Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Patients Characteristics
3.2. Association between MS Number and Long-Term Outcomes
3.3. Association between Liver Metastases and Clinical Outcomes in All Patients
3.4. Association between Liver Metastases and Clinical Outcomes in the Subgroup of Patients with Only One MS Involved
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer Immunotherapy Comes of Age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Tu, J.; Wang, X.; Chu, Q. Programmed Cell Death-1/Programmed Cell Death Ligand-1 Checkpoint Inhibitors: Differences in Mechanism of Action. Immunotherapy 2019, 11, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centanni, M.; Moes, D.J.A.R.; Trocóniz, I.F.; Ciccolini, J.; van Hasselt, J.G.C. Clinical Pharmacokinetics and Pharmacodynamics of Immune Checkpoint Inhibitors. Clin. Pharmacokinet. 2019, 58, 835–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-Line Pembrolizumab in Cisplatin-Ineligible Patients with Locally Advanced and Unresectable or Metastatic Urothelial Cancer (KEYNOTE-052): A Multicentre, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Tamura, T.; Kurishima, K.; Nakazawa, K.; Kagohashi, K.; Ishikawa, H.; Satoh, H.; Hizawa, N. Specific Organ Metastases and Survival in Metastatic Non-Small-Cell Lung Cancer. Mol. Clin. Oncol. 2015, 3, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Badawy, A.A.; Khedr, G.; Omar, A.; Bae, S.; Arafat, W.; Grant, S. Site of Metastases as Prognostic Factors in Unselected Population of Stage IV Non-Small Cell Lung Cancer. Asian Pac. J. Cancer Prev. 2018, 19, 1907–1910. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Derks, J.L.; Postmus, P.E.; Damhuis, R.A.; Houben, R.M.A.; Troost, E.G.C.; Hochstenbag, M.M.; Smit, E.F.; Dingemans, A.-M.C. Single Organ Metastatic Disease and Local Disease Status, Prognostic Factors for Overall Survival in Stage IV Non-Small Cell Lung Cancer: Results from a Population-Based Study. Eur. J. Cancer 2015, 51, 2534–2544. [Google Scholar] [CrossRef]
- Riihimäki, M.; Hemminki, A.; Fallah, M.; Thomsen, H.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic Sites and Survival in Lung Cancer. Lung Cancer 2014, 86, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, A.; Cirillo, A.; Scagnoli, S.; Cerbelli, B.; Strigari, L.; Cortellini, A.; Pizzuti, L.; Vici, P.; De Galitiis, F.; Di Pietro, F.R.; et al. The Agnostic Role of Site of Metastasis in Predicting Outcomes in Cancer Patients Treated with Immunotherapy. Vaccines 2020, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Bilen, M.A.; Shabto, J.M.; Martini, D.J.; Liu, Y.; Lewis, C.; Collins, H.; Akce, M.; Kissick, H.; Carthon, B.C.; Shaib, W.L.; et al. Sites of Metastasis and Association with Clinical Outcome in Advanced Stage Cancer Patients Treated with Immunotherapy. BMC Cancer 2019, 19, 857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillet, D.; Corbaux, P.; Stelmes, J.-J.; Dalle, S.; Locatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Freyer, G.; Boespflug, A.; et al. Association between Immune-Related Adverse Events and Long-Term Survival Outcomes in Patients Treated with Immune Checkpoint Inhibitors. Eur. J. Cancer 2020, 132, 61–70. [Google Scholar] [CrossRef]
- Corbaux, P.; Maillet, D.; Boespflug, A.; Locatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Dalle, S.; Falandry, C.; Péron, J. Older and Younger Patients Treated with Immune Checkpoint Inhibitors Have Similar Outcomes in Real-Life Setting. Eur. J. Cancer 2019, 121, 192–201. [Google Scholar] [CrossRef]
- Besse, B.; Adjei, A.; Baas, P.; Meldgaard, P.; Nicolson, M.; Paz-Ares, L.; Reck, M.; Smit, E.F.; Syrigos, K.; Stahel, R.; et al. 2nd ESMO Consensus Conference on Lung Cancer: Non-Small-Cell Lung Cancer First-Line/Second and Further Lines of Treatment in Advanced Disease. Ann. Oncol. 2014, 25, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A. Renal Cell Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powles, T.; Bellmunt, J.; Comperat, E.; De Santis, M.; Huddart, R.; Loriot, Y.; Necchi, A.; Valderrama, B.P.; Ravaud, A.; Shariat, S.F.; et al. Bladder Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 244–258. [Google Scholar] [CrossRef]
- Michielin, O.; van Akkooi, A.; Lorigan, P.; Ascierto, P.A.; Dummer, R.; Robert, C.; Arance, A.; Blank, C.U.; Chiarion Sileni, V.; Donia, M.; et al. ESMO Consensus Conference Recommendations on the Management of Locoregional Melanoma: Under the Auspices of the ESMO Guidelines Committee. Ann. Oncol. 2020, 31, 1449–1461. [Google Scholar] [CrossRef]
- Arkenau, H.-T.; Olmos, D.; Ang, J.E.; de Bono, J.; Judson, I.; Kaye, S. Clinical Outcome and Prognostic Factors for Patients Treated within the Context of a Phase I Study: The Royal Marsden Hospital Experience. Br. J. Cancer 2008, 98, 1029–1033. [Google Scholar] [CrossRef]
- Garrido-Laguna, I.; Janku, F.; Vaklavas, C.; Falchook, G.S.; Fu, S.; Hong, D.S.; Naing, A.; Tsimberidou, A.M.; Wen, S.; Kurzrock, R. Validation of the Royal Marsden Hospital Prognostic Score in Patients Treated in the Phase I Clinical Trials Program at the MD Anderson Cancer Center. Cancer 2012, 118, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.J.W.; Li, H.; D’Silva, A.; Tudor, R.A.; Elegbede, A.A.; Otsuka, S.M.; Bebb, D.G.; Cheung, W.Y. Impact of Number versus Location of Metastases on Survival in Stage IV M1b Non-Small Cell Lung Cancer. Med. Oncol. 2018, 35, 117. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.; Soong, S.; Murad, T.; Smith, J.; Maddox, W.; Durant, J. A Multifactorial Analysis of Melanoma. IV. Prognostic Factors in 200 Melanoma Patients With Distant Metastases (Stage III). J. Clin. Oncol. 1983, 1, 126–134. [Google Scholar] [CrossRef] [PubMed]
- von der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, With Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients With Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. [Google Scholar] [CrossRef]
- Sengeløv, L.; Kamby, C.; von der Maase, H. Metastatic Urothelial Cancer: Evaluation of Prognostic Factors and Change in Prognosis during the Last Twenty Years. Eur. Urol. 2001, 39, 634–642. [Google Scholar] [CrossRef]
- Qiao, M.; Zhou, F.; Hou, L.; Li, X.; Zhao, C.; Jiang, T.; Gao, G.; Su, C.; Wu, C.; Ren, S.; et al. Efficacy of Immune-Checkpoint Inhibitors in Advanced Non-Small Cell Lung Cancer Patients with Different Metastases. Ann. Transl. Med. 2021, 9, 34. [Google Scholar] [CrossRef]
- da Silva, I.P.; Lo, S.; Quek, C.; Gonzalez, M.; Carlino, M.S.; Long, G.V.; Menzies, A.M. Site-Specific Response Patterns, Pseudoprogression, and Acquired Resistance in Patients with Melanoma Treated with Ipilimumab Combined with Anti–PD-1 Therapy. Cancer 2020, 126, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Jenne, C.N.; Kubes, P. Immune Surveillance by the Liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef]
- John, B.; Crispe, I.N. Passive and Active Mechanisms Trap Activated CD8+ T Cells in the Liver. J. Immunol. 2004, 172, 5222–5229. [Google Scholar] [CrossRef] [Green Version]
- Crispe, I.N. Hepatic T Cells and Liver Tolerance. Nat. Rev. Immunol. 2003, 3, 51–62. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Hellmann, M.D.; Hamid, O.; Tsai, K.K.; Loo, K.L.; Gubens, M.A.; Rosenblum, M.; Harview, C.L.; Taube, J.M.; Handley, N.; et al. Liver Metastasis and Treatment Outcome with Anti-PD-1 Monoclonal Antibody in Patients with Melanoma and NSCLC. Cancer Immunol. Res. 2017, 5, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facciorusso, A.; Del Prete, V.; Crucinio, N.; Serviddio, G.; Vendemiale, G.; Muscatiello, N. Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J. Gastroenterol. 2016, 22, 4211–4218. [Google Scholar] [CrossRef] [PubMed]
- Brodt, P. Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clin. Cancer Res. 2016, 22, 5971–5982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nosrati, A.; Tsai, K.K.; Goldinger, S.M.; Tumeh, P.; Grimes, B.; Loo, K.; Algazi, A.P.; Nguyen-Kim, T.D.L.; Levesque, M.; Dummer, R.; et al. Evaluation of Clinicopathological Factors in PD-1 Response: Derivation and Validation of a Prediction Scale for Response to PD-1 Monotherapy. Br. J. Cancer 2017, 116, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Abd El Aziz, M.A.; Facciorusso, A.; Nayfeh, T.; Saadi, S.; Elnaggar, M.; Cotsoglou, C.; Sacco, R. Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma. Vaccines 2020, 8, 616. [Google Scholar] [CrossRef]
- Makaremi, S.; Asadzadeh, Z.; Hemmat, N.; Baghbanzadeh, A.; Sgambato, A.; Ghorbaninezhad, F.; Safarpour, H.; Argentiero, A.; Brunetti, O.; Bernardini, R.; et al. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021, 9, 1075. [Google Scholar] [CrossRef]
- Lemaire, V.; Shemesh, C.S.; Rotte, A. Pharmacology-based ranking of anti-cancer drugs to guide clinical development of cancer immunotherapy combinations. J. Exp. Clin. Cancer Res. 2021, 40, 311. [Google Scholar] [CrossRef]
- Meserve, J.; Facciorusso, A.; Holmer, A.K.; Annese, V.; Sandborn, W.J.; Singh, S. Safety and Tolerability of Immune Checkpoint Inhibitors in Patients with Pre-Existing Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Aliment. Pharmacol. Ther. 2021, 53, 374–382. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
Variable | All (n = 759) | |||
---|---|---|---|---|
All Patients | Patients with 1 MS (n = 389) | Patients with ≥2 MS (n = 370) | p | |
Age, years, median (25th–75th) NA = 0 | 66 (58–73) | 67 (60–74) | 66 (58–72) | 0.011 |
Gender male (%) NA = 0 | 536 (71%) | 276 (71%) | 260 (70%) | 0.90 |
PS ≥ 2 (%) NA = 33 | 192 (26%) | 77 (20%) | 115 (33%) | 0.00015 |
BMI (%) NA = 7 <18 18–30 >30 | 60 (8%) 597 (79%) 95 (13%) | 32 (8%) 297 (77%) 57 (15%) | 28 (8%) 300 (82%) 38 (10%) | 0.17 |
Primary tumor (%) NA = 0 NSLC Melanoma Urologic | 537 (71%) 144 (19%) 78 (10%) | 261 (67%) 73 (19%) 55 (14%) | 276 (75%) 71 (19%) 23 (6%) | 0.0014 |
≥3rd line in metastatic setting (%) NA = 0 | 205 (27%) | 90 (23%) | 115 (31%) | 0.016 |
Type of metastasis (%) NA = 0 Brain only Lung only Liver only Bone only Other only Multiple sites | 49 (6%) 124 (16%) 23 (3%) 62 (8%) 131 (17%) 370 (49%) | _ | _ | - |
Any history of autoimmune disorder (%) NA = 12 | 71 (10%) | 44 (12%) | 27 (7%) | 0.091 |
Characteristics | N (%) | Overall Survival | ||||
---|---|---|---|---|---|---|
Median OS (95% CI) | Unadjusted Analysis | Adjusted Analysis | ||||
HR (95% CI) | p | HR (95% CI) | p | |||
Age NA = 0 <70 ≥70 | 489 (64%) 270 (36%) | 10.3 (9.4–12.8) 11.1 (8.5–13.8) | REF 1.0 (0.84–1.23) | 0.85 | REF 1.14 (0.94–1.39) | 0.18 |
PS < 2 (%) NA = 33 PS ≥ 2 | 534 (74%) 192 (26%) | 14.4 (12.8–16.7) 3.6(3.1–5.0) | 0.36 (0.29–0.43) REF | <0.0001 | 0.40 (0.33–0.49) REF | <0.0001 |
Primary tumor (%) NA = 0 NSLC Melanoma Urologic | 537 (71%) 144 (19%) 78 (10%) | 9.3 (8.3–10.9) 25.4 (16.2-NA) 10.5 (7.3-NA) | REF 0.47 (0.36–0.63) 0.84(0.61–1.15) | <0.0001 | REF 0.52 (0.39–0.70) 0.95 (0.68–1.32) | <0.0001 |
Nb of metastatic site 1 >1 | 389 (51%) 370 (49%) | 15.0 (12.3–18.2) 7.7 (6.3–9.3) | REF 1.63 (1.36–1.96) | <0.0001 | REF 1.28 (1.04–1.57) | 0.021 |
Liver metastasis No Yes | 592 (78%) 167 (22%) | 17 (14-NA) 19 (12-NA) | REF 1.86 (1.51–2.28) | <0.0001 | REF 1.77 (1.41–2.22) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maugeais, M.; Péron, J.; Dalle, S.; Boespflug, A.; Duruissaux, M.; Corbaux, P.; Reverdy, T.; Sahin, G.; Rabier, A.; Lopez, J.; et al. Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study. Biomedicines 2023, 11, 83. https://doi.org/10.3390/biomedicines11010083
Maugeais M, Péron J, Dalle S, Boespflug A, Duruissaux M, Corbaux P, Reverdy T, Sahin G, Rabier A, Lopez J, et al. Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study. Biomedicines. 2023; 11(1):83. https://doi.org/10.3390/biomedicines11010083
Chicago/Turabian StyleMaugeais, Madeleine, Julien Péron, Stéphane Dalle, Amélie Boespflug, Michaël Duruissaux, Pauline Corbaux, Thibault Reverdy, Gulsum Sahin, Aurélie Rabier, Jonathan Lopez, and et al. 2023. "Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study" Biomedicines 11, no. 1: 83. https://doi.org/10.3390/biomedicines11010083
APA StyleMaugeais, M., Péron, J., Dalle, S., Boespflug, A., Duruissaux, M., Corbaux, P., Reverdy, T., Sahin, G., Rabier, A., Lopez, J., Freymond, N., & Maillet, D. (2023). Impact of Liver Metastases and Number of Metastatic Sites on Immune-Checkpoint Inhibitors Efficacy in Patients with Different Solid Tumors: A Retrospective Study. Biomedicines, 11(1), 83. https://doi.org/10.3390/biomedicines11010083