Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Reagents
2.2. Cell Viability and Spheroid Culture
2.3. Real Time Quantitative RT-PCR (qPCR)
2.4. RNA Sequencing and Data Analysis
2.5. Caspase 3/7 Assay
2.6. Cholesterol/Cholesterol Ester-Glo™ Assay
2.7. Migration Assay
2.8. Counting of Patient-Derived Circulating Tumor Cells (CTCs)
2.9. Statistics
3. Results
3.1. Differential Effects of 3 Different Hydrophilic and Lipophilic Statins with or without Enzalutamide on Prostate Cancer Cells
3.2. Differential Effects of Statins on the Expression of HMGCR
3.3. Long-Term Effects of Simvastatin
3.4. Reduced Number of Circulating Tumor Cells and Reduced Alkaline Phosphatase in mPCa Patients Taking Statins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, C.K.; Check, D.P.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Ferlay, J.; Bray, F.; Cook, M.B.; Devesa, S.S. Prostate cancer incidence in 43 populations worldwide: An analysis of time trends overall and by age group. Int. J. Cancer 2016, 138, 1388–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidegger, I.; Heidenreich, A.; Pfister, D. New Biomarkers for Selecting the Best Therapy Regimens in Metastatic Castration-Resistant Prostate Cancer. Target Oncol. 2017, 12, 37–45. [Google Scholar] [CrossRef]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bluemn, E.G.; Nelson, P.S. The androgen/androgen receptor axis in prostate cancer. Curr. Opin. Oncol. 2012, 24, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafka, M.; Eder, I.E.; Klocker, H.; Heidegger, I. Emerging promising biomarkers for treatment decision in metastatic castration-resistant prostate cancer. Urol. Oncol. 2020, 38, 801–815. [Google Scholar] [CrossRef]
- Hamilton, R.J.; Goldberg, K.C.; Platz, E.A.; Freedland, S.J. The Influence of Statin Medications on Prostate-specific Antigen Levels. J. Natl. Cancer Inst. 2008, 100, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Pon, D.; Abe, A.; Gupta, E.K. A Review of Statin Use and Prostate Cancer. Curr. Atheroscler. Rep. 2014, 17, 474. [Google Scholar] [CrossRef]
- Platz, E.A.; Leitzmann, M.F.; Visvanathan, K.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E. Statin Drugs and Risk of Advanced Prostate Cancer. J. Natl. Cancer Inst. 2006, 98, 1819–1825. [Google Scholar] [CrossRef]
- Flick, E.D.; Habel, L.A.; Chan, K.A.; Van den Eeden, S.K.; Quinn, V.P.; Haque, R.; Orav, E.J.; Seeger, J.D.; Sadler, M.C.; Quesenberry, C.P., Jr.; et al. Statin Use and Risk of Prostate Cancer in the California Men’s Health Study Cohort. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2218–2225. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, E.J.; Rodriguez, C.; Bain, E.B.; Wang, Y.; Thun, M.J.; Calle, E.E. Cholesterol-Lowering Drugs and Advanced Prostate Cancer Incidence in a Large U.S. Cohort. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 2213–2217. [Google Scholar] [CrossRef]
- Mondul, A.M.; Selvin, E.; De Marzo, A.M.; Freedland, S.J.; Platz, E.A. Statin drugs, serum cholesterol, and prostate-specific antigen in the National Health and Nutrition Examination Survey 2001–2004. Cancer Causes Control. 2010, 21, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.L.; Harshman, L.C.; Presti, J.C. Impact of Common Medications on Serum Total Prostate-Specific Antigen Levels: Analysis of the National Health and Nutrition Examination Survey. J. Clin. Oncol. 2010, 28, 3951–3957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariano, R.; Tavares, K.L.; Panhoca, R.; Said, M. Influence of statins in metastatic castration-resistant prostate cancer patients treated with new antiandrogen therapies: A systematic review and meta-analysis. Einstein 2022, 20, eRW6339. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.H.; Plym, A.; Penney, K.L.; Pomerantz, M.; Mucci, L.A.; Kibel, A.S. Metabolic syndrome and its pharmacologic treatment are associated with the time to castration-resistant prostate cancer. Prostate Cancer Prostatic. Dis. 2022, 25, 320–326. [Google Scholar] [CrossRef]
- Chang, C.C.; Ho, S.C.; Chiu, H.F.; Yang, C.Y. Statins increase the risk of prostate cancer: A population-based case–control study. Prostate 2011, 71, 1818–1824. [Google Scholar] [CrossRef]
- Caro-Maldonado, A.; Camacho, L.; Zabala-Letona, A.; Torrano, V.; Fernández-Ruiz, S.; Zamacola-Bascaran, K.; Arreal, L.; Valcarcel-Jimenez, L.; Martin-Martin, N.; Flores, J.M.; et al. Low-dose statin treatment increases prostate cancer aggressiveness. Oncotarget 2017, 9, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Menter, D.G.; Ramsauer, V.P.; Harirforoosh, S.; Chakraborty, K.; Yang, P.; Hsi, L.; Newman, R.A.; Krishnan, K. Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites. PLoS ONE 2011, 6, e28813. [Google Scholar] [CrossRef] [Green Version]
- Althanoon, Z.; Faisal, I.M.; Ahmad, A.A.; Merkhan, M.M. Pharmacological Aspects of Statins Are Relevant to Their Structural and Physicochemical Properties. Syst. Rev. Pharm. 2020, 11, 167–171. [Google Scholar] [CrossRef]
- Neuwirt, H.; Bouchal, J.; Kharaishvili, G.; Ploner, C.; Jöhrer, K.; Pitterl, F.; Weber, A.; Klocker, H.; Eder, I.E. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun. Signal. 2020, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Graaf, M.R.; Richel, D.J.; van Noorden, C.J.F.; Guchelaar, H.J. Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev. 2004, 30, 609–641. [Google Scholar] [CrossRef]
- Culig, Z.; Hoffmann, J.; Erdel, M.; Eder, I.E.; Hobisch, A.; Hittmair, A.; Bartsch, G.; Utermann, G.; Schneider, M.R.; Parczyk, K.; et al. Switch from antagonist to agonist of the androgen receptor blocker bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer 1999, 81, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Ladurner, M.; Wieser, M.; Eigentler, A.; Seewald, M.; Dobler, G.; Neuwirt, H.; Kafka, M.; Heidegger, I.; Horninger, W.; Bektic, J.; et al. Validation of Cell-Free RNA and Circulating Tumor Cells for Molecular Marker Analysis in Metastatic Prostate Cancer. Biomedicines 2021, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Nakayama, H.; Miyazawa, Y.; Kato, H.; Furuya, Y.; Arai, S.; Koike, H.; Matsui, H.; Shibata, Y.; Ito, K.; et al. Simvastatin in combination with meclofenamic acid inhibits the proliferation and migration of human prostate cancer PC-3 cells via an AKR1C3 mechanism. Oncol. Lett. 2018, 15, 3167–3172. [Google Scholar] [CrossRef] [PubMed]
- Syvälä, H.; Pennanen, P.; Bläuer, M.; Tammela, T.L.J.; Murtola, T.J. Additive inhibitory effects of simvastatin and enzalutamide on androgen-sensitive LNCaP and VCaP prostate cancer cells. Biochem. Biophys. Res. Commun. 2016, 481, 46–50. [Google Scholar] [CrossRef]
- Holstein, S.A.; Knapp, H.R.; Clamon, G.H.; Murry, D.J.; Hohl, R.J. Pharmacodynamic effects of high dose lovastatin in subjects with advanced malignancies. Cancer Chemother Pharmacol. 2006, 57, 155–164. [Google Scholar] [CrossRef]
- Longo, J.; Mullen, P.J.; Yu, R.; van Leeuwen, J.E.; Masoomian, M.; Woon, D.T.S.; Wang, Y.; Chen, E.X.; Hamilton, R.J.; Sweet, J.M.; et al. An actionable sterol-regulated feedback loop modulates statin sensitivity in prostate cancer. Mol. Metab. 2019, 25, 119–130. [Google Scholar] [CrossRef]
- Pavan, L.M.C.; Rêgo, D.F.; Elias, S.T.; De Luca Canto, G.; Guerra, E.N.S. In vitro Anti-Tumor Effects of Statins on Head and Neck Squamous Cell Carcinoma: A Systematic Review. PLoS ONE. 2015, 10, e0130476. [Google Scholar] [CrossRef] [Green Version]
- Mangelinck, A.; Habel, N.; Mohr, A.; Gaspar, N.; Stefanovska, B.; Fromigué, O. Synergistic Anti-Tumor Effect of Simvastatin Combined to Chemotherapy in Osteosarcoma. Cancers 2021, 13, 5869. [Google Scholar] [CrossRef]
- Göbel, A.; Thiele, S.; Browne, A.J.; Rauner, M.; Zinna, V.M.; Hofbauer, L.C.; Rachner, T.D. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells. Cancer Lett. 2016, 375, 162–171. [Google Scholar] [CrossRef]
- Craig, E.L.; Stopsack, K.H.; Evergren, E.; Penn, L.Z.; Freedland, S.J.; Hamilton, R.J.; Allott, E.H. Statins and prostate cancer—Hype or hope? The epidemiological perspective. Prostate Cancer Prostatic. Dis. 2022, 25, 641–649. [Google Scholar] [CrossRef]
- Harshman, L.C.; Wang, X.; Nakabayashi, M.; Xie, W.; Valenca, L.; Werner, L.; Yu, Y.; Kantoff, A.M.; Sweeney, C.J.; Mucci, L.A.; et al. Statin Use at the Time of Initiation of Androgen Deprivation Therapy and Time to Progression in Patients With Hormone-Sensitive Prostate Cancer. JAMA Oncol. 2015, 1, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, A.I.; Raittinen, P.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A.; Murtola, T.J. Prostate cancer prognosis after initiation of androgen deprivation therapy among statin users. A population-based cohort study. Prostate Cancer Prostatic. Dis. 2021, 24, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Han, S.; Hu, Q.; Tong, S. The association of statin use and biochemical recurrence after curative treatment for prostate cancer. Medicine 2022, 101, e28513. [Google Scholar] [CrossRef]
- Xue, L.; Qi, H.; Zhang, H.; Ding, L.; Huang, Q.; Zhao, D.; Wu, B.J.; Li, X. Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Front Oncol. 2020, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cao, Y.; Liu, L.; Zhao, Z.; Yin, H.; Wang, H. Atorvastatin regulates the migration and invasion of prostate cancer through the epithelial-mesenchymal transformation and matrix metalloproteinase pathways. Investig. Clin. Urol. 2022, 63, 350–358. [Google Scholar] [CrossRef]
- Roussy, G. Cancer Campus, Grand Paris. A Phase III Trial of Acetylsalicylic Acid and Atorvastatin in Patients With Castrate-Resistant Prostate Cancer [Internet]. clinicaltrials.gov; 2021. Report No.: NCT03819101. Available online: https://clinicaltrials.gov/ct2/show/NCT03819101 (accessed on 24 November 2022).
- Siltari, A.; Riikonen, J.; Koskimäki, J.; Pakarainen, T.; Ettala, O.; Boström, P.; Seikkula, H.; Kotsar, A.; Tammela, T.; Helminen, M.; et al. Randomised double-blind phase 3 clinical study testing impact of atorvastatin on prostate cancer progression after initiation of androgen deprivation therapy: Study protocol. BMJ Open 2022, 12, e050264. [Google Scholar] [CrossRef]
LNCaPco | LNCaPsim | Fold Change | p-Value | |
---|---|---|---|---|
THBS1 | 23,397.3 | 7203.9 | 0.307 | 3.52 × 10−10 |
SEMA6D | 3960.1 | 60.4 | 0.015 | 6.13 × 10−63 |
IGF1R | 3107.4 | 1336.5 | 0.430 | 0.00048 |
NLGN1 | 1373.4 | 276.8 | 0.202 | 1.37 × 10−9 |
TMSB4X | 1050.6 | 13.2 | 0.011 | 5.23 × 10−42 |
GPC6 | 908.1 | 230.8 | 0.254 | 4.65 × 10−9 |
PTK7 | 881.8 | 267.2 | 0.304 | 7.64 × 10−16 |
COL1A1 | 752.0 | 284.8 | 0.378 | 1.62 × 10−9 |
DOCK10 | 701.3 | 6.9 | 0.009 | 2.46 × 10−7 |
AMIGO1 | 477.9 | 221.2 | 0.463 | 5.45 × 10−5 |
SDK1 | 377.5 | 62.5 | 0.165 | 2.58 × 10−13 |
PCDHB5 | 254.1 | 74.6 | 0.293 | 9.55 × 10−8 |
UNC5C | 248.9 | 98.2 | 0.392 | 3.30 × 10−5 |
CDH3 | 174.7 | 3.7 | 0.021 | 6.72 × 10−27 |
PCDHB2 | 121.8 | 34.4 | 0.283 | 4.75 × 10−7 |
PLXND1 | 79.2 | 30.9 | 0.390 | 4.99 × 10−5 |
NECTIN3 | 47.8 | 13.2 | 0.276 | 0.00070 |
NTN1 | 39.9 | 8.9 | 0.220 | 0.00225 |
ABLco | ABLsim | Fold Change | p-Value | |
---|---|---|---|---|
FN1 | 1756.6 | 589.2 | 0.336 | 6.54 × 10−8 |
COL6A2 | 300.1 | 109.5 | 0.358 | 0.00013 |
CDH15 | 102.3 | 11.7 | 0.482 | 0.00018 |
PCDH15 | 102.3 | 11.7 | 0.115 | 6.78 × 10−17 |
CNTN3 | 53.9 | 21.4 | 0.398 | 0.00064 |
PC-3co | PC-3sim | Fold Change | p-Value | |
---|---|---|---|---|
PLAU | 390,694.9 | 80,503.1 | 0.206 | 5.81 × 10−70 |
ITGB4 | 144,623.7 | 69,692.8 | 0.481 | 4.80 × 10−11 |
ITGA3 | 61,337.3 | 27,100.7 | 0.441 | 1.90 × 10−13 |
LAMC2 | 20,784.5 | 8777.1 | 0.422 | 1.72 × 10−16 |
FUT8 | 16,498.0 | 7383.9 | 0.447 | 3.60 × 10−12 |
CDC42BPA | 12,522.0 | 6012.6 | 0.480 | 7.15 × 10−14 |
SEMA4B | 10,651.1 | 4542.9 | 0.426 | 1.10 × 10−9 |
AJUBA | 10,409.0 | 4454.5 | 0.427 | 7.52 × 10−26 |
CDH11 | 9388.1 | 3316.2 | 0.353 | 4.72 × 10−27 |
FERMT2 | 8542.0 | 3858.6 | 0.451 | 1.41 × 10−21 |
CEACAM6 | 6315.0 | 1518.4 | 0.240 | 5.39 × 10−5 |
LAMA4 | 5233.2 | 2326.1 | 0.444 | 2.67 × 10−10 |
SLIT2 | 4432.6 | 1960.7 | 0.442 | 1.79 × 10−11 |
SHH | 3186.3 | 986.6 | 0.309 | 0.00065 |
STC1 | 3030.1 | 1108.3 | 0.365 | 1.31 × 10−18 |
VEGFC | 2695.9 | 1035.0 | 0.383 | 2.29 × 10−27 |
FYN | 2367.5 | 987.2 | 0.416 | 2.44 × 10−12 |
CDH7 | 2226.0 | 399.4 | 0.179 | 2.44 × 10−34 |
DLC1 | 1815.7 | 383.8 | 0.211 | 3.33 × 10−18 |
KRT16 | 1190.2 | 307.0 | 0.257 | 6.81 × 10−17 |
COL17A1 | 1169.4 | 385.1 | 0.329 | 2.46 × 10−27 |
FAM110C | 1147.5 | 244.4 | 0.212 | 3.33 × 10−29 |
CDH13 | 1110.2 | 112.6 | 0.101 | 1.16 × 10−27 |
KIRREL3 | 986.6 | 363.9 | 0.368 | 2.21 × 10−10 |
ECM2 | 924.7 | 232.2 | 0.251 | 6.38 × 10−14 |
HBEGF | 892.2 | 411.4 | 0.460 | 0.00018 |
PDGFRA | 827.0 | 294.4 | 0.356 | 2.90 × 10−12 |
KDR | 667.3 | 197.4 | 0.295 | 1.53 × 10−9 |
PCDH9 | 520.0 | 180.4 | 0.347 | 1.34 × 10−9 |
FAT4 | 467.1 | 148.7 | 0.317 | 1.87 × 10−11 |
MMP10 | 370.2 | 115.7 | 0.312 | 3.64 × 10−7 |
ITGA8 | 347.7 | 74.2 | 0.213 | 0.00261 |
PSTPIP2 | 290.0 | 9.7 | 0.033 | 3.86 × 10−50 |
PRSS2 | 271.7 | 20.2 | 0.331 | 1.62 × 10−26 |
CADM2 | 264.5 | 62.2 | 0.235 | 1.64 × 10−20 |
SEMA6D | 235.8 | 94.1 | 0.400 | 3.15 × 10−10 |
EPHA3 | 222.4 | 55.6 | 0.250 | 1.90 × 10−11 |
TNFAIP6 | 157.7 | 36.1 | 0.227 | 3.66 × 10−8 |
TNFSF18 | 148.9 | 13.7 | 0.091 | 0.00012 |
STRC | 99.0 | 33.4 | 0.337 | 4.43 × 10−7 |
HGF | 81.8 | 17.9 | 0.219 | 5.40 × 10−7 |
FSCN2 | 72.8 | 25.7 | 0.354 | 1.68 × 10−5 |
DACH1 | 60.4 | 12.6 | 0.210 | 0.00010 |
CD96 | 52.2 | 7.8 | 0.150 | 0.00019 |
PITX2 | 50.7 | 11.0 | 0.218 | 1.08 × 10−7 |
CDH12 | 47.9 | 15.3 | 0.320 | 3.48 × 10−5 |
ACVRL1 | 33.8 | 11.8 | 0.344 | 0.00568 |
CCL25 | 19.5 | 3.8 | 0.193 | 0.00095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafka, M.; Gruber, R.; Neuwirt, H.; Ladurner, M.; Eder, I.E. Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells. Biomedicines 2023, 11, 29. https://doi.org/10.3390/biomedicines11010029
Kafka M, Gruber R, Neuwirt H, Ladurner M, Eder IE. Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells. Biomedicines. 2023; 11(1):29. https://doi.org/10.3390/biomedicines11010029
Chicago/Turabian StyleKafka, Mona, Rebecca Gruber, Hannes Neuwirt, Michael Ladurner, and Iris E. Eder. 2023. "Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells" Biomedicines 11, no. 1: 29. https://doi.org/10.3390/biomedicines11010029
APA StyleKafka, M., Gruber, R., Neuwirt, H., Ladurner, M., & Eder, I. E. (2023). Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells. Biomedicines, 11(1), 29. https://doi.org/10.3390/biomedicines11010029