. Drug Triggers and Clinic of Acute Generalized Exanthematous Pustulosis (AGEP): A Literature Case Series of 297 Patients. J. Clin. Med. 2022, 11, 397. [Google Scholar] [CrossRef]
- Kabashima, R.; Sugita, K.; Sawada, Y.; Hino, R.; Nakamura, M.; Tokura, Y. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 485–488. [Google Scholar] [CrossRef]
- Jee, A.; Sernoskie, S.C.; Uetrecht, J. Idiosyncratic Drug-Induced Liver Injury: Mechanistic and Clinical Challenges. Int. J. Mol. Sci. 2021, 22, 2954. [Google Scholar] [CrossRef]
- Andrade, R.J.; Chalasani, N.; Bjornsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Foureau, D.M.; Walling, T.L.; Maddukuri, V.; Anderson, W.; Culbreath, K.; Kleiner, D.E.; Ahrens, W.A.; Jacobs, C.; Watkins, P.B.; Fontana, R.J.; et al. Comparative analysis of portal hepatic infiltrating leucocytes in acute drug-induced liver injury, idiopathic autoimmune and viral hepatitis. Clin. Exp. Immunol. 2015, 180, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Bjornsson, E.; Kalaitzakis, E.; Olsson, R. The impact of eosinophilia and hepatic necrosis on prognosis in patients with drug-induced liver injury. Aliment. Pharmacol. Ther. 2007, 25, 1411–1421. [Google Scholar] [CrossRef]
- Snyder, P.W. Chapter 5—Diseases of Immunity. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Mosby: St. Louis, MI, USA, 2017; pp. 242–285.e245. [Google Scholar]
- Kataoka, T.; Nagai, K. Molecular dissection of cytotoxic functions mediated by T cells. In Progress in Biotechnology; Endo, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 13–23. [Google Scholar]
- Chung, W.H.; Hung, S.I.; Yang, J.Y.; Su, S.C.; Huang, S.P.; Wei, C.Y.; Chin, S.W.; Chiou, C.C.; Chu, S.C.; Ho, H.C.; et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat. Med. 2008, 14, 1343–1350. [Google Scholar] [CrossRef]
- Yamada, A.; Arakaki, R.; Saito, M.; Kudo, Y.; Ishimaru, N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front. Immunol. 2017, 8, 00403. [Google Scholar] [CrossRef] [Green Version]
- Gronich, N.; Maman, D.; Stein, N.; Saliba, W. Culprit Medications and Risk Factors Associated with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: Population-Based Nested Case-Control Study. Am. J. Clin. Dermatol. 2022, 23, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Walch, M.; Dotiwala, F.; Mulik, S.; Thiery, J.; Kirchhausen, T.; Clayberger, C.; Krensky, A.M.; Martinvalet, D.; Lieberman, J. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 2014, 157, 1309–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, R.V.; Wilson, C.; Finn, M.W.; Wang, T.; Krensky, A.M.; Clayberger, C. Granulysin delivered by cytotoxic cells damages endoplasmic reticulum and activates caspase-7 in target cells. J. Immunol. 2011, 186, 3497–3504. [Google Scholar] [CrossRef] [Green Version]
- Abe, R.; Yoshioka, N.; Murata, J.; Fujita, Y.; Shimizu, H. Granulysin as a marker for early diagnosis of the Stevens-Johnson syndrome. Ann. Intern. Med. 2009, 151, 514–515. [Google Scholar] [CrossRef] [Green Version]
- Weinborn, M.; Barbaud, A.; Truchetet, F.; Beurey, P.; Germain, L.; Cribier, B. Histopathological study of six types of adverse cutaneous drug reactions using granulysin expression. Int. J. Dermatol. 2016, 55, 1225–1233. [Google Scholar] [CrossRef]
- Su, S.C.; Mockenhaupt, M.; Wolkenstein, P.; Dunant, A.; Le Gouvello, S.; Chen, C.B.; Chosidow, O.; Valeyrie-Allanore, L.; Bellon, T.; Sekula, P.; et al. Interleukin-15 Is Associated with Severity and Mortality in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis. J. Investig. Dermatol. 2017, 137, 1065–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voskoboinik, I.; Whisstock, J.C.; Trapani, J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015, 15, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J. Cytotoxic Lymphocytes. In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Oxford, UK, 2016; pp. 363–373. [Google Scholar]
- Sutton, V.R.; Davis, J.E.; Cancilla, M.; Johnstone, R.W.; Ruefli, A.A.; Sedelies, K.; Browne, K.A.; Trapani, J.A. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 2000, 192, 1403–1414. [Google Scholar] [CrossRef] [Green Version]
- Trapani, J.A. Granzymes: A family of lymphocyte granule serine proteases. Genome Biol. 2001, 2, 3014. [Google Scholar] [CrossRef]
- Posadas, S.J.; Padial, A.; Torres, M.J.; Mayorga, C.; Leyva, L.; Sanchez, E.; Alvarez, J.; Romano, A.; Juarez, C.; Blanca, M. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J. Allergy Clin. Immunol. 2002, 109, 155–161. [Google Scholar] [CrossRef]
- Viard, I.; Wehrli, P.; Bullani, R.; Schneider, P.; Holler, N.; Salomon, D.; Hunziker, T.; Saurat, J.H.; Tschopp, J.; French, L.E. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 1998, 282, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Palermo, B.; Lenig, D.; Miettinen, M.; Matikainen, S.; Julkunen, I.; Forster, R.; Burgstahler, R.; Lipp, M.; Lanzavecchia, A. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 1999, 29, 1617–1625. [Google Scholar] [CrossRef]
- Campbell, J.J.; Haraldsen, G.; Pan, J.; Rottman, J.; Qin, S.; Ponath, P.; Andrew, D.P.; Warnke, R.; Ruffing, N.; Kassam, N.; et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999, 400, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Nagira, M.; Takagi, S.; Kakizaki, M.; Nishimura, M.; Wang, J.; Gray, P.W.; Matsushima, K.; Yoshie, O. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int. Immunol. 1999, 11, 81–88. [Google Scholar] [CrossRef]
- Ogawa, K.; Morito, H.; Hasegawa, A.; Miyagawa, F.; Kobayashi, N.; Watanabe, H.; Sueki, H.; Tohyama, M.; Hashimoto, K.; Kano, Y.; et al. Elevated serum thymus and activation-regulated chemokine (TARC/CCL17) relates to reactivation of human herpesvirus 6 in drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS). Br. J. Dermatol. 2014, 171, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Komatsu-Fujii, T.; Kaneko, S.; Chinuki, Y.; Suyama, Y.; Ohta, M.; Niihara, H.; Morita, E. Serum TARC levels are strongly correlated with blood eosinophil count in patients with drug eruptions. Allergol. Int. 2017, 66, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Morito, H.; Hasegawa, A.; Daikoku, N.; Miyagawa, F.; Okazaki, A.; Fukumoto, T.; Kobayashi, N.; Kasai, T.; Watanabe, H.; et al. Identification of thymus and activation-regulated chemokine (TARC/CCL17) as a potential marker for early indication of disease and prediction of disease activity in drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). J. Dermatol. Sci. 2013, 69, 38–43. [Google Scholar] [CrossRef]
- Komatsu-Fujii, T.; Chinuki, Y.; Niihara, H.; Hayashida, K.; Ohta, M.; Okazaki, R.; Kaneko, S.; Morita, E. The thymus and activation-regulated chemokine (TARC) level in serum at an early stage of a drug eruption is a prognostic biomarker of severity of systemic inflammation. Allergol. Int. 2018, 67, 90–95. [Google Scholar] [CrossRef]
- Choquet-Kastylevsky, G.; Intrator, L.; Chenal, C.; Bocquet, H.; Revuz, J.; Roujeau, J.C. Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br. J. Dermatol. 1998, 139, 1026–1032. [Google Scholar] [CrossRef]
- Miyagawa, F.; Hasegawa, A.; Imoto, K.; Ogawa, K.; Kobayashi, N.; Ito, K.; Fujita, H.; Aihara, M.; Watanabe, H.; Sueki, H.; et al. Differential expression profile of Th1/Th2-associated chemokines characterizes Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS) as distinct entities. Eur. J. Dermatol. 2015, 25, 87–89. [Google Scholar] [CrossRef]
- Teraki, Y.; Fukuda, T. Skin-Homing IL-13-Producing T Cells Expand in the Circulation of Patients with Drug Rash with Eosinophilia and Systemic Symptoms. Dermatology 2017, 233, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Kano, Y.; Yamazaki, Y.; Kimishima, M.; Mizukawa, Y.; Shiohara, T. Defective regulatory T cells in patients with severe drug eruptions: Timing of the dysfunction is associated with the pathological phenotype and outcome. J. Immunol. 2009, 182, 8071–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushigome, Y.; Mizukawa, Y.; Kimishima, M.; Yamazaki, Y.; Takahashi, R.; Kano, Y.; Shiohara, T. Monocytes are involved in the balance between regulatory T cells and Th17 cells in severe drug eruptions. Clin. Exp. Allergy 2018, 48, 1453–1463. [Google Scholar] [CrossRef] [PubMed]
ICON Classification | Reactions | Causality |
---|---|---|
Immediate type | Angioedema, Urticaria, Anaphylaxis | NSAIDs, NMBA, Aspirin, Antibiotics, Vaccines, etc. |
Non-immediate type | MPE, FDE, DRESS/DiHS, SJS/TEN, AGEP, DILI | AEDs, Antibiotics, Anti-viral agents, Allopurinol, NSAIDs, etc. |
HLA Types | Drug | TCR Clonotype | Reactions | Reference |
---|---|---|---|---|
HLA-B*15:02 | Carbamazepine | TRBV12-4-TRBJ2-2, ASSLAGELF/ TRAV12-1-TRAJ34, VFDNTDKLI | SJS/TEN | [116] |
HLA-B*13:01 | Dapsone | TRAV12-3/TRBV28 pair | SJS, DiHS | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.-T.; Chang, W.-C.; Pao, S.-C.; Hung, S.-I. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines 2023, 11, 177. https://doi.org/10.3390/biomedicines11010177
Chu M-T, Chang W-C, Pao S-C, Hung S-I. Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines. 2023; 11(1):177. https://doi.org/10.3390/biomedicines11010177
Chicago/Turabian StyleChu, Mu-Tzu, Wan-Chun Chang, Shih-Cheng Pao, and Shuen-Iu Hung. 2023. "Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators" Biomedicines 11, no. 1: 177. https://doi.org/10.3390/biomedicines11010177
APA StyleChu, M. -T., Chang, W. -C., Pao, S. -C., & Hung, S. -I. (2023). Delayed Drug Hypersensitivity Reactions: Molecular Recognition, Genetic Susceptibility, and Immune Mediators. Biomedicines, 11(1), 177. https://doi.org/10.3390/biomedicines11010177