Brain-Derived Neurotrophic Factor (BDNF) as an Indicator for Effects of Cognitive Behavioral Therapy (CBT): A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acheson, A.; Conover, J.C.; Fandl, J.P.; DeChiara, T.M.; Russell, M.; Thadani, A.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374, 450–453. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. NEUROTROPHINS: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [Green Version]
- Pencea, V.; Bingaman, K.D.; Wiegand, S.J.; Luskin, M.B. Infusion of Brain-Derived Neurotrophic Factor into the Lateral Ventricle of the Adult Rat Leads to New Neurons in the Parenchyma of the Striatum, Septum, Thalamus, and Hypothalamus. J. Neurosci. 2001, 21, 6706–6717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezawas, L.; Verchinski, B.A.; Mattay, V.S.; Callicott, J.H.; Kolachana, B.S.; Straub, R.E.; Egan, M.F.; Meyer-Lindenberg, A.; Weinberger, D.R. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J. Neurosci. 2004, 24, 10099–10102. [Google Scholar] [CrossRef] [Green Version]
- Nibuya, M.; Morinobu, S.; Duman, R.S. Regulation of BDNF and trkB mRNA in Rat Brain by Chronic Electroconvulsive Seizure and Antidepressant Drug Treatments. J. Neurosci. 1995, 75, 7539–7547. [Google Scholar] [CrossRef] [PubMed]
- Libman-Sokołowska, M.; Drozdowicz, E.; Nasierowski, T. BDNF as a biomarker in the course and treatment of schizophrenia. Psychiatr Pol. 2015, 49, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef] [Green Version]
- Soloey-Nilsen, H.; Nygaard-Odeh, K.; Kristiansen, M.G.; Brekke, O.L.; Mollnes, T.E.; Reitan, S.K.; Oiesvold, T. Association between brain-derived neurotropic factor (BDNF), high-sensitivity C-reactive protein (hs-CRP) and psychiatric symptoms in medicated and unmedicated patients. BMC Psychiatry 2022, 22, 84. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef]
- Peng, S.; Li, W.; Lv, L.; Zhang, Z.; Zhan, X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov. Med. 2018, 26, 127–136. [Google Scholar]
- Ritchey, M.; Dolcos, F.; Eddington, K.M.; Strauman, T.J.; Cabeza, R. Neural correlates of emotional processing in depression: Changes with cognitive behavioral therapy and predictors of treatment response. J. Psychiatr. Res. 2011, 45, 577–587. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Vinogradov, S.; Fisher, M.; Holland, C.; Shelly, W.; Wolkowitz, O.; Mellon, S.H. Is Serum Brain-Derived Neurotrophic Factor a Biomarker for Cognitive Enhancement in Schizophrenia? Biol. Psychiatry 2009, 66, 549–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, M.; Mellon, S.H.; Wolkowitz, O.; Vinogradov, S. Neuroscience-informed auditory training in schizophrenia: A final report of the effects on cognition and serum brain-derived neurotrophic factor. Schizophr. Res. Cogn. 2016, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.H.; Na, H.R.; Choi, S.H.; Kim, J.; Na, D.L.; Seo, S.W.; Chin, J.; Park, S.A.; Kim, E.-J.; Han, H.J.; et al. Group- and Home-Based Cognitive Intervention for Patients with Mild Cognitive Impairment: A Randomized Controlled Trial. Psychother Psychosom 2016, 85, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Penadés, R.; Lopez-Vilchez, I.; Catalan, R.; Arias, B.; Gonzales-Rodrigues, B.; Garcia-Rizo, C.; Masana, G.; Ruiz, V.; Mezquida, G.; Bernardo, M. BDNF as a marker of response to cognitive remediation in patients with schizophrenia: A randomized con-trolled trial. Schizophr. Res. 2018, 197, 458–464. [Google Scholar] [CrossRef]
- Nery, S.F.; Paiva, S.P.C.; Vieira, E.L.; Barbosa, A.B.; Sant’Anna, E.M.; Casalechi, M.; Dela Cruz, C.; Teixeira, A.L.; Reis, F.M. Mindfulness-based program for stress reduction in infertile women: Randomized controlled trial. Stress Health 2018, 35, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledreux, A.; Hakansson, K.; Carlsson, R.; Kidane, M.; Columbo, L.; Terjestam, Y.; Ryan, E.; Tusch, E.; Winblad, B.; Winblad, B.; et al. Differential Effects of Physical Exercise, Cognitive Training, and Mindfulness Practice on Serum BDNF Levels in Healthy Older Adults: A Randomized Controlled Intervention Study. J. Alzheimer’s Dis. 2019, 71, 1245–1261. [Google Scholar] [CrossRef]
- Bruijniks, S.J.E.; van Grotheest, G.; Cuijpers, P.; de Kluiver, H.; Vinkers, C.H.; Peeters, F.; Penninx, B.; Teunissen, C.E.; Huibers, M.J.H. Working memory moderates the relation between the brain-derived neurotrophic factor (BDNF) and psychotherapy outcome for depression. J. Psychiatr. Res. 2020, 130, 424–432. [Google Scholar] [CrossRef]
- Viol, K.; Schiepek, G.; Kronbichler, M.; Hartl, A.; Grafetstätter, C.; Strasser, P.; Kastinger, A.; Schöller, H.; Reiter, E.-M.; Said-Yürekli, S.; et al. Multi-level assessment of obsessive-compulsive disorder (OCD) reveals relations between neural and neurochemical levels. BMC Psychiatry 2020, 20, 559. [Google Scholar] [CrossRef] [PubMed]
- Liou, K.T.; Garland, S.N.; Li, Q.S.; Sadeghi, K.; Green, J.; Autuori, I.; Orlow, I.; Mao, J.J. Effects of Acupuncture versus Cognitive Behavioral Therapy on Brain-Derived Neurotrophic Factor in Cancer Survivors with Insomnia: An Exploratory Analysis. Acupunct. Med. 2021, 39, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, R.; Markiewicz-Gospodarek, A.; Dobrowolska, B.; Łoza, B. Improving Clinical, Cognitive, and Psychosocial Dysfunctions in Patients with Schizophrenia: A Neurofeedback Randomized Controlled Trial. Neural Plast. 2021, 2001, 4488664. [Google Scholar] [CrossRef] [PubMed]
- Savard, M.H.; Savard, J.; Simard, S.; Ivers, H. Empirical validation of the Insomnia Severity Index in cancer patients. Psycho-Oncol. J. Psychol. Soc. Behav. Dimens. Cancer 2005, 14, 429–441. [Google Scholar] [CrossRef]
- Carney, C.E.; Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Krystal, A.D.; Lichstein, K.L.; Morin, C.M. The consensus sleep diary: Standardizing prospective sleep self-monitoring. Sleep 2012, 35, 287–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begliuomini, S.; Casarosa, E.; Pluchino, N.; Lenzi, E.; Centofanti, M.; Freschi, L.; Pieri, M.; Genazzani, A.D.; Luisi, S.; Genazzani, A.R. Influence of endogenous and exogenous sex hormones on plasma brain-derived neurotrophic factor. Hum. Reprod. 2007, 22, 995–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tikhonova, M.A.; Zhanaeva, S.Y.; Shavikovskaya, A.A.; Olkov, N.M.; Aftanas, L.I.; Danilenko, K.V. Neurotrophic Molecules Measured in Periphery in Humans: How Do They Correlate with the Brain Levels? A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9193. [Google Scholar] [CrossRef]
Study | Selection | Comparability | Outcome | ||||
---|---|---|---|---|---|---|---|
Case Definition | Representativeness of the Cases | Selection of Controls | Definition of Controls | Ascertainment of Exposure | Non-Response Rate | ||
Vinogradov et al., 2009 [14] | * | * | ** | * | |||
Fisher et al., 2016 [15] | * | * | * | * | * | ||
Jeong et al., 2016 [16] | * | * | * | * | * | * | |
Penades et al., 2017 [17] | * | * | ** | * | * | ||
Nery et al., 2018 [18] | * | * | * | * | |||
Ledreux et al., 2019 [19] | * | * | ** | * | |||
Bruijniks et al., 2020 [20] | * | * | |||||
Viol et al., 2020 [21] | * | * | |||||
Liou et al., 2021 [22] | * | * | * | * | |||
Markiewicz et al., 2021 [23] | * | * | * |
Study | Year of Study | Patient Group | Duration of Study (Weeks) | Disorder | Therapy | Results | Effect on BDNF (- no Effect, + Effect Observed) |
---|---|---|---|---|---|---|---|
Vinogradov et al. [14] | 2009 | n = 72 | 10 | Schizophrenia | Computerized auditory training | The BDNF level increased after 2 weeks of training and matched the level in healthy adults after 10 weeks. Control group-no effect. No correlation between BDNF increase and improved cognition immediately after the intervention. | + |
Fisher et al. [15] | 2016 | n = 88 | 10 | Schizophrenia | Computerized cognitive training | Significant increase in BDNF levels during the procedure and levels similar to healthy adults after completed training; however not connected to the cognitive improvement. | + |
Jeong et al. [16] | 2016 | n = 293 | 12 | Amnestic mild cognitive impairment | Group-based cognitive intervention, home-based cognitive intervention | The level of serum BDNF in patients undergoing the procedures increased significantly. The BDNF level correlated with improvement of cognitive functions. | + |
Penades et al. [17] | 2017 | n = 70 | 4 months | Schizophrenia | Cognitive remediation treatment | No significant differences between the CRT group and controls, no significant differences from the pre-treatment BDNF levels, despite improvements in cognitive functions and quality of life; different responses depending on BDNF genetic variants (however, the effects are still insignificant). | - |
Nery et al. [18] | 2018 | n = 99 | 8 | Stress in infertile women | Mindfulness-based program | The BDNF levels did not change significantly neither in the control group nor in the group undergoing the intervention, although the perceived stress and quality of life improved. | - |
Ledreux et al. [19] | 2019 | n = 146 | 5 | Cognitive impairment in healthy elders | Cognitive training/mindfulness practice | Cognitive training significantly increased BDNF levels, no effect of mindfulness training on BDNF levels. | +/- |
Bruijniks et al. [20] | 2020 | n = 138 | 16–24 | Major Depressive Disorder (MDD) | CBT | No significant change in BDNF levels post-treatment. | - |
Viol et al. [21] | 2020 | n = 34 | 86 days | Obsessive-compulsive disorder (OCD) | CBT, mentalization/mindfulness training, DBT | The BDNF levels increased, but the change was non-significant. | - |
Liou et al. [22] | 2021 | n = 160 | 8 | Insomnia in cancer survivors | CBT | The BDNF did not increase significantly even after controlling the baseline levels. | - |
Markiewicz et al. [23] | 2021 | n = 44 | 3 months | Schizophrenia | Neurofeedback (NF) | The BDNF levels increased significantly in patients after the NF procedure. | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosiołek, A.; Pietrzak, M.; Tabisz, M.; Wojtaszek, W.; Zabielska, M.; Ostrowska, A.; Szwed, P.; Mosiołek, J.; Szulc, A. Brain-Derived Neurotrophic Factor (BDNF) as an Indicator for Effects of Cognitive Behavioral Therapy (CBT): A Systematic Review. Biomedicines 2023, 11, 27. https://doi.org/10.3390/biomedicines11010027
Mosiołek A, Pietrzak M, Tabisz M, Wojtaszek W, Zabielska M, Ostrowska A, Szwed P, Mosiołek J, Szulc A. Brain-Derived Neurotrophic Factor (BDNF) as an Indicator for Effects of Cognitive Behavioral Therapy (CBT): A Systematic Review. Biomedicines. 2023; 11(1):27. https://doi.org/10.3390/biomedicines11010027
Chicago/Turabian StyleMosiołek, Anna, Magdalena Pietrzak, Maria Tabisz, Wiktoria Wojtaszek, Michalina Zabielska, Agnieszka Ostrowska, Paweł Szwed, Jadwiga Mosiołek, and Agata Szulc. 2023. "Brain-Derived Neurotrophic Factor (BDNF) as an Indicator for Effects of Cognitive Behavioral Therapy (CBT): A Systematic Review" Biomedicines 11, no. 1: 27. https://doi.org/10.3390/biomedicines11010027
APA StyleMosiołek, A., Pietrzak, M., Tabisz, M., Wojtaszek, W., Zabielska, M., Ostrowska, A., Szwed, P., Mosiołek, J., & Szulc, A. (2023). Brain-Derived Neurotrophic Factor (BDNF) as an Indicator for Effects of Cognitive Behavioral Therapy (CBT): A Systematic Review. Biomedicines, 11(1), 27. https://doi.org/10.3390/biomedicines11010027