A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Collection
2.3.1. Blood
2.3.2. Urine
2.4. Laboratory Analyses
2.4.1. Measurement of Oxidative
2.4.2. Urinary 8-isopostane-F2α
2.4.3. Analyses of IGF-I and IGFBP-3 in Plasma
2.4.4. IGFBP-3
2.4.5. Genotyping
2.4.6. Plasma Glutathione Peroxidase (GPx) Activity
2.4.7. Plasma Selenium
2.5. Statistical Methods
3. Results
3.1. Cohort Characteristics
3.2. Compliance Marker Data and Adverse Events
3.3. Outcome Endpoints
3.3.1. Oxidative Damage Biomarkers
3.3.2. Proliferative Potential
3.3.3. Exploratory Outcomes
4. Discussion
4.1. Overview
4.2. The Form and Dose of Selenium
4.3. Positioning Effects of Selenium in a Mechanistic Framework
4.4. Lessons from the Preclinical Literature and a Cautionary Note
4.5. Taking a Fresh Look at Ecological Evidence
4.6. As Good as It Gets?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, Y.; Demircan, K.; Rosendahl, A.H.; Borgquist, S.; Sandsveden, M.; Manjer, J. Zinc and Breast Cancer Survival: A Prospective Cohort Study of Dietary Intake and Serum Levels. Nutrients 2022, 14, 2575. [Google Scholar] [CrossRef] [PubMed]
- Demircan, K.; Bengtsson, Y.; Sun, Q.; Brange, A.; Vallon-Christersson, J.; Rijntjes, E.; Malmberg, M.; Saal, L.H.; Ryden, L.; Borg, A.; et al. Serum selenium, selenoprotein P and glutathione peroxidase 3 as predictors of mortality and recurrence following breast cancer diagnosis: A multicentre cohort study. Redox Biol. 2021, 47, 102145. [Google Scholar] [CrossRef]
- Demircan, K.; Chillon, T.S.; Sun, Q.; Heller, R.A.; Klingenberg, G.J.; Hirschbil-Bremer, I.M.; Seemann, P.; Diegmann, J.; Bachmann, M.; Moghaddam, A.; et al. Humoral immune response to COVID-19 mRNA vaccination in relation to selenium status. Redox Biol. 2022, 50, 102242. [Google Scholar] [CrossRef]
- Demircan, K.; Sun, Q.; Bengtsson, Y.; Seemann, P.; Vallon-Christersson, J.; Malmberg, M.; Saal, L.H.; Ryden, L.; Minich, W.B.; Borg, A.; et al. Autoimmunity to selenoprotein P predicts breast cancer recurrence. Redox Biol. 2022, 53, 102346. [Google Scholar] [CrossRef]
- Zou, B.; Xiong, Z.; He, L.; Chen, T. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022, 285, 121549. [Google Scholar] [CrossRef]
- Zigrossi, A.; Hong, L.K.; Ekyalongo, R.C.; Cruz-Alvarez, C.; Gornick, E.; Diamond, A.M.; Kastrati, I. SELENOF is a new tumor suppressor in breast cancer. Oncogene 2022, 41, 1263–1268. [Google Scholar] [CrossRef]
- Vahid, F.; Rahmani, W.; Khodabakhshi, A.; Davoodi, S.H. Associated between Dietary Antioxidant Index (DAI) and Odds of Breast Cancer and Correlation between DAI with Pathobiological Markers: Hospital-Based Incidence Case-Control Study. J. Am. Nutr. Assoc. 2022, 1–7. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Baniasadi, M.; Hernandez-Ruiz, A.; Melekoglu, E.; Zendehdel, M.; Jose Soto-Mendez, M.; Akbari, A.; Zarrati, M. Adherence to Oxidative Balance Scores is Associated with a Reduced Risk of Breast Cancer; A Case-Control Study. Nutr. Cancer 2022, 75, 164–173. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Szymanowska, A.; Radomski, D.; Dominguez-Alvarez, E.; Bielawska, A.; Bielawski, K. Novel Selenoesters as a Potential Tool in Triple-Negative Breast Cancer Treatment. Cancers 2022, 14, 4304. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Esquivias, F.; Gutierrez-Angulo, M.; Perez-Larios, A.; Sanchez-Burgos, J.A.; Becerra-Ruiz, J.S.; Guzman-Flores, J.M. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med. Chem. 2022, 22, 1658–1673. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Pan, D.; Wang, N.; Wang, S.; Sun, G. Relationship Between Selenium in Human Tissues and Breast Cancer: A Meta-analysis Based on Case-Control Studies. Biol. Trace Elem. Res. 2021, 199, 4439–4446. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Kim, J.B.; Cho, T.; Yoo, E.H.; Moon, B.I.; Kwon, H.; Lim, W. Selenium inhibits growth of trastuzumab-resistant human breast cancer cells via downregulation of Akt and beclin-1. PLoS ONE 2021, 16, e0257298. [Google Scholar] [CrossRef] [PubMed]
- Szwiec, M.; Marciniak, W.; Derkacz, R.; Huzarski, T.; Gronwald, J.; Cybulski, C.; Debniak, T.; Jakubowska, A.; Lener, M.; Falco, M.; et al. Serum Selenium Level Predicts 10-Year Survival after Breast Cancer. Nutrients 2021, 13, 953. [Google Scholar] [CrossRef]
- Soltani, L.; Darbemamieh, M. Anti-proliferative, apoptotic potential of synthesized selenium nanoparticles against breast cancer cell line (MCF7). Nucleosides Nucleotides Nucleic Acids 2021, 40, 926–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, B.; Kim, Y.; Min, S.; Yang, E.; Lee, S. Effects of Sodium Selenite Injection on Serum Metabolic Profiles in Women Diagnosed with Breast Cancer-Related Lymphedema-Secondary Analysis of a Randomized Placebo-Controlled Trial Using Global Metabolomics. Nutrients 2021, 13, 3253. [Google Scholar] [CrossRef] [PubMed]
- Rataan, A.O.; Geary, S.M.; Zakharia, Y.; Rustum, Y.M.; Salem, A.K. Potential Role of Selenium in the Treatment of Cancer and Viral Infections. Int. J. Mol. Sci. 2022, 23, 2215. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium in cancer prevention: A review of the evidence and mechanism of action. Proc. Nutr. Soc. 2005, 64, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Combs, G.F., Jr.; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Davis, L.S.; Glover, R.A.; Graham, G.F.; Gross, E.G.; et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996, 276, 1957–1963. [Google Scholar] [CrossRef]
- Klein, E.A.; Thompson, I.M.; Lippman, S.M.; Goodman, P.J.; Albanes, D.; Taylor, P.R.; Coltman, C. SELECT: The selenium and vitamin E cancer prevention trial. Urol. Oncol. 2003, 21, 59–65. [Google Scholar] [CrossRef]
- Klein, E.A.; Thompson, I.M.; Lippman, S.M.; Goodman, P.J.; Albanes, D.; Taylor, P.R.; Coltman, C. SELECT: The next prostate cancer prevention trial. Selenum and Vitamin E Cancer Prevention Trial. J. Urol. 2001, 166, 1311–1315. [Google Scholar] [CrossRef]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2009, 301, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.A.; Thompson, I.M.; Lippman, S.M.; Goodman, P.J.; Albanes, D.; Taylor, P.R.; Coltman, C. SELECT: The Selenium and Vitamin E Cancer Prevention Trial: Rationale and design. Prostate Cancer Prostatic Dis. 2000, 3, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Lippman, S.M.; Goodman, P.J.; Klein, E.A.; Parnes, H.L.; Thompson, I.M., Jr.; Kristal, A.R.; Santella, R.M.; Probstfield, J.L.; Moinpour, C.M.; Albanes, D.; et al. Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Natl. Cancer Inst. 2005, 97, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Womens Health 2017, 26, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, N.J.; Harrington, L.A.; Martin, L.J. Mammographic density, blood telomere length and lipid peroxidation. Sci. Rep. 2017, 7, 5803. [Google Scholar] [CrossRef]
- Chan, T.A.; Wang, Z.; Dang, L.H.; Vogelstein, B.; Kinzler, K.W. Targeted inactivation of CTNNB1 reveals unexpected effects of beta-catenin mutation. Proc. Natl. Acad. Sci. USA 2002, 99, 8265–8270. [Google Scholar] [CrossRef] [Green Version]
- Tomasetti, C.; Durrett, R.; Kimmel, M.; Lambert, A.; Parmigiani, G.; Zauber, A.; Vogelstein, B. Role of stem-cell divisions in cancer risk. Nature 2017, 548, E13–E14. [Google Scholar] [CrossRef]
- Tomasetti, C.; Li, L.; Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017, 355, 1330–1334. [Google Scholar] [CrossRef]
- Tomasetti, C.; Poling, J.; Roberts, N.J.; London, N.R., Jr.; Pittman, M.E.; Haffner, M.C.; Rizzo, A.; Baras, A.; Karim, B.; Kim, A.; et al. Cell division rates decrease with age, providing a potential explanation for the age-dependent deceleration in cancer incidence. Proc. Natl. Acad. Sci. USA 2019, 116, 20482–20488. [Google Scholar] [CrossRef] [Green Version]
- Tomasetti, C.; Vogelstein, B. On the slope of the regression between stem cell divisions and cancer risk, and the lack of correlation between stem cell divisions and environmental factors-associated cancer risk. PLoS ONE 2017, 12, e0175535. [Google Scholar] [CrossRef]
- Tomasetti, C.; Vogelstein, B. Cancer risk: Role of environment-response. Science 2015, 347, 729–731. [Google Scholar] [CrossRef]
- Tomasetti, C.; Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015, 347, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Murphy, N.; Knuppel, A.; Papadimitriou, N.; Martin, R.M.; Tsilidis, K.K.; Smith-Byrne, K.; Fensom, G.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: Observational and Mendelian randomization analyses with approximately 430 000 women. Ann. Oncol. 2020, 31, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Costa-Silva, D.R.; Barros-Oliveira, M.D.C.; Silva, B.B.D. Systematic review of insulin-like growth factor 1 gene expression in women with breast cancer. Rev. Assoc. Med. Bras. 2021, 67, 1372–1376. [Google Scholar] [CrossRef]
- Maggio, M.; Ceda, G.P.; Lauretani, F.; Bandinelli, S.; Dall’Aglio, E.; Guralnik, J.M.; Paolisso, G.; Semba, R.D.; Nouvenne, A.; Borghi, L.; et al. Association of plasma selenium concentrations with total IGF-1 among older community-dwelling adults: The InCHIANTI study. Clin. Nutr. 2010, 29, 674–677. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Zhao, H.J.; Liu, Y.J.; Wang, X.L. Effect of selenium-enriched malt on hepatocarcinogenesis, paraneoplastic syndrome and the hormones regulating blood glucose in rats treated by diethylnitrosamine. Life Sci. 2006, 78, 2315–2321. [Google Scholar] [CrossRef]
- Kristal, A.R.; King, I.B.; Albanes, D.; Pollak, M.N.; Stanzyk, F.Z.; Santella, R.M.; Hoque, A. Centralized blood processing for the selenium and vitamin E cancer prevention trial: Effects of delayed processing on carotenoids, tocopherols, insulin-like growth factor-I, insulin-like growth factor binding protein 3, steroid hormones, and lymphocyte viability. Cancer Epidemiol. Biomark Prev. 2005, 14, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Aydin, K.; Bideci, A.; Kendirci, M.; Cinaz, P.; Kurtoglu, S. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels of children living in an iodine- and selenium-deficient endemic goiter area. Biol. Trace Elem. Res. 2002, 90, 25–30. [Google Scholar] [CrossRef]
- Moreno-Reyes, R.; Egrise, D.; Neve, J.; Pasteels, J.L.; Schoutens, A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J. Bone Miner. Res. 2001, 16, 1556–1563. [Google Scholar] [CrossRef]
- Thorlacius-Ussing, O.; Flyvbjerg, A.; Orskov, H. Growth in young rats after termination of sodium selenite exposure: Studies of growth hormone and somatomedin C. Toxicology 1988, 48, 167–176. [Google Scholar] [CrossRef]
- Thorlacius-Ussing, O.; Flyvbjerg, A.; Jorgensen, K.D.; Orskov, H. Growth hormone restores normal growth in selenium-treated rats without increase in circulating somatomedin C. Acta Endocrinol. 1988, 117, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Thorlacius-Ussing, O.; Flyvbjerg, A.; Esmann, J. Evidence that selenium induces growth retardation through reduced growth hormone and somatomedin C production. Endocrinology 1987, 120, 659–663. [Google Scholar] [CrossRef]
- Thompson, H.J. Selenium and Breast Cancer Chemoprevention. Available online: https://archive.org/details/DTIC_ADA4112872007 (accessed on 20 December 2022).
- Mathers, J.C.; Hesketh, J.E. The biological revolution: Understanding the impact of SNPs on diet-cancer interrelationships. J. Nutr. 2007, 137, 253S–258S. [Google Scholar] [CrossRef] [Green Version]
- Oestergaard, M.Z.; Tyrer, J.; Cebrian, A.; Shah, M.; Dunning, A.M.; Ponder, B.A.; Easton, D.F.; Pharoah, P.D. Interactions between genes involved in the antioxidant defence system and breast cancer risk. Br. J. Cancer 2006, 95, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Udler, M.; Maia, A.T.; Cebrian, A.; Brown, C.; Greenberg, D.; Shah, M.; Caldas, C.; Dunning, A.; Easton, D.; Ponder, B.; et al. Common germline genetic variation in antioxidant defense genes and survival after diagnosis of breast cancer. J. Clin. Oncol. 2007, 25, 3015–3023. [Google Scholar] [CrossRef]
- Thompson, H.J.; Heimendinger, J.; Sedlacek, S.; Haegele, A.; Diker, A.; O’Neill, C.; Meinecke, B.; Wolfe, P.; Zhu, Z.; Jiang, W. 8-Isoprostane F2alpha excretion is reduced in women by increased vegetable and fruit intake. Am. J. Clin. Nutr. 2005, 82, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.C.; Dalkin, B.; Krongrad, A.; Combs, G.F., Jr.; Turnbull, B.W.; Slate, E.H.; Witherington, R.; Herlong, J.H.; Janosko, E.; Carpenter, D.; et al. Decreased incidence of prostate cancer with selenium supplementation: Results of a double-blind cancer prevention trial. Br. J. Urol. 1998, 81, 730–734. [Google Scholar] [CrossRef]
- Whanger, P.D.; Beilstein, M.A.; Thomson, C.D.; Robinson, M.F.; Howe, M. Blood selenium and glutathione peroxidase activity of populations in New Zealand, Oregon, and South Dakota. Faseb. J. 1988, 2, 2996–3002. [Google Scholar] [CrossRef]
- Frost, D.V. The two faces of selenium--can selenophobia be cured? CRC Crit. Rev. Toxicol. 1972, 1, 467–514. [Google Scholar] [CrossRef]
- Harr, J.R.; Muth, O.H. Selenium poisoning in domestic animals and its relationship to man. Clin. Toxicol 1972, 5, 175–186. [Google Scholar] [CrossRef]
- Lo, M.T.; Sandi, E. Selenium: Occurrence in foods and its toxicological significance--a review. J. Environ. Pathol. Toxicol. 1980, 4, 193–218. [Google Scholar]
- Richie, J.P., Jr.; Das, A.; Calcagnotto, A.M.; Sinha, R.; Neidig, W.; Liao, J.; Lengerich, E.J.; Berg, A.; Hartman, T.J.; Ciccarella, A.; et al. Comparative effects of two different forms of selenium on oxidative stress biomarkers in healthy men: A randomized clinical trial. Cancer Prev. Res. 2014, 7, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, P.R.; Berry, M.J. The influence of selenium on immune responses. Mol. Nutr. Food Res. 2008, 52, 1273–1280. [Google Scholar] [CrossRef]
- Fath, M.K.; Naderi, M.; Hamzavi, H.; Ganji, M.; Shabani, S.; Ghahroodi, F.N.; Khalesi, B.; Pourzardosht, N.; Hashemi, Z.S.; Khalili, S. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J. Trace Elem. Med. Biol. 2022, 73, 127044. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Prakasan, P.; Mundkur, L. Can Selenium Reduce the Susceptibility and Severity of SARS-CoV-2?-A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 4809. [Google Scholar] [CrossRef]
- Skesters, A.; Kustovs, D.; Lece, A.; Moreino, E.; Petrosina, E.; Rainsford, K.D. Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacology 2022, 30, 499–503. [Google Scholar] [CrossRef]
- Pedrosa, L.F.C.; Barros, A.; Leite-Lais, L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin. Nutr. ESPEN 2022, 47, 9–27. [Google Scholar] [CrossRef]
- Maitiniyazi, G.; Cao, X.; Chen, Y.; Zhang, R.; Liu, Y.; Li, Z.; Gu, D.; Li, T.; Xia, S. Impact of Gut Microbiota on the Association between Diet and Depressive Symptoms in Breast Cancer. Nutrients 2022, 14, 1186. [Google Scholar] [CrossRef]
Enrollment | Visit 1 (Baseline) | Visit 2 | Visit 3 | Dropout Rate 1 | |
---|---|---|---|---|---|
Selenium | 134 | 55 | 48 | 47 | 15% |
Placebo | 56 | 50 | 47 | 16% | |
Not Randomized | 28 | ||||
Total | 162 | 111 | 98 | 94 | 15% |
Treatment Group | Baseline (n = 111) | 6 Months (n = 98) | 12 Months (n = 93) | |
---|---|---|---|---|
Plasma Se | Selenium | 122.28 ± 13.99 | 195.60 ± 29.35 | 203.00 ± 34.11 |
Placebo | 126.02 ± 12.87 | 132.30 ± 14.58 | 130.78 ± 14.66 |
Outcome Measure 1 | Treatment Group | Baseline (n = 93) | 6 Months (n = 93) | p | 12 Months (n = 93) | p |
---|---|---|---|---|---|---|
8-isoprostane-F2α (pg/µg creatinine) | Se | 0.49 (0.31, 0.72) | 0.54 (0.38, 0.73) | 0.46 | 0.43 (0.30, 0.66) | 0.70 |
Placebo | 0.49 (0.34, 0.69) | 0.50 (0.35, 0.75) | ||||
DNA damage (arbitrary units/cell) | Se | 46.6 (35.2, 55.00) | 45.4 (39.1, 52.1) | 0.51 | 36.2 (22.8, 49.5) | 0.54 |
Placebo | 50.3 (39.9, 57.2) | 31.4 (30.7, 36.4) | ||||
IGF1 (ng/mL) | Se | 238 (184, 305) | 266 (193, 306) | 0.76 | 237 (181, 307) | 0.81 |
Placebo | 242 (176, 295) | 220 (176, 298) | ||||
IGFBP3 (ng/mLl) | Se | 4527 (3954, 5388) | 4402 (3819, 5332) | 0.68 | 4213 (3762, 4993) | 0.96 |
Placebo | 4251 (3992, 5233) | 4188 (3857, 5098) | ||||
Explanatory Outcomes | ||||||
SOD (nmol/min/mL) | Se | 3.87 (3.08, 4.67) | 3.95 (3.24, 4.98) | 0.98 | 3.77 (3.27, 4.73) | 0.99 |
Placebo | 4.23 (3.26, 4.82) | 4.17 (3.51, 4.82) | ||||
GPx (nmol/min/mL) | Se | 103 (83, 115) | 121 (105, 138) | 0.04 | 122 (112, 134 | 0.03 |
Placebo | 112 (91, 128) | 112 (97, 134) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, H.J.; Sedlacek, S.M.; Fitzgerald, V.K.; Wolfe, P.; McGinley, J.N. A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines 2023, 11, 49. https://doi.org/10.3390/biomedicines11010049
Thompson HJ, Sedlacek SM, Fitzgerald VK, Wolfe P, McGinley JN. A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines. 2023; 11(1):49. https://doi.org/10.3390/biomedicines11010049
Chicago/Turabian StyleThompson, Henry J., Scot M. Sedlacek, Vanessa K. Fitzgerald, Pamela Wolfe, and John N. McGinley. 2023. "A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer" Biomedicines 11, no. 1: 49. https://doi.org/10.3390/biomedicines11010049
APA StyleThompson, H. J., Sedlacek, S. M., Fitzgerald, V. K., Wolfe, P., & McGinley, J. N. (2023). A Randomized, Double-Blind, Placebo-Controlled Investigation of Selenium Supplementation in Women at Elevated Risk for Breast Cancer: Lessons for Re-Emergent Interest in Selenium and Cancer. Biomedicines, 11(1), 49. https://doi.org/10.3390/biomedicines11010049