The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Structural Basis of Sympathetic Regulation of Osteoporosis
3.2. The Phenomenon of Sympathetic Nerve Regulation of Osteoporosis
3.3. Sympathetic Regulation of Osteogenesis
3.4. Sympathetic Nerve Regulation of Osteoclastogenesis
3.5. Drugs for Treating Osteoporosis through Regulating Sympathetic Nerve Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotts, K.G.; Cifu, A.S. Treatment of Osteoporosis. Jama 2018, 319, 1040–1041. [Google Scholar] [CrossRef]
- Simon, A.; Schäfer, H.S.; Schmidt, F.N.; Stürznickel, J.; Amling, M.; Rolvien, T. Compartment-specific effects of muscle strength on bone microarchitecture in women at high risk of osteoporosis. J. Cachexia Sarcopenia Muscle 2022, 13, 2310–2321. [Google Scholar] [CrossRef]
- Yu, J.S.; Krishna, N.G.; Fox, M.G.; Blankenbaker, D.G.; Frick, M.A.; Jawetz, S.T.; Li, G.; Reitman, C.; Said, N.; Stensby, J.D.; et al. ACR Appropriateness Criteria® Osteoporosis and Bone Mineral Density: 2022 Update. J. Am. Coll. Radiol. JACR 2022, 19, S417–S432. [Google Scholar] [CrossRef]
- Rondanelli, M.; Guido, D.; Opizzi, A.; Faliva, M.A.; Perna, S.; Grassi, M. A path model of sarcopenia on bone mass loss in elderly subjects. J. Nutr. Health Aging 2014, 18, 15–21. [Google Scholar] [CrossRef]
- Dong, Q.; Luo, G.; Lane, N.E.; Lui, L.Y.; Marshall, L.M.; Kado, D.M.; Cawthon, P.; Perry, J.; Johnston, S.K.; Haynor, D.; et al. Deep Learning Classification of Spinal Osteoporotic Compression Fractures on Radiographs using an Adaptation of the Genant Semiquantitative Criteria. Acad. Radiol. 2022, 29, 1819–1832. [Google Scholar] [CrossRef]
- Lorentzon, M.; Johansson, H.; Harvey, N.C.; Liu, E.; Vandenput, L.; McCloskey, E.V.; Kanis, J.A. Osteoporosis and fractures in women: The burden of disease. Climacteric J. Int. Menopause Soc. 2022, 25, 4–10. [Google Scholar] [CrossRef]
- Patel, D.; Wairkar, S. Bone regeneration in osteoporosis: Opportunities and challenges. Drug Deliv. Transl. Res. 2022. [Google Scholar] [CrossRef]
- Trivedi, T.; Guise, T.A. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022, 154, 116245. [Google Scholar] [CrossRef]
- Lu, J.; Hu, D.; Ma, C.; Shuai, B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front. Pharmacol. 2022, 13, 938447. [Google Scholar] [CrossRef]
- Kalinkovich, A.; Livshits, G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol. Res. 2021, 171, 105794. [Google Scholar] [CrossRef]
- Singh, S.; Dutta, S.; Khasbage, S.; Kumar, T.; Sachin, J.; Sharma, J.; Varthya, S.B. A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos. Int. 2022, 33, 1–12. [Google Scholar] [CrossRef]
- Charopoulos, I.; Orme, S.; Giannoudis, P.V. The role and efficacy of denosumab in the treatment of osteoporosis: An update. Expert Opin. Drug Saf. 2011, 10, 205–217. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Greenspan, S.L.; Insogna, K.L.; Lewiecki, E.M.; Saag, K.G.; Singer, A.J.; Siris, E.S. The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2022, 33, 2049–2102. [Google Scholar] [CrossRef]
- Yamasaki, M.; Yuasa, T.; Uehara, S.; Fujii, Y.; Yamamoto, S.; Masuda, H.; Fukui, I.; Yonese, J. Improvement of renal function by changing the bone-modifying agent from zoledronic acid to denosumab. Int. J. Clin. Oncol. 2016, 21, 1191–1195. [Google Scholar] [CrossRef] [Green Version]
- Hyun, U.; Sohn, J.W. Autonomic control of energy balance and glucose homeostasis. Exp. Mol. Med. 2022, 54, 370–376. [Google Scholar] [CrossRef]
- Boyes, N.G.; Marciniuk, D.D.; Haddad, H.; Tomczak, C.R. Autonomic cardiovascular reflex control of hemodynamics during exercise in heart failure with reduced ejection fraction and the effects of exercise training. Rev. Cardiovasc. Med. 2022, 23, 72. [Google Scholar] [CrossRef]
- Cuenca-Bermejo, L.; Almela, P.; Navarro-Zaragoza, J.; Fernández Villalba, E.; González-Cuello, A.M.; Laorden, M.L.; Herrero, M.T. Cardiac Changes in Parkinson’s Disease: Lessons from Clinical and Experimental Evidence. Int. J. Mol. Sci. 2021, 22, 13488. [Google Scholar] [CrossRef]
- Fujiu, K.; Manabe, I. Nerve-macrophage interactions in cardiovascular disease. Int. Immunol. 2022, 34, 81–95. [Google Scholar] [CrossRef]
- van Weperen, V.Y.H.; Vos, M.A.; Ajijola, O.A. Autonomic modulation of ventricular electrical activity: Recent developments and clinical implications. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2021, 31, 659–676. [Google Scholar] [CrossRef]
- Haas, A.; Borsook, D.; Adler, G.; Freeman, R. Stress, hypoglycemia, and the autonomic nervous system. Auton. Neurosci. Basic Clin. 2022, 240, 102983. [Google Scholar] [CrossRef]
- Nakamura, K.; Nakamura, Y.; Kataoka, N. A hypothalamomedullary network for physiological responses to environmental stresses. Nat. Rev. Neurosci. 2022, 23, 35–52. [Google Scholar] [CrossRef]
- Barman, S.M.; Yates, B.J. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Front. Neurosci. 2017, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Mejía, F.; Godínez-Victoria, M.; Vega-Bautista, A.; Pacheco-Yépez, J.; Drago-Serrano, M.E. Intestinal Homeostasis under Stress Siege. Int. J. Mol. Sci. 2021, 22, 5095. [Google Scholar] [CrossRef]
- Spiesshoefer, J.; Regmi, B.; Ottaviani, M.M.; Kahles, F.; Giannoni, A.; Borrelli, C.; Passino, C.; Macefield, V.; Dreher, M. Sympathetic and Vagal Nerve Activity in COPD: Pathophysiology, Presumed Determinants and Underappreciated Therapeutic Potential. Front. Physiol. 2022, 13, 919422. [Google Scholar] [CrossRef]
- He, J.Y.; Jiang, L.S.; Dai, L.Y. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Res. Rev. 2011, 10, 253–263. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Zhang, Y.; Tian, F.; Wang, C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol. Med. Rep. 2022, 25, 200. [Google Scholar] [CrossRef]
- Che, Y.; Yang, J.; Tang, F.; Wei, Z.; Chao, Y.; Li, N.; Li, H.; Wu, S.; Dong, X. New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int. J. Mol. Sci. 2022, 23, 2020. [Google Scholar] [CrossRef]
- Omosule, C.L.; Phillips, C.L. Deciphering Myostatin’s Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front. Genet. 2021, 12, 662908. [Google Scholar] [CrossRef]
- Honda, M.; Hariya, R.; Matsumoto, M.; Aizawa, M. Acceleration of Osteogenesis via Stimulation of Angiogenesis by Combination with Scaffold and Connective Tissue Growth Factor. Materials 2019, 12, 2068. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.J.; Lee, H.; Lee, J.; Lee, K.; Kim, J.; Kim, Y.; Park, J.I.; Kim, K. Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation. Int. J. Mol. Sci. 2019, 20, 3147. [Google Scholar] [CrossRef]
- Ghorbaninejad, M.; Khademi-Shirvan, M.; Hosseini, S.; Baghaban Eslaminejad, M. Epidrugs: Novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res. Ther. 2020, 11, 456. [Google Scholar] [CrossRef]
- Veshchitskii, A.A.; Kirik, O.V.; Korzhevskii, D.E.; Merkulyeva, N. Development of neurochemical labeling in the intermediolateral nucleus of cats’ spinal cord. Anat. Rec. 2022. [Google Scholar] [CrossRef]
- Farmer, D.G.S.; Pracejus, N.; Dempsey, B.; Turner, A.; Bokiniec, P.; Paton, J.F.R.; Pickering, A.E.; Burguet, J.; Andrey, P.; Goodchild, A.K.; et al. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J. Physiol. 2019, 597, 3407–3423. [Google Scholar] [CrossRef]
- Clement, P.; Giuliano, F. Physiology and Pharmacology of Ejaculation. Basic Clin. Pharmacol. Toxicol. 2016, 119 (Suppl. 3), 18–25. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Chung, S.J.; Lee, S.; Oh, K.; Yoo, S.K.; Lee, P.H.; Kim, S.M.; Shin, H.Y.; Yun, M. Postganglionic Sudomotor Dysfunction and Brain Glucose Hypometabolism in Patients with Multiple System Atrophy. J. Park. Dis. 2021, 11, 1247–1256. [Google Scholar] [CrossRef]
- Wang, Z.M.; Messi, M.L.; Grinevich, V.; Budygin, E.; Delbono, O. Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo. Mol. Cell. Neurosci. 2020, 109, 103563. [Google Scholar] [CrossRef]
- Buchmann, S.J.; Penzlin, A.I.; Kubasch, M.L.; Illigens, B.M.; Siepmann, T. Assessment of sudomotor function. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2019, 29, 41–53. [Google Scholar] [CrossRef]
- Hansen, T.; Tarasova, O.S.; Khammy, M.M.; Ferreira, A.; Kennard, J.A.; Andresen, J.; Staehr, C.; Brain, K.L.; Nilsson, H.; Aalkjaer, C. [Ca(2+) ] changes in sympathetic varicosities and Schwann cells in rat mesenteric arteries-Relation to noradrenaline release and contraction. Acta Physiol. 2019, 226, e13279. [Google Scholar] [CrossRef] [Green Version]
- Berg, T. Voltage-Sensitive K(+) Channels Inhibit Parasympathetic Ganglion Transmission and Vagal Control of Heart Rate in Hypertensive Rats. Front. Neurol. 2015, 6, 260. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Ashwell, K.W.; Orekhov, A.N.; Bobryshev, Y.V. Innervation of the arterial wall and its modification in atherosclerosis. Auton. Neurosci. Basic Clin. 2015, 193, 7–11. [Google Scholar] [CrossRef]
- Qin, Y.J.; Xiao, K.; Zhong, Z.; Zhao, Y.; Zhang, Y.L.; Sun, X.F. Markers of the sympathetic, parasympathetic and sensory nervous system are altered in the human diabetic choroid. Peptides 2021, 146, 170661. [Google Scholar] [CrossRef]
- Bellinger, D.L.; Wood, C.; Wergedal, J.E.; Lorton, D. Driving β(2)- While Suppressing α-Adrenergic Receptor Activity Suppresses Joint Pathology in Inflammatory Arthritis. Front. Immunol. 2021, 12, 628065. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, S.C.; Ok, S.H.; Ahn, S.H.; Bae, S.I.; Kim, J.Y.; Hwang, Y.; Park, K.E.; Kim, M.; Sohn, J.T. Dexmedetomidine-Induced Aortic Contraction Involves Transactivation of the Epidermal Growth Factor Receptor in Rats. Int. J. Mol. Sci. 2022, 23, 4320. [Google Scholar] [CrossRef]
- Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. D’endocrinologie 2021, 82, 193–197. [Google Scholar] [CrossRef]
- Mulcahy, L.; Tudor, E.; Bailey, S.R. Validation of canine uterine and testicular arteries for the functional characterisation of receptor-mediated contraction as a replacement for laboratory animal tissues in teaching. PLoS ONE 2020, 15, e0230516. [Google Scholar] [CrossRef]
- Ezeani, M.; Prabhu, S. PI3K(p110α) as a determinant and gene therapy for atrial enlargement in atrial fibrillation. Mol. Cell. Biochem. 2022. [Google Scholar] [CrossRef]
- Al Katat, A.; Zhao, J.; Calderone, A.; Parent, L. Sympathetic Stimulation Upregulates the Ca(2+) Channel Subunit, Ca(V)α2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes. Cells 2022, 11, 188. [Google Scholar] [CrossRef]
- Bundgaard, H.; Axelsson, A.; Hartvig Thomsen, J.; Sørgaard, M.; Kofoed, K.F.; Hasselbalch, R.; Fry, N.A.; Valeur, N.; Boesgaard, S.; Gustafsson, F.; et al. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: The BEAT-HF trial. Eur. J. Heart Fail. 2017, 19, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Myagmar, B.E.; Flynn, J.M.; Cowley, P.M.; Swigart, P.M.; Montgomery, M.D.; Thai, K.; Nair, D.; Gupta, R.; Deng, D.X.; Hosoda, C.; et al. Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ. Res. 2017, 120, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Togari, A.; Arai, M.; Mizutani, S.; Mizutani, S.; Koshihara, Y.; Nagatsu, T. Expression of mRNAs for neuropeptide receptors and beta-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci. Lett. 1997, 233, 125–128. [Google Scholar] [CrossRef]
- Togari, A. Adrenergic regulation of bone metabolism: Possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc. Res. Tech. 2002, 58, 77–84. [Google Scholar] [CrossRef]
- Ma, Y.; Nyman, J.S.; Tao, H.; Moss, H.H.; Yang, X.; Elefteriou, F. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology 2011, 152, 1412–1422. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, T.L.; Jorgetti, V.; Costa, C.C.; Capelo, L.P.; Covarrubias, A.E.; Moulatlet, A.C.; Teixeira, M.B.; Hesse, E.; Morethson, P.; Beber, E.H.; et al. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011, 26, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Hamada, N.; Kim, Y.; Takahashi, Y.; Sasaguri, K.; Ozono, S.; Sato, S. Blockade of sympathetic b-receptors inhibits Porphyromonas gingivalis-induced alveolar bone loss in an experimental rat periodontitis model. Arch. Oral Biol. 2010, 55, 502–508. [Google Scholar] [CrossRef]
- Suga, S.; Goto, S.; Togari, A. Demonstration of direct neurite-osteoclastic cell communication in vitro via the adrenergic receptor. J. Pharmacol. Sci. 2010, 112, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Enríquez-Pérez, I.A.; Galindo-Ordoñez, K.E.; Pantoja-Ortíz, C.E.; Martínez-Martínez, A.; Acosta-González, R.I.; Muñoz-Islas, E.; Jiménez-Andrade, J.M. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck. Neurosci. Lett. 2017, 655, 28–34. [Google Scholar] [CrossRef]
- Roshanzamir, S.; Dabbaghmanesh, M.H.; Dabbaghmanesh, A.; Nejati, S. Autonomic dysfunction and osteoporosis after electrical burn. Burn. J. Int. Soc. Burn Inj. 2016, 42, 583–588. [Google Scholar] [CrossRef]
- Stephens, C.J.; McGibbon, D.H. Algodystrophy (reflex sympathetic dystrophy) complicating unilateral acrodermatitis continua. Clin. Exp. Dermatol. 1989, 14, 445–447. [Google Scholar] [CrossRef]
- Sato, T.; Miyazawa, K.; Suzuki, Y.; Mizutani, Y.; Uchibori, S.; Asaoka, R.; Arai, M.; Togari, A.; Goto, S. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement. J. Dent. Res. 2014, 93, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kanehara, M.; Zhang, Y.; Wang, X.; Ishida, T. Beta-blocker and other analogous treatments that affect bone mass and sympathetic nerve activity in ovariectomized rats. Am. J. Chin. Med. 2007, 35, 89–101. [Google Scholar] [CrossRef]
- Wang, M.Y.; An, M.F.; Fan, M.S.; Zhang, S.S.; Sun, Z.R.; Zhao, Y.L.; Xiang, Z.M.; Sheng, J. FAEE exerts a protective effect against osteoporosis by regulating the MAPK signalling pathway. Pharm. Biol. 2022, 60, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhang, W.; Zhao, Y.; Zhang, K.; Hou, W.; Chen, M.; Lu, J.; Wu, J.; He, R.; Gao, W.; et al. Prussian Blue Nanozyme Normalizes Microenvironment to Delay Osteoporosis. Adv. Healthc. Mater. 2022, 11, e2200787. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhuang, Q.; Tao, L.; Zheng, K.; Chen, S.; Yang, Y.; Feng, C.; Wang, Z.; Shi, H.; Shi, J.; et al. Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-κB pathway. Cell Prolif. 2022, 55, e13291. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Lei, H.; He, X.; Liu, Y.; Wang, A.; Ren, Z.; Liu, X.; Yan, G.; Wang, W.; Wang, Y.; et al. METTL14 Regulates Osteogenesis of Bone Marrow Mesenchymal Stem Cells via Inducing Autophagy through m6A/IGF2BPs/Beclin-1 Signal Axis. Stem Cells Transl. Med. 2022, 11, 987–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, Y.L.; Wang, R.; Wang, X.Q.; Zhang, H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front. Immunol. 2022, 13, 1005665. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.R.; Yang, H.; Kim, S.C.; Hwang, Y.H.; Ha, H. Water Extract of Piper longum Linn Ameliorates Ovariectomy-Induced Bone Loss by Inhibiting Osteoclast Differentiation. Nutrients 2022, 14, 3667. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Sui, C.; Ge, S.; Cai, J.; Lin, D.; Guo, Y.; Wang, N.; Zhou, Y.; Ying, R.; Zha, K.; et al. Positive association of glucagon with bone turnover markers in type 2 diabetes: A cross-sectional study. Diabetes/Metab. Res. Rev. 2022, 38, e3550. [Google Scholar] [CrossRef]
- Qu, Z.; An, H.; Feng, M.; Huang, W.; Wang, D.; Zhang, Z.; Yan, L. Urolithin B suppresses osteoclastogenesis via inhibiting RANKL-induced signalling pathways and attenuating ROS activities. J. Cell. Mol. Med. 2022, 26, 4428–4439. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhang, J.; Lin, M.; Xiao, C.; Bai, H.; Liu, C. Mechanical loading alleviated the inhibition of β2-adrenergic receptor agonist terbutaline on bone regeneration. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021, 35, e22033. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Q.; Zhao, B.; Wang, X. Effect and mechanism of propranolol on promoting osteogenic differentiation and early implant osseointegration. Int. J. Mol. Med. 2021, 48, 191. [Google Scholar] [CrossRef]
- Yamada, T.; Ezura, Y.; Hayata, T.; Moriya, S.; Shirakawa, J.; Notomi, T.; Arayal, S.; Kawasaki, M.; Izu, Y.; Harada, K.; et al. β2 adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. J. Cell. Biochem. 2015, 116, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, J.Y.; Lee, S.J.; Chung, C.P.; Park, Y.J. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation. Biochem. Biophys. Res. Commun. 2011, 416, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fong, C.; Chen, Y.; Cai, G.; Yang, M. beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch. Biochem. Biophys. 2010, 496, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Krueger, J.J.; Redmon, S.N.; Uppuganti, S.; Nyman, J.S.; Hahn, M.K.; Elefteriou, F. Extracellular norepinephrine clearance by the norepinephrine transporter is required for skeletal homeostasis. J. Biol. Chem. 2013, 288, 30105–30113. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Zheng, X.F.; Jiang, S.D.; Chen, X.D.; Jiang, L.S. Sympathetic neuron can promote osteoblast differentiation through BMP signaling pathway. Cell. Signal. 2013, 25, 1372–1378. [Google Scholar] [CrossRef]
- Uemura, T.; Ohta, Y.; Nakao, Y.; Manaka, T.; Nakamura, H.; Takaoka, K. Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling through a cAMP/protein kinase A signaling pathway. Bone 2010, 47, 756–765. [Google Scholar] [CrossRef]
- Faulkner, B.; Astleford, K.; Mansky, K.C. Regulation of Osteoclast Differentiation and Skeletal Maintenance by Histone Deacetylases. Molecules 2019, 24, 1355. [Google Scholar] [CrossRef] [Green Version]
- Arnett, T.R.; Orriss, I.R. Metabolic properties of the osteoclast. Bone 2018, 115, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Ginnetti, A.T.; Paone, D.V.; Nanda, K.K.; Li, J.; Busuek, M.; Johnson, S.A.; Lu, J.; Soisson, S.M.; Robinson, R.; Fisher, J.; et al. Lead optimization of cathepsin K inhibitors for the treatment of Osteoarthritis. Bioorganic Med. Chem. Lett. 2022, 74, 128927. [Google Scholar] [CrossRef]
- Ongprakobkul, N.; Ishida, Y.; Hatano-Sato, K.; Li, K.; Petdachai, S.; Usumi-Fujita, R.; Hosomichi, J.; Mahatumarat, K.; Ono, T. Effects of local vs systemic administration of CXCR4 inhibitor AMD3100 on orthodontic tooth movement in rats. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Const. Soc. Am. Board Orthod. 2022, 162, 182–192. [Google Scholar] [CrossRef]
- Yu, F.; Huo, F.; Li, F.; Zuo, Y.; Wang, C.; Ye, L. Aberrant NF-κB activation in odontoblasts orchestrates inflammatory matrix degradation and mineral resorption. Int. J. Oral Sci. 2022, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Ewanchuk, B.W.; Arnold, C.R.; Balce, D.R.; Premnath, P.; Orsetti, T.L.; Warren, A.L.; Olsen, A.; Krawetz, R.J.; Yates, R.M. A non-immunological role for γ-interferon-inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption. Sci. Adv. 2021, 7, eabd3684. [Google Scholar] [CrossRef] [PubMed]
- Hadjiargyrou, M. Effects of bisphosphonates on appendicular fracture repair in rodents. Bone 2022, 164, 116542. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.S.; Girgis, C.M.; McDonald, M.M. Osteoclast Recycling and the Rebound Phenomenon Following Denosumab Discontinuation. Curr. Osteoporos. Rep. 2022, 20, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Hume, D.A.; Batoon, L.; Sehgal, A.; Keshvari, S.; Irvine, K.M. CSF1R as a Therapeutic Target in Bone Diseases: Obvious but Not so Simple. Curr. Osteoporos. Rep. 2022, 20, 516–531. [Google Scholar] [CrossRef]
- Martens, A.; Hertens, P.; Priem, D.; Rinotas, V.; Meletakos, T.; Gennadi, M.; Van Hove, L.; Louagie, E.; Coudenys, J.; De Muynck, A.; et al. A20 controls RANK-dependent osteoclast formation and bone physiology. EMBO Rep. 2022, 23, e55233. [Google Scholar] [CrossRef]
- Elefteriou, F.; Ahn, J.D.; Takeda, S.; Starbuck, M.; Yang, X.; Liu, X.; Kondo, H.; Richards, W.G.; Bannon, T.W.; Noda, M.; et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005, 434, 514–520. [Google Scholar] [CrossRef]
- Cao, H.; Kou, X.; Yang, R.; Liu, D.; Wang, X.; Song, Y.; Feng, L.; He, D.; Gan, Y.; Zhou, Y. Force-induced Adrb2 in periodontal ligament cells promotes tooth movement. J. Dent. Res. 2014, 93, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Aitken, S.J.; Landao-Bassonga, E.; Ralston, S.H.; Idris, A.I. Beta2-adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch. Biochem. Biophys. 2009, 482, 96–103. [Google Scholar] [CrossRef]
- Frediani, U.; Becherini, L.; Lasagni, L.; Tanini, A.; Brandi, M.L. Catecholamines modulate growth and differentiation of human preosteoclastic cells. Osteoporos. Int. 1996, 6, 14–21. [Google Scholar] [CrossRef]
- Takeuchi, T.; Tsuboi, T.; Arai, M.; Togari, A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem. Pharmacol. 2001, 61, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.A.; Donnelly, E.; Yao, X.; Johnson, M.L.; Amugongo, S.K.; Kimmel, D.B.; Lane, N.E. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1-34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif. Tissue Int. 2020, 106, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Barrionuevo, P.; Kapoor, E.; Asi, N.; Alahdab, F.; Mohammed, K.; Benkhadra, K.; Almasri, J.; Farah, W.; Sarigianni, M.; Muthusamy, K.; et al. Efficacy of Pharmacological Therapies for the Prevention of Fractures in Postmenopausal Women: A Network Meta-Analysis. J. Clin. Endocrinol. Metab. 2019, 104, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Shoback, D. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society* Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2019, 104, 1595–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Shoback, D. Mechanisms Underlying Normal Fracture Healing and Risk Factors for Delayed Healing. Curr. Osteoporos. Rep. 2019, 17, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Calderon-Larranaga, S.; Sami, A.; Hawley, S.; Judge, A.; Arden, N.; Van Staa, T.P.; Cooper, C.; Abrahamsen, B.; Javaid, M.K.; et al. Comparative risk of acute myocardial infarction for anti-osteoporosis drugs in primary care: A meta-analysis of propensity-matched cohort findings from the UK Clinical Practice Research Database and the Catalan SIDIAP Database. Osteoporos. Int. 2022, 33, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Porwal, K.; Kulkarni, C.; Pal, S.; Sihota, P.; Kumar, S.; Tiwari, M.C.; Katekar, R.; Kumar, A.; Singh, P.; et al. Diosmin, a citrus fruit-derived phlebotonic bioflavonoid protects rats from chronic kidney disease-induced loss of bone mass and strength without deteriorating the renal function. Food Funct. 2022, 13, 2184–2199. [Google Scholar] [CrossRef]
- Fixen, C.W.; Fixen, D.R. Renal safety of zoledronic acid for osteoporosis in adults 75 years and older. Osteoporos. Int. 2022, 33, 2417–2422. [Google Scholar] [CrossRef]
- de Roij van Zuijdewijn, C.; van Dorp, W.; Florquin, S.; Roelofs, J.; Verburgh, K. Bisphosphonate nephropathy: A case series and review of the literature. Br. J. Clin. Pharmacol. 2021, 87, 3485–3491. [Google Scholar] [CrossRef]
- de Sousa, V.C.; Sousa, F.R.N.; Vasconcelos, R.F.; Martins, C.S.; Lopes, A.P.; Alves, N.M.; Viana, D.; Alves, K.; Leitão, R.; Brito, G.A.C.; et al. Atorvastatin reduces zoledronic acid-induced osteonecrosis of the jaws of rats. Bone 2022, 164, 116523. [Google Scholar] [CrossRef]
- Hadad, H.; Kawamata de Jesus, L.; Piquera Santos, A.F.; Rinaldi Matheus, H.; de Souza Rodrigues, L.G.; Paolo Poli, P.; Marcantonio Junior, E.; Pozzi Semeghini Guastaldi, F.; Maiorana, C.; Milanezi de Almeida, J.; et al. Beta tricalcium phosphate, either alone or in combination with antimicrobial photodynamic therapy or doxycycline, prevents medication-related osteonecrosis of the jaw. Sci. Rep. 2022, 12, 16510. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, B.L.; Cai, B.; De Gregorio, F.; Dhalwani, N.; Fraeman, K.H.; Yoshida, Y.; Gibbs, T. Incidence of venous thromboembolism among postmenopausal women prescribed ospemifene, selective estrogen receptor modulators for noncancer indications, or untreated vulvar and vaginal atrophy. Menopause 2020, 27, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Pazhekattu, R.; Lau, A.N.; Adachi, J.D. The Tissue-Selective Estrogen Complex: A Review of Current Evidence. Rheumatol. Ther. 2015, 2, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestergaard, P. New strategies for osteoporosis patients previously managed with strontium ranelate. Ther. Adv. Musculoskelet. Dis. 2014, 6, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, S.; Di Pietrantonio, V.; Vandromme, J.; Gilles, C. Menopausal hormone therapy and breast cancer risk. Best Pract. Research. Clin. Endocrinol. Metab. 2021, 35, 101577. [Google Scholar] [CrossRef]
- Edey, K.A.; Rundle, S.; Hickey, M. Hormone replacement therapy for women previously treated for endometrial cancer. Cochrane Database Syst. Rev. 2018, 5, Cd008830. [Google Scholar] [CrossRef]
- Vermeulen, R.F.M.; Beurden, M.V.; Korse, C.M.; Kenter, G.G. Impact of risk-reducing salpingo-oophorectomy in premenopausal women. Climacteric J. Int. Menopause Soc. 2017, 20, 212–221. [Google Scholar] [CrossRef]
- Yamamoto, J.; Nakazawa, D.; Nishio, S.; Ishikawa, Y.; Makita, M.; Kusunoki, Y.; Nagai, S.; Fujieda, Y.; Takahata, M.; Yamada, K.; et al. Impact of Weekly Teriparatide on the Bone and Mineral Metabolism in Hemodialysis Patients With Relatively Low Serum Parathyroid Hormone: A Pilot Study. Ther. Apher. Dial. Off. Peer-Rev. J. Int. Soc. Apher. Jpn. Soc. Apher. Jpn. Soc. Dial. Ther. 2020, 24, 146–153. [Google Scholar] [CrossRef]
- Naik-Panvelkar, P.; Norman, S.; Elgebaly, Z.; Elliott, J.; Pollack, A.; Thistlethwaite, J.; Weston, C.; Seibel, M.J. Osteoporosis management in Australian general practice: An analysis of current osteoporosis treatment patterns and gaps in practice. BMC Fam. Pract. 2020, 21, 32. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.K.; Clarke, B.L. Abaloparatide: Recombinant human PTHrP (1-34) anabolic therapy for osteoporosis. Maturitas 2017, 97, 53–60. [Google Scholar] [CrossRef]
- Chen, H.; Hu, B.; Lv, X.; Zhu, S.; Zhen, G.; Wan, M.; Jain, A.; Gao, B.; Chai, Y.; Yang, M.; et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat. Commun. 2019, 10, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, H.; Nakagami, H.; Yasumasa, N.; Mariana, O.K.; Kyutoku, M.; Koriyama, H.; Nakagami, F.; Shimamura, M.; Rakugi, H.; Morishita, R. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2012, 35, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, W.; Ohe, T.; Kurita, T.; Kawade, M.; Arakaki, Y.; Aihara, N.; Kamakura, S.; Kamiya, T.; Shimomura, K. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J. Am. Coll. Cardiol. 1995, 26, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
Scholars | Views | Research Model | Mechanisms | References |
---|---|---|---|---|
Ziyan Wang et al. | inhibit osteogenesis | mice | β2-adrenergic receptor agonist | [69] |
Yupeng Wu et al. | inhibit osteogenesis | rabbits | β-receptor antagonist | [70] |
Takayuki Yamada et al. | inhibit osteogenesis | cell | β2-adrenergic receptor agonist | [71] |
Yoon Jung Choi et al. | inhibit osteogenesis | cell | α receptor antagonist | [72] |
Yun Ma et al. | inhibit osteogenesis | mice | β2-adrenergic receptor agonist | [52] |
Haifang Li et al. | inhibit osteogenesis | cell | β2 and β3 adrenergic receptor agonist | [73] |
Yun Ma et al. | promote osteogenesis | mice | norepinephrine | [74] |
Ji-Ye He et al. | promote osteogenesis | cell | bone morphogenetic protein | [75] |
Takuya Uemura et al. | promote osteogenesis | cell | epinephrine | [76] |
Scholars | Views | Research Model | Mechanisms | References |
---|---|---|---|---|
Florent Elefteriou et al. | promote osteoclast | mice | β2-adrenergic receptor agonist | [87] |
H Cao et al. | promote osteoclast | rats | β2-adrenergic receptor agonist | [88] |
Sarah J Aitken et al. | promote osteoclast | cell | β2-adrenergic receptor agonist | [89] |
U Frediani et al. | promote osteoclast | cell | β2-adrenergic receptor agonist | [90] |
T Takeuchi et al. | promote osteoclast | cell | β-receptor agonist | [91] |
Yuka Okada et al. | promote osteoclast | rats | β-receptor agonist | [54] |
Potential Drugs | Scholars | Research Model | Mechanisms | References |
---|---|---|---|---|
propranolol | Hao Chen et al. | mice | β2-adrenergic antagonist | [111] |
butoxamine | T Sato et al. | rats | selective beta2-adrenergic antagonist | [59] |
cilnidipine | Hideo Shimizu et al. | rats | inhibiting sympathetic nerve activity | [112] |
propranolol | Wenping Zhang et al. | rats | beta-blocker | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Liu, Y.; Xu, J.; Fan, C.; Zhang, B.; Feng, P.; Wang, Y.; Kong, Q. The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines 2023, 11, 33. https://doi.org/10.3390/biomedicines11010033
Zhang W, Liu Y, Xu J, Fan C, Zhang B, Feng P, Wang Y, Kong Q. The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines. 2023; 11(1):33. https://doi.org/10.3390/biomedicines11010033
Chicago/Turabian StyleZhang, Weifei, Yuheng Liu, Jixuan Xu, Chen Fan, Bin Zhang, Pin Feng, Yu Wang, and Qingquan Kong. 2023. "The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review" Biomedicines 11, no. 1: 33. https://doi.org/10.3390/biomedicines11010033
APA StyleZhang, W., Liu, Y., Xu, J., Fan, C., Zhang, B., Feng, P., Wang, Y., & Kong, Q. (2023). The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines, 11(1), 33. https://doi.org/10.3390/biomedicines11010033