Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges
Abstract
:1. Introduction
2. Tylophorine and Its Derivatives
2.1. Chemistry and Occurrence in Nature
2.2. Antiviral Activity
Viral Strain (Viral Genus) | Infected Cells | EC50 | Selective Index (SI) | Ref. |
---|---|---|---|---|
Tylophorine | ||||
TGEV (porcine coronavirus) | ST | 58 nM | >1000 | [46] |
ST | 80 nM | - | [53] | |
MHV (mouse hepatitis virus; β-coronavirus) | - | - | - | [53] |
FIPV (Feline coronavirus) | Fcwf-4 | 62 nM | >100 | [48] |
SARS-CoV (human coronavirus) | Vero 76 | 18 nM | 88 | [46] |
HCoV-OC43, HCoV-229E, SARS-CoV-2 (human coronavirus) | HCT-8 | 68 to 78 nM | 46 to >100 | [48] |
Tylophorine-based derivatives | ||||
TGEV (porcine coronavirus) | ST | 8 to 18 nM | >7 to >1000 | [46] |
ST | 0.6 to >50 μMb | - | [53] | |
ST | 0.04 to >2.9 μM | - | [53] | |
FIPV (Feline coronavirus) | Fcwf-4 | 8 to >1000 nM | 12.3 to >100 | [48] |
SARS-CoV (human coronavirus) | Vero 76 | <5 to 340 nM | 10 to >100 | [46] |
HCoV-OC43, HCoV-229E, SARS-CoV-2 (human coronavirus) | HCT-8 | 2.5 to 78 nM | >5.3 to >100 | [48] |
Tylophorinine | ||||
TGEV (porcine coronavirus) | ST | 82 nM | >1000 | [46] |
SARS-CoV (human coronavirus) | Vero 76 | <5 to 18 nM | 78 to >100 | [46] |
7-Methoxy cryptopleurine | ||||
TGEV (porcine coronavirus) | ST | 20 nM | >1000 | [46] |
ST | 30 nM | - | [53] | |
SARS-CoV (human coronavirus) | Vero 76 | 39 nM | 19 | [46] |
2.3. Anti-Inflammatory Activity
2.4. Anticancer Activity
2.5. Toxicity Profile
3. Lycorine and Its Derivatives
3.1. Chemistry and Occurrence in Nature
3.2. Antiviral Activity
3.3. Anti-inflammatory Activity
3.4. Anticancer Activity
4. Discussion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and Bioactive Properties. In Plant-Derived Bioactives: Chemistry and Mode of Action; Swamy, M.K., Ed.; Springer: Singapore, 2020; pp. 85–117. [Google Scholar]
- Heinrich, M.; Mah, J.; Amirkia, V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look. Molecules 2021, 26, 1836. [Google Scholar] [CrossRef] [PubMed]
- Omar, F.; Tareq, A.M.; Alqahtani, A.M.; Dhama, K.; Sayeed, M.A.; Emran, T.B.; Simal-Gandara, J. Plant-Based Indole Alkaloids: A Comprehensive Overview from a Pharmacological Perspective. Molecules 2021, 26, 2297. [Google Scholar] [CrossRef] [PubMed]
- Buesa, J. Grand Challenge in Viral Disease Investigation: An Endless Endeavor. Front. Virol. 2021, 1, 692105. [Google Scholar] [CrossRef]
- Nelemans, T.; Kikkert, M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019, 11, 961. [Google Scholar] [CrossRef] [PubMed]
- Zella, D.; Gallo, R.C. Viruses and Bacteria Associated with Cancer: An Overview. Viruses 2021, 13, 1039. [Google Scholar] [CrossRef]
- Weng, C.F.; Chen, L.J.; Lin, C.W.; Chen, H.M.; Lee, H.H.; Ling, T.Y.; Hsiao, F.Y. Association between the risk of lung cancer and influenza: A population-based nested case-control study. Int. J. Infect. Dis. 2019, 88, 8–13. [Google Scholar] [CrossRef]
- Kotin, P.; Wiseley, D.V. Production of Lung Cancer in Mice by Inhalation Exposure to Influenza Virus and Aerosols of Hydrocarbons. Prog. Exp. Tumor Res. 1963, 3, 186–215. [Google Scholar] [CrossRef]
- Baskerville, A.; Thomas, G.; Wood, M.; Harris, W.J. Histology and ultrastructure of metaplasia of alveolar epithelium following infection of mice and hamsters with influenza virus. Br. J. Exp. Pathol. 1974, 55, 130–137. [Google Scholar]
- Chen, C.C.; Wu, C.H.; Lin, C.H.; Chiu, C.C.; Yang, T.Y.; Lei, M.H.; Yeh, H.T.; Jian, W.; Fang, Y.A.; Hao, W.R.; et al. Influenza Vaccination and Risk of Lung Cancer in Patients with Chronic Kidney Disease: A Nationwide, Population-Based Cohort Study. Cancers 2022, 14, 2926. [Google Scholar] [CrossRef]
- Feng, Y.; Wan, H.; Liu, J.; Zhang, R.; Ma, Q.; Han, B.; Xiang, Y.; Che, J.; Cao, H.; Fei, X.; et al. The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncol. Rep. 2010, 23, 941–948. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Rutigliano, G.; Sestito, S.; Bandini, L.; Storti, B.; Bizzarri, R.; Zucchi, R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front. Mol. Biosci. 2020, 7, 588618. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, P.; Ugurlu, M.T.; Hoque, M.O. Effect of COVID-19 on Lungs: Focusing on Prospective Malignant Phenotypes. Cancers 2020, 12, 3822. [Google Scholar] [CrossRef]
- Checconi, P.; De Angelis, M.; Marcocci, M.E.; Fraternale, A.; Magnani, M.; Palamara, A.T.; Nencioni, L. Redox-Modulating Agents in the Treatment of Viral Infections. Int. J. Mol. Sci. 2020, 21, 4084. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M.; Di Giacomo, S.; Di Sotto, A.; Irannejad, H. Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets. Int. J. Mol. Sci. 2023, 24, 8789. [Google Scholar] [CrossRef]
- Mariano, A.; Bigioni, I.; Marchetti, M.; Scotto d’Abusco, A.; Superti, F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023, 28, 4045. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.S.; Sahoo, C.R.; Paidesetty, S.K.; Padhy, R.N. Role of phytocompounds as the potential anti-viral agent: An overview. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 2311–2329. [Google Scholar] [CrossRef]
- Abookleesh, F.L.; Al-Anzi, B.S.; Ullah, A. Potential Antiviral Action of Alkaloids. Molecules 2022, 27, 903. [Google Scholar] [CrossRef]
- Faisal, S.; Badshah, S.L.; Kubra, B.; Emwas, A.H.; Jaremko, M. Alkaloids as potential antivirals. A comprehensive review. Nat. Prod. Bioprospect. 2023, 13, 4. [Google Scholar] [CrossRef]
- Bleasel, M.D.; Peterson, G.M. Emetine, Ipecac, Ipecac Alkaloids and Analogues as Potential Antiviral Agents for Coronaviruses. Pharmaceuticals 2020, 13, 51. [Google Scholar] [CrossRef]
- El-Demerdash, A.; Metwaly, A.M.; Hassan, A.; Abd El-Aziz, T.M.; Elkaeed, E.B.; Eissa, I.H.; Arafa, R.K.; Stockand, J.D. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Sandenon Seteyen, A.L.; Girard-Valenciennes, E.; Septembre-Malaterre, A.; Gasque, P.; Guiraud, P.; Sélambarom, J. Anti-Alphaviral Alkaloids: Focus on Some Isoquinolines, Indoles and Quinolizidines. Molecules 2022, 27, 5080. [Google Scholar] [CrossRef] [PubMed]
- Majnooni, M.B.; Fakhri, S.; Bahrami, G.; Naseri, M.; Farzaei, M.H.; Echeverría, J. Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. Evid. Based Complement. Alternat. Med. 2021, 2021, 6632623. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M.; Hosseini, A.; Di Sotto, A.; Irannejad, H. Dual action anti-inflammatory/antiviral isoquinoline alkaloids as potent naturally occurring anti-SARS-CoV-2 agents: A combined pharmacological and medicinal chemistry perspective. Phytother. Res. 2023, 37, 2168–2186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Morris-Natschke, S.L.; Ma, D.; Shang, X.-F.; Yang, C.-J.; Liu, Y.-Q.; Lee, K.-H. Biologically active indolizidine alkaloids. Med. Res. Rev. 2021, 41, 928–960. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Song, Y.; Gao, H.; Sun, Y.; Sun, X.; Yang, Y.; He, M.; Yang, Z.; Zhan, L.; et al. Synthesis of Quaternary Carbon-Centered Benzoindolizidinones via Novel Photoredox-Catalyzed Alkene Aminoarylation: Facile Access to Tylophorine and Analogues. CCS Chem. 2019, 1, 352–364. [Google Scholar] [CrossRef]
- Jia, X.H.; Zhao, H.X.; Du, C.L.; Tang, W.Z.; Wang, X.J. Possible pharmaceutical applications can be developed from naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids. Phytochem. Rev. 2021, 20, 845–868. [Google Scholar] [CrossRef] [PubMed]
- Chemler, S.R. Phenanthroindolizidines and Phenanthroquinolizidines: Promising Alkaloids for Anti-Cancer Therapy. Curr. Bioact. Compd. 2009, 5, 2–19. [Google Scholar] [CrossRef]
- Villard, C.; Larbat, R.; Munakata, R.; Hehn, A. Defence mechanisms of Ficus: Pyramiding strategies to cope with pests and pathogens. Planta 2019, 249, 617–633. [Google Scholar] [CrossRef]
- Gururani, R.; Patel, S.; Yaduvanshi, N.; Dwivedi, J.; Paliwal, S.; Sharma, S. Tylophora indica (Burm. f.) merr: An insight into phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 262, 113122. [Google Scholar] [CrossRef] [PubMed]
- Nazar, S.; Hussain, M.A.; Khan, A.; Muhammad, G.; Bukhari, S.N. Alkaloid-rich plant Tylophora indica; current trends in isolation strategies, chemical profiling and medicinal applications. Arab. J. Chem. 2020, 13, 6348–6365. [Google Scholar] [CrossRef]
- Gopalakrishnan, C.; Shankaranarayan, D.; Kameswaran, L.; Natarajan, S. Pharmacological investigations of tylophorine, the major alkaloid of Tylophora indica. Indian J. Med. Res. 1979, 69, 513–520. [Google Scholar] [PubMed]
- Gupta, R.; Datta, A.; Shri, R. Extraction process optimization of tylophorine from Tylophora asthmatica Wight & Arn. Pharmacogn. J. 2012, 4, 19–23. [Google Scholar] [CrossRef]
- Chaudhuri, K.N.; Ghosh, B.; Tepfer, D.; Jha, S. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: Growth and tylophorine productivity in different transformed root clones. Plant Cell Rep. 2005, 24, 25–35. [Google Scholar] [CrossRef]
- Phillipson, J.; Tezcan, I.; Hylands, P. Alkaloids oftylophoraspecies from Sri Lanka. Planta Med. 1974, 25, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Gellert, E. The Indolizidine Alkaloids. J. Nat. Prod. 1982, 45, 50–73. [Google Scholar] [CrossRef]
- Abe, F.; Iwase, Y.; Yamauchi, T.; Honda, K.; Hayashi, N. Phenanthroindolizidine alkaloids from Tylophora tanakae. Phytochemistry 1995, 39, 695–699. [Google Scholar] [CrossRef]
- Viswanathan, N.; Pai, B.R. Alkaloids of Tylophora mollissima. J. Nat. Prod. 1985, 48, 997–998. [Google Scholar] [CrossRef]
- Huang, X.; Gao, S.; Fan, L.; Yu, S.; Liang, X. Cytotoxic alkaloids from the roots of Tylophora atrofolliculata. Planta Med. 2004, 70, 441–445. [Google Scholar] [CrossRef]
- Baumgartner, B.; Erdelmeier, C.A.J.; Wright, A.D.; Rali, T.; Sticher, O. An antimicrobial alkaloid from Ficus septica. Phytochemistry 1990, 29, 3327–3330. [Google Scholar] [CrossRef]
- An, T.; Huang, R.Q.; Yang, Z.; Zhang, D.K.; Li, G.R.; Yao, Y.C.; Gao, J. Alkaloids from Cynanchum komarovii with inhibitory activity against the tobacco mosaic virus. Phytochemistry 2001, 58, 1267–1269. [Google Scholar] [CrossRef]
- Hoffmann, J.J.; Luzbetak, D.J.; Torrance, S.J.; Cole, J.R. Cryptopleurine cyto toxic agent from boehmeria caudata urticaceae and cryptocarya laevigata lauraceae. Phytochemistry 1978, 17, 1448. [Google Scholar] [CrossRef]
- Mostafa, E.M.; Musa, A.; Mohammed, H.A.; Alzarea, A.I.; Abdelgawad, M.A.; Al-Sanea, M.M.; Ismail, A.; Zafar, A.; Elmowafy, M.; Selim, S.; et al. Phenanthroindolizidine Alkaloids Secondary Metabolites Diversity in Medicinally Viable Plants of the Genus Tylophora. Plants 2023, 12, 1143. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, Y.; Liu, Y.; Mi, N.; Fan, Z.; Liu, Y.; Wang, Q. Design, synthesis, and antiviral evaluation of phenanthrene-based tylophorine derivatives as potential antiviral agents. J. Agric. Food Chem. 2010, 58, 12337–12342. [Google Scholar] [CrossRef]
- Yang, C.W.; Lee, Y.Z.; Kang, I.J.; Barnard, D.L.; Jan, J.T.; Lin, D.; Huang, C.W.; Yeh, T.K.; Chao, Y.S.; Lee, S.J. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res. 2010, 88, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Lee, Y.Z.; Hsu, H.Y.; Shih, C.; Chao, Y.S.; Chang, H.Y.; Lee, S.J. Targeting Coronaviral Replication and Cellular JAK2 Mediated Dominant NF-κB Activation for Comprehensive and Ultimate Inhibition of Coronaviral Activity. Sci. Rep. 2017, 7, 4105. [Google Scholar] [CrossRef]
- Yang, C.W.; Lee, Y.Z.; Hsu, H.Y.; Jan, J.T.; Lin, Y.L.; Chang, S.Y.; Peng, T.T.; Yang, R.B.; Liang, J.J.; Liao, C.C.; et al. Inhibition of SARS-CoV-2 by Highly Potent Broad-Spectrum Anti-Coronaviral Tylophorine-Based Derivatives. Front. Pharmacol. 2020, 11, 606097. [Google Scholar] [CrossRef]
- Wang, K.; Su, B.; Wang, Z.; Wu, M.; Li, Z.; Hu, Y.; Fan, Z.; Mi, N.; Wang, Q. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J. Agric. Food Chem. 2010, 58, 2703–2709. [Google Scholar] [CrossRef]
- Wu, T.S.; Sun, C.R.; Lee, K.H. Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis. Nat. Prod. Commun. 2012, 7, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, W.; Svitkin, Y.V.; Chen, A.P.; Cheng, Y.C. DCB-3503, a tylophorine analog, inhibits protein synthesis through a novel mechanism. PLoS ONE 2010, 5, e11607. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, S.; Ha, Y.; Lam, W.; Chen, S.R.; Dutschman, G.E.; Gullen, E.A.; Grill, S.P.; Cheng, Y.; Fürstner, A.; et al. Tylophorine Analogs Allosterically Regulates Heat Shock Cognate Protein 70 And Inhibits Hepatitis C Virus Replication. Sci. Rep. 2017, 7, 10037. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Z.; Yang, C.W.; Hsu, H.Y.; Qiu, Y.Q.; Yeh, T.K.; Chang, H.Y.; Chao, Y.S.; Lee, S.J. Synthesis and biological evaluation of tylophorine-derived dibenzoquinolines as orally active agents: Exploration of the role of tylophorine e ring on biological activity. J. Med. Chem. 2012, 55, 10363–10377. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Z.; Guo, H.C.; Zhao, G.H.; Yang, C.W.; Chang, H.Y.; Yang, R.B.; Chen, L.; Lee, S.J. Tylophorine-based compounds are therapeutic in rheumatoid arthritis by targeting the caprin-1 ribonucleoprotein complex and inhibiting expression of associated c-Myc and HIF-1α. Pharmacol. Res. 2020, 152, 104581. [Google Scholar] [CrossRef]
- Wen, T.; Wang, Z.; Meng, X.; Wu, M.; Li, Y.; Wu, X.; Zhao, L.; Wang, P.; Yin, Z.; Li-Ling, J.; et al. Synthesis of novel tylophorine derivatives and evaluation of their anti-inflammatory activity. ACS Med. Chem. Lett. 2014, 5, 1027–1031. [Google Scholar] [CrossRef]
- Chou, S.T.; Jung, F.; Yang, S.H.; Chou, H.L.; Jow, G.M.; Lin, J.C. Antofine suppresses endotoxin-induced inflammation and metabolic disorder via AMP-activated protein kinase. Pharmacol. Res. Perspect. 2017, 5, e00337. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Y.; Jia, Z.; Huo, X.; He, X.; Tian, G.; Wu, M.; Wang, Z.; Zhou, X.; Xiong, S.; et al. A novel tylophorine analog W-8 up-regulates forkhead boxP3 expression and ameliorates murine colitis. J. Leukoc. Biol. 2013, 93, 83–93. [Google Scholar] [CrossRef]
- Shiah, H.S.; Gao, W.; Baker, D.C.; Cheng, Y.C. Inhibition of cell growth and nuclear factor-kappaB activity in pancreatic cancer cell lines by a tylophorine analogue, DCB-3503. Mol. Cancer Ther. 2006, 5, 2484–2493. [Google Scholar] [CrossRef]
- Wen, T.; Li, Y.; Wu, M.; Chen, X.; Han, L.; Bao, X.; Wang, Z.; Wang, K.; Hu, Y.; Zhou, X.; et al. A novel tylophorine analog NK-007 ameliorates colitis through inhibition of innate immune response. Int. Immunopharmacol. 2012, 14, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.Q.; Yang, C.W.; Lee, Y.Z.; Yang, R.B.; Lee, C.H.; Hsu, H.Y.; Chang, C.C.; Lee, S.J. Correction: Targeting a ribonucleoprotein complex containing the caprin-1 protein and the c-Myc mRNA suppresses tumor growth in mice: An identification of a novel oncotarget. Oncotarget 2019, 10, 4919. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, A.; Hakeem, A.R.; Radhakrishnan, S.; Reddy, M.S.; Rela, M. The Role and Therapeutic Potential of NF-kappa-B Pathway in Severe COVID-19 Patients. Inflammopharmacology 2021, 29, 91–100. [Google Scholar] [CrossRef]
- Gao, W.; Lam, W.; Zhong, S.; Kaczmarek, C.; Baker, D.C.; Cheng, Y.C. Novel mode of action of tylophorine analogs as antitumor compounds. Cancer Res. 2004, 64, 678–688. [Google Scholar] [CrossRef]
- Cyriac, A.; Thomas, T.; Thomas, T.D. Tylophorine: Sources, Properties, Applications and Biotechnological Production. In Plant-Derived Bioactives; Springer: Singapore, 2020; pp. 167–176. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Wong, H.L.; Guru, B.R.; Lis, L.G.; Georg, G.I.; Gurvich, V.J.; Panyam, J. Reformulating Tylocrebrine in Epidermal Growth Factor Receptor Targeted Polymeric Nanoparticles Improves Its Therapeutic Index. Mol. Pharm. 2015, 12, 2912–2923. [Google Scholar] [CrossRef]
- Pratama, N.P.; Wulandari, S.; Nugroho, A.E.; Fakhrudin, N.; Astuti, P.; Sudarsono. Tylophorine Abrogates G2/M Arrest Induced by Doxorubicine and Promotes Increased Apoptosis in T47D Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2018, 19, 3065–3069. [Google Scholar] [CrossRef]
- Yang, C.W.; Lee, Y.Z.; Hsu, H.Y.; Wu, C.M.; Chang, H.Y.; Chao, Y.S.; Lee, S.J. c-Jun-mediated anticancer mechanisms of tylophorine. Carcinogenesis 2013, 34, 1304–1314. [Google Scholar] [CrossRef]
- Dikshith, T.S.; Raizada, R.B.; Mulchandani, N.B. Toxicity of pure alkaloid of Tylophora asthamatica in male rat. Indian J. Exp. Biol. 1990, 28, 208–212. [Google Scholar] [PubMed]
- Wang, Y.; Zhu, G.; Li, X.; Hao, Z. Simultaneous determination of galanthamine and lycorine in Lycoris radiata by a capillary electrophoresis with an electrochemiluminescence method. J. Sep. Sci. 2014, 37, 3007–3012. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Evidente, A.; Andolfi, A.; Abou-Donia, A.H.; Touema, S.M.; Hammoda, H.M.; Shawky, E.; Motta, A. (−)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry 2004, 65, 2113–2118. [Google Scholar] [CrossRef]
- Koorbanally, N.; Mulholland, D.A.; Crouch, N. Alkaloids and triterpenoids from Ammocharis coranica (Amaryllidaceae). Phytochemistry 2000, 54, 93–97. [Google Scholar] [CrossRef]
- Campbell, W.E.; Nair, J.J.; Gammon, D.W.; Codina, C.; Bastida, J.; Viladomat, F.; Smith, P.J.; Albrecht, C.F. Bioactive alkaloids from Brunsvigia radulosa. Phytochemistry 2000, 53, 587–591. [Google Scholar] [CrossRef]
- Shawky, E. Phytochemical and Biological Investigation of Clivia nobilis Flowers Cultivated in Egypt. Iran J. Pharm. Res. 2016, 15, 531–535. [Google Scholar]
- Endo, Y.; Sugiura, Y.; Funasaki, M.; Kagechika, H.; Ishibashi, M.; Ohsaki, A. Two new alkaloids from Crinum asiaticum var. japonicum. J. Nat. Med. 2019, 73, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Elgorashi, E.E.; Drewes, S.E.; Van Staden, J. Organ-to-organ and seasonal variation in alkaloids from Crinum macowanii. Fitoterapia 2002, 73, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Sebola, T.E.; Uche-Okereafor, N.C.; Mekuto, L.; Makatini, M.M.; Green, E.; Mavumengwana, V. Antibacterial and Anticancer Activity and Untargeted Secondary Metabolite Profiling of Crude Bacterial Endophyte Extracts from Crinum macowanii Baker Leaves. Int. J. Microbiol. 2020, 2020, 8839490. [Google Scholar] [CrossRef]
- Berkov, S.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Galanthus nivalis. Phytochemistry 2007, 68, 1791–1798. [Google Scholar] [CrossRef]
- Döpke, W.; Pham, L.H.; Gründemann, E.; Bartoszek, M.; Flatau, S. Alkaloids from Hippeastrum equestre. Part I. Phamine, a new phenanthridone alkaloid. Planta Med. 1995, 61, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Bastida, J.; Codina, C.; Porres, C.L.; Paiz, L. Alkaloids from Hippeastrum solandriflorum. Planta Med. 1996, 62, 74–75. [Google Scholar] [CrossRef]
- Lin, L.Z.; Hu, S.F.; Chai, H.B.; Pengsuparp, T.; Pezzuto, J.M.; Cordell, G.A.; Ruangrungsi, N. Lycorine alkaloids from Hymenocallis littoralis. Phytochemistry 1995, 40, 1295–1298. [Google Scholar] [CrossRef]
- Ivanov, I.; Georgiev, V.; Berkov, S.; Pavlov, A. Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions. J. Plant Physiol. 2012, 169, 206–211. [Google Scholar] [CrossRef]
- Georgieva, L.; Berkov, S.; Kondakova, V.; Bastida, J.; Viladomat, F.; Atanassov, A.; Codina, C. Alkaloid variability in Leucojum aestivum from wild populations. Z. Naturforsch. C J. Biosci. 2007, 62, 627–635. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z. Nonaqueous CE ESI-IT-MS analysis of Amaryllidaceae alkaloids. J. Sep. Sci. 2013, 36, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Katoch, D.; Sharma, U. Simultaneous quantification and identification of Amaryllidaceae alkaloids in Narcissus tazetta by ultra performance liquid chromatography-diode array detector-electrospray ionisation tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019, 175, 112750. [Google Scholar] [CrossRef]
- Katoch, D.; Kumar, D.; Padwad, Y.S.; Singh, B.; Sharma, U. Pseudolycorine N-oxide, a new N-oxide from Narcissus tazetta. Nat. Prod. Res. 2020, 34, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Le, N.T.; De Jonghe, S.; Erven, K.; Vermeyen, T.; Baldé, A.M.; Herrebout, W.A.; Neyts, J.; Pannecouque, C.; Pieters, L.; Tuenter, E. Anti-SARS-CoV-2 Activity and Cytotoxicity of Amaryllidaceae Alkaloids from Hymenocallis littoralis. Molecules 2023, 28, 3222. [Google Scholar] [CrossRef]
- Spina, R.; Saliba, S.; Dupire, F.; Ptak, A.; Hehn, A.; Piutti, S.; Poinsignon, S.; Leclerc, S.; Bouguet-Bonnet, S.; Laurain-Mattar, D. Molecular Identification of Endophytic Bacteria in Leucojum aestivum In Vitro Culture, NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production. Int. J. Mol. Sci. 2021, 22, 1773. [Google Scholar] [CrossRef]
- Li, H.Y.; Ma, G.E.; Xu, Y.; Hong, S.H. Alkaloids of Lycoris guangxiensis. Planta Med. 1987, 53, 259–261. [Google Scholar] [CrossRef]
- Deng, B.; Ye, L.; Yin, H.; Liu, Y.; Hu, S.; Li, B. Determination of pseudolycorine in the bulb of lycoris radiata by capillary electrophoresis combined with online electrochemiluminescence using ultrasonic-assisted extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 927–932. [Google Scholar] [CrossRef]
- Katoch, D.; Kumar, D.; Sharma, U.; Kumar, N.; Padwad, Y.S.; Lal, B.; Singh, B. Zephgrabetaine: A new betaine-type amaryllidaceae alkaloid from Zephyranthes grandiflora. Nat. Prod. Commun. 2013, 8, 161–164. [Google Scholar] [CrossRef]
- Yang, J.S.; Feng, X.; Chen, Y.; Zhao, X.Z.; Wang, M.; Wang, Q.Z.; Dong, Y.F. Study on the chemical constituents from the bulbs of Zephyranthes candida. Zhong Yao Cai 2010, 33, 1730–1732. [Google Scholar] [PubMed]
- Chaichompoo, W.; Rojsitthisak, P.; Pabuprapap, W.; Siriwattanasathien, Y.; Yotmanee, P.; Suksamrarn, A. Alkaloids with cholinesterase inhibitory activities from the bulbs of Crinum × amabile Donn ex Ker Gawl. Phytochemistry 2023, 205, 113473. [Google Scholar] [CrossRef] [PubMed]
- Rhee, I.K.; Appels, N.; Hofte, B.; Karabatak, B.; Erkelens, C.; Stark, L.M.; Flippin, L.A.; Verpoorte, R. Isolation of the acetylcholinesterase inhibitor ungeremine from Nerine bowdenii by preparative HPLC coupled on-line to a flow assay system. Biol. Pharm. Bull. 2004, 27, 1804–1809. [Google Scholar] [CrossRef]
- Trujillo Chacón, L.M.; Leiva, H.; Zapata Vahos, I.C.; Restrepo, D.C.; Osorio, E. Influence of plant growth regulators on in vitro biomass production and biosynthesis of cytotoxic Amaryllidaceae alkaloids in Caliphuria tenera Baker. Biocatal. Agric. Biotechnol. 2023, 50, 102670. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, P.; Zhou, Q. Multiple biological functions and pharmacological effects of lycorine. Sci. China Chem. 2013, 56, 1382–1391. [Google Scholar] [CrossRef]
- Gabrielsen, B.; Monath, T.P.; Huggins, J.W.; Kefauver, D.F.; Pettit, G.R.; Groszek, G.; Hollingshead, M.; Kirsi, J.J.; Shannon, W.M.; Schubert, E.M.; et al. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J. Nat. Prod. 1992, 55, 1569–1581. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.C.; Chu, J.J.; Yang, P.L.; Chen, W.; Yates, M.V. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res. 2008, 77, 232–236. [Google Scholar] [CrossRef]
- Li, B.; Wang, Q.; Pan, X.; Fernández de Castro, I.; Sun, Y.; Guo, Y.; Tao, X.; Risco, C.; Sui, S.F.; Lou, Z. Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. Proc. Natl. Acad. Sci. USA 2013, 110, 9048–9053. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005, 67, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, Y.; Xu, Y.; Ma, C.; Qin, C.; Zhang, L. Lycorine reduces mortality of human enterovirus 71-infected mice by inhibiting virus replication. Virol. J. 2011, 8, 483. [Google Scholar] [CrossRef]
- Chen, H.; Lao, Z.; Xu, J.; Li, Z.; Long, H.; Li, D.; Lin, L.; Liu, X.; Yu, L.; Liu, W.; et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 2020, 546, 88–97. [Google Scholar] [CrossRef]
- He, J.; Qi, W.B.; Wang, L.; Tian, J.; Jiao, P.R.; Liu, G.Q.; Ye, W.C.; Liao, M. Amaryllidaceae alkaloids inhibit nuclear-to-cytoplasmic export of ribonucleoprotein (RNP) complex of highly pathogenic avian influenza virus H5N1. Influenza Other Respir. Viruses 2013, 7, 922–931. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Cao, L.; Wang, P.; Qing, J.; Zheng, Q.; Shang, L.; Yin, Z.; Sun, Y. A Conserved Inhibitory Mechanism of a Lycorine Derivative against Enterovirus and Hepatitis C Virus. Antimicrob. Agents Chemother. 2016, 60, 913–924. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhang, Q.Y.; Li, X.D.; Xiong, J.; Xiao, S.Q.; Wang, Z.; Zhang, Z.R.; Deng, C.L.; Yang, X.L.; Wei, H.P.; et al. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture. Emerg. Microbes Infect. 2020, 9, 1170–1173. [Google Scholar] [CrossRef]
- Jin, Y.H.; Min, J.S.; Jeon, S.; Lee, J.; Kim, S.; Park, T.; Park, D.; Jang, M.S.; Park, C.M.; Song, J.H.; et al. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 2021, 86, 153440. [Google Scholar] [CrossRef]
- Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem. 2020, 295, 4773–4779. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.X.; Shang, W.J.; Yin, W.C.; Ge, H.; Wang, L.; Zhang, X.L.; Li, B.Q.; Li, H.L.; Xu, Y.C.; Xu, E.H.; et al. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol. Sin. 2022, 43, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zheludev, I.N.; Hagey, R.J.; Haslecker, R.; Hou, Y.J.; Kretsch, R.; Pintilie, G.D.; Rangan, R.; Kladwang, W.; Li, S.; et al. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nat. Struct. Mol. Biol. 2021, 28, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Vrijsen, R.; Vanden Berghe, D.A.; Vlietinck, A.J.; Boeyé, A. Lycorine: A eukaryotic termination inhibitor? J. Biol. Chem. 1986, 261, 505–507. [Google Scholar] [CrossRef]
- Bullen, C.K.; Hogberg, H.T.; Bahadirli-Talbott, A.; Bishai, W.R.; Hartung, T.; Keuthan, C.; Looney, M.M.; Pekosz, A.; Romero, J.C.; Sillé, F.C.M.; et al. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. Altex 2020, 37, 665–671. [Google Scholar] [CrossRef]
- Shen, L.; Niu, J.; Wang, C.; Huang, B.; Wang, W.; Zhu, N.; Deng, Y.; Wang, H.; Ye, F.; Cen, S.; et al. High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses. J. Virol. 2019, 93, e00023-19. [Google Scholar] [CrossRef]
- Min, J.S.; Kwon, S.; Jin, Y.H. SARS-CoV-2 RdRp Inhibitors Selected from a Cell-Based SARS-CoV-2 RdRp Activity Assay System. Biomedicines 2021, 9, 996. [Google Scholar] [CrossRef]
- Wang, H.; Guo, T.; Yang, Y.; Yu, L.; Pan, X.; Li, Y. Lycorine Derivative LY-55 Inhibits EV71 and CVA16 Replication through Downregulating Autophagy. Front. Cell. Infect. Microbiol. 2019, 9, 277. [Google Scholar] [CrossRef]
- Chen, D.; Cai, J.; Cheng, J.; Jing, C.; Yin, J.; Jiang, J.; Peng, Z.; Hao, X. Design, Synthesis and Structure-Activity Relationship Optimization of Lycorine Derivatives for HCV Inhibition. Sci. Rep. 2015, 5, 14972. [Google Scholar] [CrossRef]
- Ge, X.; Meng, X.; Fei, D.; Kang, K.; Wang, Q.; Zhao, M. Lycorine attenuates lipopolysaccharide-induced acute lung injury through the HMGB1/TLRs/NF-κB pathway. 3 Biotech 2020, 10, 369. [Google Scholar] [CrossRef]
- Lamoral-Theys, D.; Andolfi, A.; Van Goietsenoven, G.; Cimmino, A.; Le Calvé, B.; Wauthoz, N.; Mégalizzi, V.; Gras, T.; Bruyère, C.; Dubois, J.; et al. Lycorine, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: An investigation of structure-activity relationship and mechanistic insight. J. Med. Chem. 2009, 52, 6244–6256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yuan, X.; Yu, T.; Huang, H.; Yang, C.; Zhang, L.; Yang, S.; Luo, X.; Luo, J. Lycorine inhibits cell proliferation, migration and invasion, and primarily exerts in vitro cytostatic effects in human colorectal cancer via activating the ROS/p38 and AKT signaling pathways. Oncol. Rep. 2021, 45, 19. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Jang, X.; Shi, L.; Ma, Y. Lycorine inhibits cell proliferation and induced oxidative stress-mediated apoptosis via regulation of the JAK/STAT3 signaling pathway in HT-3 cells. J. Biochem. Mol. Toxicol. 2021, 35, e22882. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Q.; Liu, X.; Li, Y.; Fan, X.; Liu, G. Lycorine upregulates the expression of RMB10, promotes apoptosis and inhibits the proliferation and migration of cervical cancer cells. Int. J. Mol. Med. 2022, 50, 145. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Li, X.; Wang, Y. Lycorine inhibits angiogenesis by docking to PDGFRα. BMC Cancer 2022, 22, 873. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, V.; Laguera, B.; Masi, M.; Dulanto, S.A.; Bingham, T.W.; Hernandez, L.W.; Sarlah, D.; Evidente, A.; Lafontaine, D.L.J.; Kornienko, A.; et al. Amaryllidaceae Alkaloids Decrease the Proliferation, Invasion, and Secretion of Clinically Relevant Cytokines by Cultured Human Colon Cancer Cells. Biomolecules 2022, 12, 1267. [Google Scholar] [CrossRef]
- Yang, C.; Xiang, H.; Fu, K.; Jin, L.; Yuan, F.; Xue, B.; Wang, Z.; Wang, L. Lycorine suppresses cell growth and invasion via down-regulation of NEDD4 ligase in bladder cancer. Am. J. Cancer Res. 2022, 12, 4708–4720. [Google Scholar]
- Liu, J.; Sun, S.; Zhou, C.; Sun, Z.; Wang, Q.; Sun, C. In vitro and in vivo anticancer activity of Lycorine in prostate cancer by inhibiting NF-κB signaling pathway. J. Cancer 2022, 13, 3151–3159. [Google Scholar] [CrossRef] [PubMed]
- Sancha, S.A.R.; Szemerédi, N.; Spengler, G.; Ferreira, M.U. Lycorine Carbamate Derivatives for Reversing P-glycoprotein-Mediated Multidrug Resistance in Human Colon Adenocarcinoma Cells. Int. J. Mol. Sci. 2023, 24, 2061. [Google Scholar] [CrossRef]
- Li, Y.; Tai, Z.; Ma, J.; Miao, F.; Xin, R.; Shen, C.; Shen, M.; Zhu, Q.; Chen, Z. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma. J. Nanobiotechnology 2023, 21, 139. [Google Scholar] [CrossRef]
- Sancha, S.A.R.; Gomes, A.V.; Loureiro, J.B.; Saraiva, L.; Ferreira, M.J.U. Amaryllidaceae-Type Alkaloids from Pancratium maritimum: Apoptosis-Inducing Effect and Cell Cycle Arrest on Triple-Negative Breast Cancer Cells. Molecules 2022, 27, 5759. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Deng, C.; Pan, G.; Wang, X.; Zhang, K.; Dong, Z.; Zhao, G.; Tan, M.; Hu, X.; Shi, S.; et al. Lycorine hydrochloride inhibits cell proliferation and induces apoptosis through promoting FBXW7-MCL1 axis in gastric cancer. J. Exp. Clin. Cancer Res. 2020, 39, 230. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yu, D.; Fu, S.; Zhang, G.; Pan, Y.; Bao, M.; Tu, J.; Shang, B.; Guo, P.; Yang, P.; et al. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol. Lett. 2013, 218, 174–185. [Google Scholar] [CrossRef]
- Roy, M.; Liang, L.; Xiao, X.; Peng, Y.; Luo, Y.; Zhou, W.; Zhang, J.; Qiu, L.; Zhang, S.; Liu, F.; et al. Lycorine Downregulates HMGB1 to Inhibit Autophagy and Enhances Bortezomib Activity in Multiple Myeloma. Theranostics 2016, 6, 2209–2224. [Google Scholar] [CrossRef]
- Hu, M.; Peng, S.; He, Y.; Qin, M.; Cong, X.; Xing, Y.; Liu, M.; Yi, Z. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer. Oncotarget 2015, 6, 15348–15361. [Google Scholar] [CrossRef]
- Li, L.; Dai, H.J.; Ye, M.; Wang, S.L.; Xiao, X.J.; Zheng, J.; Chen, H.Y.; Luo, Y.H.; Liu, J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int. 2012, 12, 49. [Google Scholar] [CrossRef]
- Pavel, B.; Moroti, R.; Spataru, A.; Popescu, M.R.; Panaitescu, A.M.; Zagrean, A.M. Neurological Manifestations of SARS-CoV-2 Infection: A Narrative Review. Brain Sci. 2022, 12, 1531. [Google Scholar] [CrossRef]
- Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents 2020, 56, 106054. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, K.O.; Lin, A.; Rodriguez, J.B.C. Cardiac Manifestations of Post-Acute COVID-19 Infection. Curr. Cardiol. Rep. 2022, 24, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Bjornstad, E.C.; Seifert, M.E.; Sanderson, K.; Feig, D.I. Kidney implications of SARS-CoV-2 infection in children. Pediatr. Nephrol. 2022, 37, 1453–1467. [Google Scholar] [CrossRef] [PubMed]
- Cau, R.; Faa, G.; Nardi, V.; Balestrieri, A.; Puig, J.; Suri, J.S.; SanFilippo, R.; Saba, L. Long-COVID diagnosis: From diagnostic to advanced AI-driven models. Eur. J. Radiol. 2022, 148, 110164. [Google Scholar] [CrossRef]
- Jee, J.; Foote, M.B.; Lumish, M.; Stonestrom, A.J.; Wills, B.; Narendra, V.; Avutu, V.; Murciano-Goroff, Y.R.; Chan, J.E.; Derkach, A.; et al. Chemotherapy and COVID-19 Outcomes in Patients with Cancer. J. Clin. Oncol. 2020, 38, 3538–3546. [Google Scholar] [CrossRef]
- Angrini, M.; Varthaman, A.; Garcia-Verdugo, I.; Sallenave, J.M.; Alifano, M.; Cremer, I. To Vaccinate or not: Influenza Virus and Lung Cancer Progression. Trends Cancer 2021, 7, 573–576. [Google Scholar] [CrossRef]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, H.; Chen, Z. Study on pharmacokinetic and tissue distribution of lycorine in mice plasma and tissues by liquid chromatography-mass spectrometry. Talanta 2014, 119, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, Y.B.; Huang, S.; Liu, Y. An LC-MS/MS method for the simultaneous determination of lycorine and galanthamine in rat plasma and its application to pharmacokinetic study of Lycoris radiata extract in rats. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2014, 34, 861–868. [Google Scholar] [CrossRef]
- Jahn, S.; Seiwert, B.; Kretzing, S.; Abraham, G.; Regenthal, R.; Karst, U. Metabolic studies of the Amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models. Anal. Chim. Acta 2012, 756, 60–72. [Google Scholar] [CrossRef]
- Shanmugaraj, B.; CJ, I.B.; Phoolcharoen, W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Plants 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed]
Species/Plant Part | Family | Ref. | |
---|---|---|---|
Tylophorine | Tylophora indica (Burm. F.) Merr./leaves and root | Asclepidaceae | [31] |
Tylophora crebriflora S.T. Blake/whole plant | Asclepidaceae | [37] | |
Tylophora tanakae Maxim. Ex Franch. & Sav./leaves | Asclepidaceae | [38] | |
Tylophora mollissima Wt./whole plant | Asclepidaceae | [39] | |
Tylophorinine | Tylophora indica (Burm. F.) Merr./leaves and root | Asclepidaceae | [31] |
Tylophora atrofolliculata Wt./whole plant | Asclepidaceae | [40] | |
Tylophora mollissima Wt./whole plant | Asclepidaceae | [39] | |
Tylophorinidine | Tylophora indica (Burm. F.) Merr./leaves and root | Asclepidaceae | [31] |
Tylocrebrine | Tylophora crebriflora S.T. Blake/whole plant | Asclepidaceae | [37] |
Antofine | Ficus septica Burm. F./stems | Moraceae | [41] |
Cynanchum komarovii Al. Iljinski/aerial parts | Asclepidaceae | [42] | |
Cryptopleurine | Boehmeria caudata (L.) Sw./stem wood with bark | Urticaceae | [43] |
Cryptocarya laevigata Blume/stem bark | Lauraceae | [43] |
Species/Plant Part | Family | Refs. | |
---|---|---|---|
Lycorine | Amaryllis belladonna L. | Amaryllidaceae | [70] |
Ammocharis coranica (Ker Gawl.) Herb. | Amaryllidaceae | [71] | |
Brunsvigia radulosa | Amaryllidaceae | [72] | |
Clivia nobilis Lindl. | Amaryllidaceae | [73] | |
Crinum asiaticum var. japonicum Bak. | Amaryllidaceae | [74] | |
Crinum macowanii Bak. | Amaryllidaceae | [75,76] | |
Galanthus nivalis L. | Amaryllidaceae | [77] | |
Hippeastrum equestre Herb. | Amaryllidaceae | [78] | |
Hippeastrum solandriflorum Herb. | Amaryllidaceae | [79] | |
Hymenocallis littoralis (Jacq.) Salisb. | Amaryllidaceae | [80] | |
Leucojum aestivum L. | Amaryllidaceae | [81,82] | |
Lycoris radiata (L’Her.) Herb./bulbs | Amaryllidaceae | [68,83] | |
Narcissus tazetta L. | Amaryllidaceae | [84,85] | |
Pseudolycorine | Hymenocallis littoralis (Jacq.) Salisb. | Amaryllidaceae | [86] |
Hymenocallis littoralis (Jacq.) Salisb. | Amaryllidaceae | [86] | |
Leucojum aestivum L. | Amaryllidaceae | [87] | |
Lycoris guangxiensis Y-Xu & G.J. Fan | Amaryllidaceae | [88] | |
Lycoris radiata (L’Her.) Herb./bulbs | Amaryllidaceae | [89] | |
Zephyranthes grandiflora Lindl. | Amaryllidaceae | [90] | |
Amarbellisine | Amaryllis belladonna L. | Amaryllidaceae | [70] |
Zephyranthes candida (Lindl.) Herb. | Amaryllidaceae | [91] | |
Ungeremine | Crinum asiaticum var. japonicum Bak. | Amaryllidaceae | [74] |
Crinum x amabile Donn. Ex Ker Gawl. | Amaryllidaceae | [92] | |
Galanthus nivalis L. | Amaryllidaceae | [92] | |
Hymenocallis littoralis (Jacq.) Salisb. | Amaryllidaceae | [92] | |
Hippeastrum solandriflorum Herb. | Amaryllidaceae | [92] | |
Narcissus tazetta L. | Amaryllidaceae | [85] | |
Nerine bowdenii W. Watson | Amaryllidaceae | [93] | |
Zephyranthes grandiflora Lindl. | Amaryllidaceae | [90] | |
Lycorene | Caliphuria tenera Bak. | Amaryllidaceae | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sotto, A.; Valipour, M.; Azari, A.; Di Giacomo, S.; Irannejad, H. Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines 2023, 11, 2619. https://doi.org/10.3390/biomedicines11102619
Di Sotto A, Valipour M, Azari A, Di Giacomo S, Irannejad H. Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines. 2023; 11(10):2619. https://doi.org/10.3390/biomedicines11102619
Chicago/Turabian StyleDi Sotto, Antonella, Mehdi Valipour, Aala Azari, Silvia Di Giacomo, and Hamid Irannejad. 2023. "Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges" Biomedicines 11, no. 10: 2619. https://doi.org/10.3390/biomedicines11102619
APA StyleDi Sotto, A., Valipour, M., Azari, A., Di Giacomo, S., & Irannejad, H. (2023). Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines, 11(10), 2619. https://doi.org/10.3390/biomedicines11102619