Resveratrol and Its Role in the Management of B-Cell Malignancies—A Recent Update
Abstract
:1. Introduction
2. Inflammatory Markers and Key Pathways Involved in B Cell Malignancies
3. Molecular Mechanisms of Resveratrol in the Management of B-Cell Malignancies
3.1. General Mechanism in the Management of Malignancies
3.2. Molecular Mechanisms of Resveratrol with a Special Focus on B-Cell Malignancies
4. Pre-Clinical Studies
5. Pharmacokinetic Studies of Resveratrol
6. Metabolism of Resveratrol
7. Nanotechnological Interventions
8. Marketed Formulations of Resveratrol
9. Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Min, Q.; Wang, J.-Y. B Cell Lymphoma. In B Cells in Immunity and Tolerance; Wang, J.-Y., Ed.; Advances in Experimental Medicine and Biology; Springer Singapore: Singapore, 2020; Volume 1254, pp. 161–181. ISBN 9789811535314. [Google Scholar]
- Franchina, D.G.; Grusdat, M.; Brenner, D. B-Cell Metabolic Remodeling and Cancer. Trends Cancer 2018, 4, 138–150. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
- Illahi, A.F.; Muhammad, F.; Akhtar, B. Nanoformulations of Nutraceuticals for Cancer Treatment. Crit. Rev. Eukaryot. Gene Expr. 2019, 29, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Moballegh Nasery, M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020, 25, E689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R.; et al. Curcumin and Its Derivatives in Cancer Therapy: Potentiating Antitumor Activity of Cisplatin and Reducing Side Effects. Phytother. Res. 2022, 36, 189–213. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic Acid and Its Derivatives as Potential Modulators of Oncogenic Molecular Pathways: New Hope in the Fight against Cancer. Pharm. Res. 2021, 171, 105759. [Google Scholar] [CrossRef]
- Denlinger, N.; Bond, D.; Jaglowski, S. CAR T-Cell Therapy for B-Cell Lymphoma. Curr. Probl. Cancer 2022, 46, 100826. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Kersten, M.J.; Salles, G.; Abramson, J.S.; Schuster, S.J.; Locke, F.L.; Andreadis, C. Efficacy and Safety of CD19 -directed CAR-T Cell Therapies in Patients with Relapsed/Refractory Aggressive B-cell Lymphomas: Observations from the JULIET, ZUMA -1, and TRANSCEND Trials. Am. J. Hematol. 2021, 96, 1295–1312. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Kwah, M.X.-Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.-L.; Wang, L.; Ong, P.S.; et al. Resveratrol for Cancer Therapy: Challenges and Future Perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef]
- Breuss, J.; Atanasov, A.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. IJMS 2019, 20, 1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, S.; Mishra, S.R.; Behera, B.P.; Mahapatra, K.K.; Panigrahi, D.P.; Bhol, C.S.; Praharaj, P.P.; Sethi, G.; Patra, S.K.; Bhutia, S.K. Autophagy-Modulating Phytochemicals in Cancer Therapeutics: Current Evidences and Future Perspectives. Semin. Cancer Biol. 2022, 80, 205–217. [Google Scholar] [CrossRef]
- Kataria, R.; Khatkar, A. Resveratrol in Various Pockets: A Review. CTMC 2019, 19, 116–122. [Google Scholar] [CrossRef]
- Grulich, A.E.; Vajdic, C.M.; Cozen, W. Altered Immunity as a Risk Factor for Non-Hodgkin Lymphoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Gibson, T.M.; Morton, L.M.; Shiels, M.S.; Clarke, C.A.; Engels, E.A. Risk of Non-Hodgkin Lymphoma Subtypes in HIV-Infected People during the HAART Era: A Population-Based Study. AIDS 2014, 28, 2313–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epeldegui, M.; Vendrame, E.; Martínez-Maza, O. HIV-Associated Immune Dysfunction and Viral Infection: Role in the Pathogenesis of AIDS-Related Lymphoma. Immunol. Res. 2010, 48, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Purdue, M.P.; Hofmann, J.N.; Kemp, T.J.; Chaturvedi, A.K.; Lan, Q.; Park, J.-H.; Pfeiffer, R.M.; Hildesheim, A.; Pinto, L.A.; Rothman, N. A Prospective Study of 67 Serum Immune and Inflammation Markers and Risk of Non-Hodgkin Lymphoma. Blood 2013, 122, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Makgoeng, S.B.; Bolanos, R.S.; Jeon, C.Y.; Weiss, R.E.; Arah, O.A.; Breen, E.C.; Martínez-Maza, O.; Hussain, S.K. Markers of Immune Activation and Inflammation, and Non-Hodgkin Lymphoma: A Meta-Analysis of Prospective Studies. JNCI Cancer Spectr. 2018, 2, pky082. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.-S.; Kim, H.-J.; Konopleva, M. Targeting the CXCL12/CXCR4 Axis in Acute Myeloid Leukemia: From Bench to Bedside. Korean J. Intern. Med. 2017, 32, 248–257. [Google Scholar] [CrossRef] [Green Version]
- O’Hayre, M.; Salanga, C.L.; Kipps, T.J.; Messmer, D.; Dorrestein, P.C.; Handel, T.M. Elucidating the CXCL12/CXCR4 Signaling Network in Chronic Lymphocytic Leukemia through Phosphoproteomics Analysis. PLoS ONE 2010, 5, e11716. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Ye, Y.; Liao, H.; Shuai, X.; Jin, Y.; Su, J.; Zheng, Q. Relationship between CXC Chemokine Receptor 4 Expression and Prognostic Significance in Acute Myeloid Leukemia. Medicine 2019, 98, e15948. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, F.; Paganelli, F.; Martelli, A.M.; Evangelisti, C. The Role Played by Wnt/β-Catenin Signaling Pathway in Acute Lymphoblastic Leukemia. IJMS 2020, 21, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavai, A.V.; Quesnelle, C.; Norris, D.; Han, W.-C.; Gill, P.; Shan, W.; Balog, A.; Chen, K.; Tebben, A.; Rampulla, R.; et al. Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors. ACS Med. Chem. Lett. 2015, 6, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Fukai, F.; Miura, S.; Nakane, Y.; Owaki, T.; Kodama, H.; Tanaka, M.; Nagaya, T.; Takimoto, R.; Takayama, T.; et al. Combination Therapy of an Anticancer Drug with the FNIII14 Peptide of Fibronectin Effectively Overcomes Cell Adhesion-Mediated Drug Resistance of Acute Myelogenous Leukemia. Leukemia 2008, 22, 353–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, W.; Tang, M.; Jiang, H.; Xu, W.; Hao, W.; Sui, Y.; Hou, Y.; Nie, L.; Zhang, H.; Wang, C.; et al. Low-Density-Lipoprotein-Receptor-Related Protein 1 Mediates Notch Pathway Activation. Dev. Cell 2021, 56, 2902–2919. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, J.; Qin, S.; Zhou, Z.; Zeng, Q.; Long, R.; Mao, Z.; Dong, X.; Zhao, R.; Zhang, R.; et al. Resveratrol Induces Autophagy Impeding BAFF-Stimulated B-Cell Proliferation and Survival by Inhibiting the Akt/MTOR Pathway. Biochem. Pharmacol. 2022, 202, 115139. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, Q.; Ji, S.; Han, Z.; Cheng, W.; Zhang, H. Resveratrol-Mediated Apoptosis in Renal Cell Carcinoma via the P53/AMP-activated Protein Kinase/Mammalian Target of Rapamycin Autophagy Signaling Pathway. Mol. Med. Rep. 2018, 17, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Tian, H.; Lin, S.; Mo, J.; Li, Z.; Chen, X.; Liu, J. Resveratrol Inhibits Proliferation and Promotes Apoptosis via the Androgen Receptor Splicing Variant 7 and PI3K/AKT Signaling Pathway in LNCaP Prostate Cancer Cells. Oncol. Lett. 2020, 20, 169. [Google Scholar] [CrossRef]
- Heo, J.; Kim, S.; Hwang, K.; Kang, J.; Choi, K. Resveratrol Induced Reactive Oxygen Species and Endoplasmic Reticulum Stress-mediated Apoptosis, and Cell Cycle Arrest in the A375SM Malignant Melanoma Cell Line. Int. J. Mol. Med. 2018, 42, 1427–1435. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.-M.; Tsai, C.-W.; Chang, W.-S.; Yang, Y.-C.; Hung, Y.-W.; Lee, H.-T.; Shen, C.-C.; Sheu, M.-L.; Wang, J.-Y.; Gong, C.-L.; et al. Novel Combination of Arsenic Trioxide (As 2 O 3) Plus Resveratrol in Inducing Programmed Cell Death of Human Neuroblastoma SK-N-SH Cells. Cancer Genom. Proteom. 2018, 15, 453–460. [Google Scholar] [CrossRef]
- Chai, R.; Fu, H.; Zheng, Z.; Liu, T.; Ji, S.; Li, G. Resveratrol Inhibits Proliferation and Migration through SIRT1 Mediated Post-Translational Modification of PI3K/AKT Signaling in Hepatocellular Carcinoma Cells. Mol. Med. Rep. 2017, 16, 8037–8044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirtonia, A.; Pandya, G.; Sethi, G.; Pandey, A.K.; Das, B.C.; Garg, M. A Comprehensive Review of Genetic Alterations and Molecular Targeted Therapies for the Implementation of Personalized Medicine in Acute Myeloid Leukemia. J. Mol. Med. 2020, 98, 1069–1091. [Google Scholar] [CrossRef]
- Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of Drugs: An Attractive Pharmacological Strategy for Cancer Therapeutics. Semin. Cancer Biol. 2021, 68, 258–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Chen, Y.; Ren, F. Resveratrol Chemosensitizes Adriamycin-resistant Breast Cancer Cells by Modulating MiR-122-5p. J. Cell. Biochem. 2019, 120, 16283–16292. [Google Scholar] [CrossRef]
- Baek, S.H.; Ko, J.-H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; et al. Resveratrol Inhibits STAT3 Signaling Pathway through the Induction of SOCS-1: Role in Apoptosis Induction and Radiosensitization in Head and Neck Tumor Cells. Phytomedicine 2016, 23, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Voellger, B.; Waldt, N.; Rupa, R.; Kirches, E.; Melhem, O.; Ochel, H.-J.; Mawrin, C.; Firsching, R. Combined Effects of Resveratrol and Radiation in GH3 and TtT/GF Pituitary Adenoma Cells. J. Neurooncol. 2018, 139, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, X.; Zou, P. Resveratrol Inhibits the Secretion of Vascular Endothelial Growth Factor and Subsequent Proliferation in Human Leukemia U937 Cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2007, 27, 508–512. [Google Scholar] [CrossRef]
- Surh, Y.J.; Hurh, Y.J.; Kang, J.Y.; Lee, E.; Kong, G.; Lee, S.J. Resveratrol, an Antioxidant Present in Red Wine, Induces Apoptosis in Human Promyelocytic Leukemia (HL-60) Cells. Cancer Lett 1999, 140, 1–10. [Google Scholar] [CrossRef]
- Sui, T.; Ma, L.; Bai, X.; Li, Q.; Xu, X. Resveratrol Inhibits the Phosphatidylinositide 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin Signaling Pathway in the Human Chronic Myeloid Leukemia K562 Cell Line. Oncol. Lett. 2014, 7, 2093–2098. [Google Scholar] [CrossRef] [Green Version]
- Puissant, A.; Robert, G.; Fenouille, N.; Luciano, F.; Cassuto, J.-P.; Raynaud, S.; Auberger, P. Resveratrol Promotes Autophagic Cell Death in Chronic Myelogenous Leukemia Cells via JNK-Mediated P62/SQSTM1 Expression and AMPK Activation. Cancer Res. 2010, 70, 1042–1052. [Google Scholar] [CrossRef]
- Dörrie, J.; Gerauer, H.; Wachter, Y.; Zunino, S.J. Resveratrol Induces Extensive Apoptosis by Depolarizing Mitochondrial Membranes and Activating Caspase-9 in Acute Lymphoblastic Leukemia Cells. Cancer Res. 2001, 61, 4731–4739. [Google Scholar]
- Bernhard, D.; Tinhofer, I.; Tonko, M.; Hübl, H.; Ausserlechner, M.J.; Greil, R.; Kofler, R.; Csordas, A. Resveratrol Causes Arrest in the S-Phase Prior to Fas-Independent Apoptosis in CEM-C7H2 Acute Leukemia Cells. Cell Death Differ 2000, 7, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokbulut, A.A.; Apohan, E.; Baran, Y. Resveratrol and Quercetin-Induced Apoptosis of Human 232B4 Chronic Lymphocytic Leukemia Cells by Activation of Caspase-3 and Cell Cycle Arrest. Hematology 2013, 18, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Ferry-Dumazet, H.; Garnier, O.; Mamani-Matsuda, M.; Vercauteren, J.; Belloc, F.; Billiard, C.; Dupouy, M.; Thiolat, D.; Kolb, J.P.; Marit, G.; et al. Resveratrol Inhibits the Growth and Induces the Apoptosis of Both Normal and Leukemic Hematopoietic Cells. Carcinogenesis 2002, 23, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Vervandier-Fasseur, D.; Latruffe, N. The Potential Use of Resveratrol for Cancer Prevention. Molecules 2019, 24, 4506. [Google Scholar] [CrossRef] [Green Version]
- Hasan, Z.Y.M.; Obed, F.A.A.; Jasim, A.A.; Alwan, A.F. In Vitro Study of the Effect of Resveratrol Purified from the Skin of Iraqi Black Grape (Vitis Vinifera) on Lymphocyte Cultures Isolated from the Blood of Patients with Lymphoma. JMedLife 2022, 15, 778–783. [Google Scholar] [CrossRef]
- Al Humayed, S.; Al-Hashem, F.; Haidara, M.A.; El Karib, A.O.; Kamar, S.S.; Amin, S.N.; Al-Ani, B. Resveratrol Pretreatment Ameliorates P53-Bax Axis and Augments the Survival Biomarker B-Cell Lymphoma 2 Modulated by Paracetamol Overdose in a Rat Model of Acute Liver Injury. Pharmacology 2020, 105, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Siedlecka-Kroplewska, K.; Wozniak, M.; Kmiec, Z. The Wine Polyphenol Resveratrol Modulates Autophagy and Induces Apoptosis in MOLT-4 and HL-60 Human Leukemia Cells. J. Physiol. Pharmacol. 2019. [Google Scholar] [CrossRef]
- Talebi, M.; Bahar Aghdam, S.; Azimi, A.; Mohammadi, H.; Karimi Yonjali, S.; Asariha, M.; Zadi Heydarabad, M. Regulatory Effect of Resveratrol and Prednisolone on MDR1 Protein Expression in Acute Lymphoblastic Leukemia Cell Line (CCRF-CEM). Asian Pac. J. Cancer Prev. 2019, 20, 1171–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, C.; Piplani, H.; Vaish, V.; Nehru, B.; Sanyal, S.N. Downregulation of PI3-K/Akt/PTEN Pathway and Activation of Mitochondrial Intrinsic Apoptosis by Diclofenac and Curcumin in Colon Cancer. Mol. Cell. Biochem. 2015, 402, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Przyjemska, M.; Kaczmarek, M.; Krajka-Kuźniak, V.; Wierzchowski, M.; Baer-Dubowska, W. Effect of Methoxy Stilbenes—Analogs of Resveratrol—On the Viability and Induction of Cell Cycle Arrest and Apoptosis in Human Myeloid Leukemia Cells. Mol. Cell. Biochem. 2020, 474, 113–123. [Google Scholar] [CrossRef]
- Khanzadeh, T.; Hagh, M.F.; Talebi, M.; Yousefi, B.; Azimi, A.; Hossein pour feizi, A.A.; Baradaran, B. Investigation of BAX and BCL2 Expression and Apoptosis in a Resveratrol- and Prednisolone-Treated Human T-ALL Cell Line, CCRF-CEM. Blood Res. 2018, 53, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Liu, Z.; Chen, J.; Yi, J.; Cheng, J.; Dun, W.; Wei, H. Resveratrol Induces Autophagic Apoptosis via the Lysosomal Cathepsin D Pathway in Human Drug-resistant K562/ADM Leukemia Cells. Exp. Med. 2018, 15, 3012–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of Three Wine-Related Polyphenols in Three Different Matrices by Healthy Subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.R.; Brown, V.A.; Jones, D.J.L.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; et al. Clinical Pharmacology of Resveratrol and Its Metabolites in Colorectal Cancer Patients. Cancer Res. 2010, 70, 7392–7399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, J.; Park, E.-J.; Kondratyuk, T.P.; Marler, L.; Pezzuto, J.M.; van Breemen, R.B.; Mo, S.; Li, Y.; Cushman, M. Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites. J. Med. Chem. 2010, 53, 5033–5043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calamini, B.; Ratia, K.; Malkowski, M.G.; Cuendet, M.; Pezzuto, J.M.; Santarsiero, B.D.; Mesecar, A.D. Pleiotropic Mechanisms Facilitated by Resveratrol and Its Metabolites. Biochem. J. 2010, 429, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Delmas, D.; Aires, V.; Limagne, E.; Dutartre, P.; Mazué, F.; Ghiringhelli, F.; Latruffe, N. Transport, Stability, and Biological Activity of Resveratrol: Biophysical/Biological Properties of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Franciosoa, A.; Mastromarino, P.; Masci, A.; d’Erme, M.; Mosca, L. Chemistry, Stability and Bioavailability of Resveratrol. Med. Chem. 2014, 10, 237–245. [Google Scholar] [CrossRef]
- Jiang, Y.L. Design, Synthesis and Spectroscopic Studies of Resveratrol Aliphatic Acid Ligands of Human Serum Albumin. Bioorganic Med. Chem. 2008, 16, 6406–6414. [Google Scholar] [CrossRef] [PubMed]
- Annaji, M.; Poudel, I.; Boddu, S.H.S.; Arnold, R.D.; Tiwari, A.K.; Babu, R.J. Resveratrol-loaded Nanomedicines for Cancer Applications. Cancer Rep. 2021, 4, e1353. [Google Scholar] [CrossRef]
- Sessa, M.; Balestrieri, M.L.; Ferrari, G.; Servillo, L.; Castaldo, D.; D’Onofrio, N.; Donsì, F.; Tsao, R. Bioavailability of Encapsulated Resveratrol into Nanoemulsion-Based Delivery Systems. Food Chem. 2014, 147, 42–50. [Google Scholar] [CrossRef]
- Saleem, Z.; Rehman, K.; Hamid Akash, M.S. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr. Pharm. Des. 2022, 28, 1632–1642. [Google Scholar] [CrossRef]
- Kobylka, P.; Kucinska, M.; Kujawski, J.; Lazewski, D.; Wierzchowski, M.; Murias, M. Resveratrol Analogues as Selective Estrogen Signaling Pathway Modulators: Structure–Activity Relationship. Molecules 2022, 27, 6973. [Google Scholar] [CrossRef] [PubMed]
- Lizard, G.; Latruffe, N.; Vervandier-Fasseur, D. Aza- and Azo-Stilbenes: Bio-Isosteric Analogs of Resveratrol. Molecules 2020, 25, 605. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.Y.; Damodar, K.; Lee, Y.; Park, L.S.; Gim, J.G.; Park, J.P.; Jeon, S.H.; Lee, J.T. Design and Synthesis of π-Extended Resveratrol Analogues and In Vitro Antioxidant and Anti-Inflammatory Activity Evaluation. Molecules 2021, 26, 646. [Google Scholar] [CrossRef]
- Ferraz da Costa, D.C.; Pereira Rangel, L.; Martins-Dinis, M.M.D. da C.; Ferretti, G.D. da S.; Ferreira, V.F.; Silva, J.L. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020, 25, 893. [Google Scholar] [CrossRef] [Green Version]
- Carradori, S.; Fantacuzzi, M.; Ammazzalorso, A.; Angeli, A.; De Filippis, B.; Galati, S.; Petzer, A.; Petzer, J.P.; Poli, G.; Tuccinardi, T.; et al. Resveratrol Analogues as Dual Inhibitors of Monoamine Oxidase B and Carbonic Anhydrase VII: A New Multi-Target Combination for Neurodegenerative Diseases? Molecules 2022, 27, 7816. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, N.; Đanić, M.; Stanimirov, B.; Goločorbin-Kon, S.; Stankov, K.; Lalić-Popović, M.; Mikov, M. In Silico Discovery of Resveratrol Analogues as Potential Agents in Treatment of Metabolic Disorders. Curr. Pharm. Des. 2019, 25, 3776–3783. [Google Scholar] [CrossRef]
- Antinarelli, L.M.R.; Meinel, R.S.; Coelho, E.A.F.; da Silva, A.D.; Coimbra, E.S. Resveratrol Analogues Present Effective Antileishmanial Activity against Promastigotes and Amastigotes from Distinct Leishmania Species by Multitarget Action in the Parasites. J. Pharm. Pharmacol. 2019, 71, 1854–1863. [Google Scholar] [CrossRef]
- Wang, P.; Sang, S. Metabolism and Pharmacokinetics of Resveratrol and Pterostilbene: Resveratrol and Pterostilbene. BioFactors 2018, 44, 16–25. [Google Scholar] [CrossRef]
- Brill, S.S.; Furimsky, A.M.; Ho, M.N.; Furniss, M.J.; Li, Y.; Green, A.G.; Bradford, W.W.; Green, C.E.; Kapetanovic, I.M.; Iyer, L. V Glucuronidation of Trans-Resveratrol by Human Liver and Intestinal Microsomes and UGT Isoforms. J. Pharm. Pharmacol. 2006, 58, 469–479. [Google Scholar] [CrossRef]
- Aumont, V.; Krisa, S.; Battaglia, E.; Netter, P.; Richard, T.; Mérillon, J.M.; Magdalou, J.; Sabolovic, N. Regioselective and Stereospecific Glucuronidation of Trans- and Cis-Resveratrol in Human. Arch. Biochem. Biophys. 2001, 393, 281–289. [Google Scholar] [CrossRef]
- Miksits, M.; Maier-Salamon, A.; Aust, S.; Thalhammer, T.; Reznicek, G.; Kunert, O.; Haslinger, E.; Szekeres, T.; Jaeger, W. Sulfation of Resveratrol in Human Liver: Evidence of a Major Role for the Sulfotransferases SULT1A1 and SULT1E1. Xenobiotica Fate Foreign Compd. Biol. Syst. 2005, 35, 1101–1119. [Google Scholar] [CrossRef]
- Furimsky, A.M.; Green, C.E.; Sharp, L.E.H.; Catz, P.; Adjei, A.A.; Parman, T.; Kapetanovic, I.M.; Weinshilboum, R.M.; Iyer, L. V Effect of Resveratrol on 17beta-Estradiol Sulfation by Human Hepatic and Jejunal S9 and Recombinant Sulfotransferase 1E1. Drug Metab. Dispos. Biol. Fate Chem. 2008, 36, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, L. Influence of Resveratrol on the Immune Response. Nutrients 2019, 11, 946. [Google Scholar] [CrossRef] [Green Version]
- Schwager, J.; Richard, N.; Widmer, F.; Raederstorff, D. Resveratrol Distinctively Modulates the Inflammatory Profiles of Immune and Endothelial Cells. BMC Complement. Altern. Med. 2017, 17, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, G.A.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [Green Version]
- Youn, H.S.; Lee, J.Y.; Fitzgerald, K.A.; Young, H.A.; Akira, S.; Hwang, D.H. Specific Inhibition of MyD88-Independent Signaling Pathways of TLR3 and TLR4 by Resveratrol: Molecular Targets Are TBK1 and RIP1 in TRIF Complex. J. Immunol. 2005, 175, 3339–3346. [Google Scholar] [CrossRef] [Green Version]
- Jhou, J.P.; Chen, S.J.; Huang, H.Y.; Lin, W.W.; Huang, D.Y.; Tzeng, S.J. Upregulation of FcγRIIB by Resveratrol via NF-ΚB Activation Reduces B-Cell Numbers and Ameliorates Lupus. Exp. Mol. Med. 2017, 49, e381. [Google Scholar] [CrossRef]
- Lee-Chang, C.; Bodogai, M.; Martin-Montalvo, A.; Wejksza, K.; Sanghvi, M.; Moaddel, R.; de Cabo, R.; Biragyn, A. Inhibition of Breast Cancer Metastasis by Resveratrol-Mediated Inactivation of Tumor-Evoked Regulatory B Cells. J. Immunol. 2013, 191, 4141–4151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Guo, Q.; Qu, Y.; Li, Y.; Liu, H.; Liu, L.; Zhang, Y.; Jiang, Y.; Wang, Q. Solubility and Physicochemical Properties of Resveratrol in Peanut Oil. Food Chem. 2022, 368, 130687. [Google Scholar] [CrossRef]
- Kumar, A.; Kurmi, B.D.; Singh, A.; Singh, D. Potential Role of Resveratrol and Its Nano-Formulation as Anti-Cancer Agent. Explor. Target. Anti-Tumor Ther. 2022, 3, 643–658. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhang, Q.; Luo, M.; Lu, F.; He, Z.; Jiang, Q.; Zhang, T. Dual Strategy for Improving the Oral Bioavailability of Resveratrol: Enhancing Water Solubility and Inhibiting Glucuronidation. J. Agric. Food Chem. 2021, 69, 9249–9258. [Google Scholar] [CrossRef]
- Chung, J.H.; Lee, J.-S.; Lee, H.G. Resveratrol-Loaded Chitosan–γ-Poly(Glutamic Acid) Nanoparticles: Optimization, Solubility, UV Stability, and Cellular Antioxidant Activity. Colloids Surf. B Biointerfaces 2020, 186, 110702. [Google Scholar] [CrossRef]
- Yi, J.; He, Q.; Peng, G.; Fan, Y. Improved Water Solubility, Chemical Stability, Antioxidant and Anticancer Activity of Resveratrol via Nanoencapsulation with Pea Protein Nanofibrils. Food Chem. 2022, 377, 131942. [Google Scholar] [CrossRef] [PubMed]
- Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; López-Nicolás, J.M.; Trotta, F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019, 11, 545. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Hu, S.C.-S.; Huang, P.-H.; Lin, T.-C.; Yen, F.-L. Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Agarwal, S.; Bhuyan, P.; Hazarika, J.; Ganguly, M. Resveratrol-Loaded Chitosan–Pectin Core–Shell Nanoparticles as Novel Drug Delivery Vehicle for Sustained Release and Improved Antioxidant Activities. R. Soc. Open Sci. 2022, 9, 210784. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, C.; Bueno, M.S.; Ponte, M.P.; Paredes, A.; Palma, S.D.; Longhi, M. Development of Solid Self-Emulsifying Drug Delivery Systems (SEDDS) to Improve the Solubility of Resveratrol. Ther. Deliv. 2019, 10, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Spogli, R.; Bastianini, M.; Ragonese, F.; Iannitti, R.; Monarca, L.; Bastioli, F.; Nakashidze, I.; Brecchia, G.; Menchetti, L.; Codini, M.; et al. Solid Dispersion of Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Microparticles Improves Oral Bioavailability. Nutrients 2018, 10, 1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, L.; Zhang, Z.; Guo, L.; Dong, H.; Yu, J.; Zhang, G. Gefitinib-Resveratrol Cocrystal with Optimized Performance in Dissolution and Stability. J. Pharm. Sci. 2022, 111, 3224–3231. [Google Scholar] [CrossRef]
- Ioniţă, S.; Lincu, D.; Mitran, R.-A.; Ziko, L.; Sedky, N.K.; Deaconu, M.; Brezoiu, A.-M.; Matei, C.; Berger, D. Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers. Pharmaceutics 2022, 14, 203. [Google Scholar] [CrossRef] [PubMed]
- Kanas, G.; Ge, W.; Quek, R.G.W.; Keeven, K.; Nersesyan, K.; Jon, E. Arnason Epidemiology of Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL) in the United States and Western Europe: Population-Level Projections for 2020–2025. Leuk. Lymphoma 2022, 63, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Din, L.; Sheikh, M.; Kosaraju, N.; Smedby, K.E.; Bernatsky, S.; Berndt, S.I.; Skibola, C.F.; Nieters, A.; Wang, S.; McKay, J.D.; et al. Genetic Overlap between Autoimmune Diseases and Non-Hodgkin Lymphoma Subtypes. Genet. Epidemiol. 2019, 43, 844–863. [Google Scholar] [CrossRef]
- Chang, E.T.; Smedby, K.E.; Hjalgrim, H.; Porwit-MacDonald, A.; Roos, G.; Glimelius, B.; Adami, H.-O. Family History of Hematopoietic Malignancy and Risk of Lymphoma. JNCI J. Natl. Cancer Inst. 2005, 97, 1466–1474. [Google Scholar] [CrossRef]
Agents Used | Animal Model/Cell Line/Samples Used, and Study Type | Dose and Duration of the Study | Molecular Mechanisms | Conclusion | Reference |
---|---|---|---|---|---|
Resveratrol isolated from black grape skin (Vitis vinifera) | Blood samples from patients with Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) | Lowest dose of 50 µg/mL, ranging up to 1000 µg/mL | Lowering of inflammatory markers, such as TNF-α and IL-10 at low doses, inverse relation on increasing of dosage | Potential for usage as an anti-cancer agent, in patients suffering from lymphomas | [47] |
Resveratrol pre-treatment followed by Paracetamol (PCM) dosage | Male Wistar rat model, with 6 rats in the focus group (pre-treatment+ PCM therapy) | Resveratrol (30 mg/kg, i.p.), for a week, followed by Paracetamol (2 g/kg, orally) | Controlled expression of B-cell lymphoma 2 (Bcl-2) in the rat model | Reduction in inflammation, triggering of apoptosis, exertion of protection by resveratrol in a model of acute liver injury, indicating applications in a variety of conditions involving impaired Bcl-2 expression, such as lymphomas | [48] |
Resveratrol in varying concentrations | Treatment of MOLT-4 and HL-60 cell lines | For MOLT-4 cell line: 41 μM, up to 48 h; for HL-60 cell line: 43 μM, up to 72 h | Reduction of cellular viability, modulation of cell cycle as well as levels of key proteins associated with autophagy, triggering of apoptosis by caspase-3 activation | Resveratrol may be employed to control tumor growth, by triggering apoptosis and autophagy. It demonstrates a satisfactory safety and solubility profile, indicating wider usage for leukemia management, following a greater number of clinical studies | [49] |
Resveratrol+ Prednisolone | CCRF-CEM cells (human leukemia cell line) | Varying doses of 15, 50, 100 μM of resveratrol, followed by 700 μM of prednisolone | Reduced expression of multidrug protection quality 1 (MDR-1), thereby exerting cellular protection | Based on the outcome of the study, resveratrol was observed to exert a cytoprotective effect, as well as lowering the incidence of drug resistance brought about by MDR-1, indicating potential in lymphoblastic leukemia management | [50] |
Resveratrol | Human normal peripheral blood PBMC cells, and human acute promyelocytic leukemia (APL) cell line, NB-4 and HL-60 cell lines | Varying concentrations of resveratrol (0, 5, 10 and 20 μM) | Improved activity of caspase-3, induction of apoptosis, lowered expression of p-AKT | By modulating the PI3K/AKT pathway, resveratrol exerted an anti-cancer action, indicating a scope for anti-leukemic applications in clinical settings | [51] |
Methoxy-analogues of resveratrol | Human promyelocytic (HL-60) and monocytic leukemia (THP-1) cell lines | Varying concentrations of resveratrol (1–200 μM), treatment for 24 h | Greater cytotoxic potential of the analogues as compared to unmodified resveratrol, greater rate of apoptosis through upregulation of proteins such as Bax | Methoxy derivatives of resveratrol may be employed to bring about cell cycle arrest and apoptosis in leukemic cells, showing a promising potential for application | [52] |
Resveratrol, in combination with prednisolone | CCRF-CEM cell line | Varying concentrations of resveratrol (15, 50 and 100 µM), along with prednisolone (700 µM), analysis up to 48 h following treatment | Improvement in the action of glucocorticoids such as prednisolone, induction of apoptosis by upregulation of proapoptotic proteins and downregulation of proteins like Bcl2, responsible for inhibition of apoptosis | Resveratrol may be employed in the management of leukemic conditions, in conjunction with synthetic agents, in order to improve therapeutic outcomes | [53] |
Resveratrol | K562/ADM cell line | Concentrations ranging from 0–80 μmol/L, treated up to 72 h | Induction of cellular autophagy, reduced expression of Bcl-2, increased activity of caspase-3 | Resveratrol was observed to reduce the viability of cancer cells, through the triggering of an apoptotic cascade. It exerted a cytoprotective action on healthy cells, thereby indicating potential for usage in the management of leukemia | [54] |
Nanoformulations | Chemical Composition | Key Benefits Offered | Reference |
---|---|---|---|
Resveratrol loaded nanoparticles (NPs) | Chitosan and γ-poly(glutamic acid) (γ-PGA) | Improved UV stability, enhanced solubility and antioxidant property | [88] |
Nanocomplexation of resveratrol with nanofibrils | Fabricated pea protein isolate (PPI) nanofibrils+ resveratrol | Significantly improved solubility, greater surface area for drug incorporation, greater antioxidant potential even at low doses | [89] |
Resveratrol loaded onto nanosponges | Combination of resveratrol and oxyresveratrol | Improved UV stability, solubility as well as antioxidant effect, as well as a satisfactory toxicity profile | [90] |
Resveratrol nanofibers | Loading of the drug onto polyvinylpyrrolidone/cyclodextrin nanofibers, prepared by electrospinning | Better solubility profile, satisfactory extent of penetration as well as improved antioxidant activity | [91] |
Resveratrol nanoparticles | Loading of the drug onto a chitosan-pectin core | Provision of sustained drug delivery, improved activity, easy modulation of release by variation of parameters | [92] |
Self-emulsifying drug delivery system (SEDDS) of resveratrol | Usage of cod liver oil, as well as surfactant systems such as sodium oleate, Tween 80, alongside colloidal carriers | Decreased cohesive force, resulting in improved oral bioavailability | [93] |
Resveratrol Microparticles | Usage of magnesium dihydorixde as a supporting base | Improvement of solubility and subsequently bioavailability | [94] |
Resveratrol + Gefitinib cocrystals | Combination of resveratrol with a synthetic chemotherapeutic agent | Improved stability as well as solubility, indicating potential for increased clinical usage | [95] |
Resveratrol encapsulated with silica carriers | Encapsulation of the drug alongside functional silica carriers, matrix-type drug release | Maintenance of cytotoxic properties, improvement of solubility profile | [96] |
Composition | Product | Dose | Indication and Key benefits |
---|---|---|---|
Resveratrol red wine extract capsules | 21st century resveratrol red wine extract- Dietary supplement | 200 mg red wine complex+ Ascorbic acid (60 mg), Once a day | Reduction of oxidative stress, improvement of immune system functioning, reduction in inflammation |
Trans-Resveratrol, sourced from Polygonum cuspidatum root | Doctor’s best High potency Trans-resveratrol capsules | 600 mg resveratrol, one vegetable gelatin capsules a day | Lowered oxidative damage, protection of cells from reactive oxygen species (ROS) and free-radical damage, potential to cross the blood-brain barrier (BBB) |
Resveratrol, in addition to Omega-3 fatty acids, Zinc, Chromium and Selenium | Resvita Capsules, Aristo pharmaceuticals Pvt Ltd. | 5 mg resveratrol, one capsule a day | Antioxidant potential, reduction of inflammation, triggering of cellular apoptosis |
Resveratrol+ Nicotinamide mononucleotide (NMN) | Lifespan supplements- Nutraceutical capsules | 300 mg resveratrol, once a day | Improved vascular functioning, enhancement of DNA repair, elevated mitochondrial functioning, improvement in NAD+ levels |
Trans-resveratrol+ Ascorbic acid (Vitamin C) | Youtheory resveratrol tablets | 250 mg resveratrol, up to 4 tablets per day | Improved bioavailability, protection against oxidative stress, neutralization of free radicals |
Trans resveratrol (sourced from Polygonum cuspidatum root)+ Piper nigrum extract | Trans resveratrol-500 mg-30 Vcaps® Plus- Aarogya 360+ | 500 mg Trans-resveratrol, 1 capsule twice a day | Mitochondrial biogenesis, antioxidant properties, cardio and neuroprotective effects |
Resveratrol (sourced from Polygonum cuspidatum root) | Extra strength resveratrol capsules, NOW foods | 350 mg resveratrol | Improved response to biological stress, free radical scavenging, supporting of cellular health |
Resveratrol | Resveratrol Defense Quick release capsules-Piping Rock (n = 180) | 100 mg resveratrol, 1 capsule up to 4 times daily | Improved release profile, improved cellular functioning, reduction in oxidative stress, reduced inflammation |
Bioactivated Resveratrol- Red grape extract | Red grape antioxidant bioactivated resveratrol capsules- Nature’s goodness (n = 60) | 500 mg resveratrol, 1 capsule a day | Lowered oxidative stress, enhancement of cellular functioning, lowering of inflammatory markers |
Resveratrol | Resveratrol Complex Capsules- Swanson (n = 60) | 100 mg resveratrol, 1 capsule a day | Protection from free radicals, cellular longevity, promotion of overall health |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, D.S.; Gadi, V.; Kaur, G.; Chintamaneni, M.; Tuli, H.S.; Ramniwas, S.; Sethi, G. Resveratrol and Its Role in the Management of B-Cell Malignancies—A Recent Update. Biomedicines 2023, 11, 221. https://doi.org/10.3390/biomedicines11010221
Gupta DS, Gadi V, Kaur G, Chintamaneni M, Tuli HS, Ramniwas S, Sethi G. Resveratrol and Its Role in the Management of B-Cell Malignancies—A Recent Update. Biomedicines. 2023; 11(1):221. https://doi.org/10.3390/biomedicines11010221
Chicago/Turabian StyleGupta, Dhruv Sanjay, Vaishnavi Gadi, Ginpreet Kaur, Meena Chintamaneni, Hardeep Singh Tuli, Seema Ramniwas, and Gautam Sethi. 2023. "Resveratrol and Its Role in the Management of B-Cell Malignancies—A Recent Update" Biomedicines 11, no. 1: 221. https://doi.org/10.3390/biomedicines11010221
APA StyleGupta, D. S., Gadi, V., Kaur, G., Chintamaneni, M., Tuli, H. S., Ramniwas, S., & Sethi, G. (2023). Resveratrol and Its Role in the Management of B-Cell Malignancies—A Recent Update. Biomedicines, 11(1), 221. https://doi.org/10.3390/biomedicines11010221