Clinical Outcomes of Diabetic Ketoacidosis in Type 2 Diabetes Patients with and without SGLT2 Inhibitor Treatment: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Umpierrez, G.; Korytkowski, M. Diabetic emergencies—Ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat. Rev. Endocrinol. 2016, 12, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Shand, J.A.D.; Morrow, P.; Braatvedt, G. Mortality after discharge from hospital following an episode of diabetic ketoacidosis. Acta Diabetol. 2022, 59, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor. N. Engl. J. Med. 2017, 376, 2300–2302. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L.; Li, S.; Wang, Y.; Qin, X.; Deng, K.; Liu, Y.; Zou, K.; Sun, X. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2020, 22, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Bonora, B.M.; Avogaro, A. SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System. Diabetologia 2017, 60, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Kitabchi, A.E.; Umpierrez, G.E.; Miles, J.M.; Fisher, J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009, 32, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Ramaesh, A. Incidence and long-term outcomes of adult patients with diabetic ketoacidosis admitted to intensive care: A retrospective cohort study. J. Intensive Care Soc. 2016, 17, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Weng, S.F.; Tsai, K.T.; Chen, P.J.; Lin, H.J.; Wang, J.J.; Su, S.B.; Chou, W.; Guo, H.R.; Hsu, C.C. Long-term Mortality Risk After Hyperglycemic Crisis Episodes in Geriatric Patients with Diabetes: A National Population-Based Cohort Study. Diabetes Care 2015, 38, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Chen, H.; Miller, M.E.; Marcovina, S.M.; Seaquist, E.R. Biomarkers associated with severe hypoglycaemia and death in ACCORD. Diabet. Med. 2016, 33, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Ferrannini, E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern WITH SGLT2 Inhibitors. Diabetes Care 2015, 38, 1638–1642. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Kim, S.K.; Kim, K.S.; Song, S.O.; Yun, J.S.; Kim, B.Y.; Kim, C.H.; Park, S.O.; Hong, S.; Seo, D.H.; et al. Clinical characteristics of diabetic ketoacidosis in users and non-users of SGLT2 inhibitors. Diabetes Metab. 2019, 45, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Almazrouei, R.; Afandi, B.; AlKindi, F.; Govender, R.; Al-Shamsi, S. Clinical Characteristics and Outcomes of Diabetic Ketoacidosis in Patients with Type 2 Diabetes using SGLT2 Inhibitors. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231153717. [Google Scholar] [CrossRef]
- Barski, L.; Nevzorov, R.; Rabaev, E.; Jotkowitz, A.; Harman-Boehm, I.; Zektser, M.; Zeller, L.; Shleyfer, E.; Almog, Y. Diabetic ketoacidosis: Clinical characteristics, precipitating factors and outcomes of care. Isr. Med. Assoc. J. IMAJ 2012, 14, 299–303. [Google Scholar]
- Sasso, F.C.; Simeon, V.; Galiero, R.; Caturano, A.; De Nicola, L.; Chiodini, P.; Rinaldi, L.; Salvatore, T.; Lettieri, M.; Nevola, R.; et al. The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc. Diabetol. 2022, 21, 1–10. [Google Scholar] [CrossRef]
- Colacci, M.; Fralick, J.; Odutayo, A.; Fralick, M. Sodium-glucose cotransporter-2 inhibitors and risk of diabetic ketoacidosis among adults with type 2 diabetes: A systematic review and meta-analysis. Can. J. Diabetes 2022, 46, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Juneja, D.; Nasa, P.; Jain, R.; Singh, O. Sodium-glucose Cotransporter-2 Inhibitors induced euglycemic diabetic ketoacidosis: A meta summary of case reports. World J. Diabetes 2023, 14, 1314. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. EMA Confirms Recommendations to Minimise Ketoacidosis Risk with SGLT2 Inhibitors for Diabetes. 25 February 2016. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/sglt2-inhibitors (accessed on 8 September 2023).
Characteristic | Non-SGLT2I Users (n = 55) | SGLT2I Users (n = 16) | p-Value |
---|---|---|---|
Age—yr | 67.6 ± 14.4 | 64.6 ± 11.0 | 0.44 |
Female—no. (%) | 25 (45.5) | 7 (43.8) | 1 |
BMI—kg/m2 | 25.8 ± 4.6 | 28.8 ± 4.7 | 0.03 |
Median duration of T2DM (range)—yr | 7.5 (3–17) | 6 (4–13) | 0.56 |
HbA1c before admission—% | 10.5 ± 2.3 | 10.3 ± 3.6 | 0.79 |
Medical history—no. (%) | |||
Hypertension | 44 (80.0) | 10 (62.5) | 0.19 |
Hyperlipidemia | 39/53 (73.6) | 12 (75) | 1 |
Coronary artery disease | 21 (38.2) | 4 (25) | 0.39 |
Chronic heart failure | 13 (23.6) | 3 (18.8) | 1 |
Stroke | 8/54 (14.8) | 2 (12.5) | 1 |
Peripheral vascular disease | 13/54 (24.1) | 6 (37.5) | 0.34 |
Chronic kidney disease * | 15 (27.3) | 2 (12.5) | 0.33 |
Diabetic neuropathy | 10/54 (18.5) | 3 (23.1) | 0.72 |
Diabetic retinopathy | 7/54 (13) | 3 (18.8) | 0.69 |
Current smoker | 21 (38.2) | 5 (31.3) | 0.77 |
Alcohol use disorder | 7 (12.7) | 1 (6.3) | 0.67 |
Drug abuse | 0 | 0 | 1 |
Concurrent medications—no. (%) | |||
Metformin | 22 (40) | 9 (56.3) | 0.27 |
Sulfonylurea | 6 (10.9) | 0 | 0.33 |
DPP4 inhibitor | 2 (3.6) | 1 (6.3) | 0.54 |
GLP-1 receptor agonist | 1 (1.8) | 1 (6.3) | 0.40 |
Insulin | 38 (69.1) | 6 (37.5) | 0.04 |
Pioglitazone | 2 (3.6) | 0 | 1 |
Systemic glucocorticoid | 3/53 (5.7) | 1 (6.3) | 1 |
Signs on admission, no. (%) | |||
Unconsciousness | 8/54 (14.8) | 2 (12.5) | 1 |
Kussmaul breathing | 20/54 (37) | 3 (18.8) | 0.23 |
Heart rate—bpm | 102 ± 17 | 101 ± 19 | 0.99 |
Initial blood tests | |||
Glucose—mg/dL | 491 ± 159 | 385 ± 143 | 0.02 |
Glucose < 300mg/dL, no. (%) | 7/55 (12.7) | 7/16 (44) | 0.01 |
Creatinine—mg/dL | 2.3 ± 1.5 | 1.8 ± 0.9 | 0.25 |
Blood urea nitrogen—mg/dL | 36.6 ± 27.9 | 23.9 ± 9.9 | 0.007 |
Sodium—mmol/L | 132.5 ± 6.2 | 135.3 ± 6.6 | 0.16 |
Potassium—mmol/L | 4.9 ± 0.9 | 4.6 ± 0.7 | 0.27 |
Chloride—mmol/L | 98.6 ± 6.9 | 102.1 ± 7 | 0.09 |
Osmolality—mOsm/kg | 342 ± 44 | 330 ± 31 | 0.33 |
pH | 7.14 ± 0.13 | 7.16 ± 0.10 | 0.63 |
Bicarbonate—mmol/L | 15.2 ± 7 | 13.3 ± 3.8 | 0.15 |
pCO2—mmHg | 33 ± 13.1 | 43.2 ± 11.5 | 0.007 |
Anion gap—mmol/L | 19.7 ± 8.5 | 20.7 ± 6 | 0.69 |
Hemoglobin—g/dL | 12.7 ± 2.5 | 13.6 ± 2.2 | 0.20 |
White blood cells—×10−9/L | 14.7 ± 6.9 | 13.9 ± 4.6 | 0.65 |
HbA1c—% | 10.1 ± 1.9 | 10.7 ± 3.4 | 0.57 |
Non-SGLT2I Users (n = 55) | SGLT2I Users (n = 16) | p-Value | |
---|---|---|---|
Cause of DKA n, % | 0.47 | ||
Unknown | 9 (16.4) | 4 (25.0) | |
Nonadherence to treatment * | 12 (21.8) | 3 (18.8) | |
Nonadherence to insulin | 7 (58.3) | 2 (66.7) | |
Infection | 27 (49.1) | 6 (37.5) | |
Urinary tract infection | 8 (29.7) | 2 (33.3) | |
Pneumonia | 9 (33.3) | 1 (16.7) | |
Acute bronchitis | 2 (7.4) | 0 | |
Acute gastroenteritis | 2 (7.4) | 0 | |
Wound infection | 1 (3.7) | 1 (16.7) | |
Acute diverticulitis | 1 (3.7) | 0 | |
Perianal abscess | 1 (3.7) | 0 | |
Acute sinusitis | 0 | 1 (16.7) | |
Acute pharyngitis | 0 | 1 (16.7) | |
Viral myocarditis | 1 (3.7) | 0 | |
Unknown origin | 2 (7.4) | 0 | |
Acute kidney injury | 2 (3.6) | 1 (6.3) | |
Alcohol use | 1 (1.8) | 1 (6.3) | |
Cardiovascular event | 1 (1.8) | 0 | |
Trauma | 3 (5.5) | 0 | |
Corticosteroids | 0 | 1 (6.3) |
Non-SGLT2I Users (n = 29) | SGLT2I Users (n = 2) | p-Value | |
---|---|---|---|
Cause of mortality n, % | 0.92 | ||
Unknown | 1 (3.4) | 0 | |
Infection | 23 (79.3) | 2 (100) | |
Pneumonia | 9 (39.1) | 0 | |
Urinary tract infection | 7 (30.5) | 1 (50) | |
Wound infection | 2 (8.7) | 1 (50) | |
Acute encephalitis | 1 (4.3) | 0 | |
Viral myocarditis | 1 (4.3) | 0 | |
Unknown origin | 3 (13.1) | 0 | |
Acute kidney injury | 4 (13.8) | 0 | |
Gastrointestinal bleeding | 1 (3.4) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhleh, A.; Othman, A.; Masri, A.; Zloczower, M.; Zolotov, S.; Shehadeh, N. Clinical Outcomes of Diabetic Ketoacidosis in Type 2 Diabetes Patients with and without SGLT2 Inhibitor Treatment: A Retrospective Study. Biomedicines 2023, 11, 2689. https://doi.org/10.3390/biomedicines11102689
Nakhleh A, Othman A, Masri A, Zloczower M, Zolotov S, Shehadeh N. Clinical Outcomes of Diabetic Ketoacidosis in Type 2 Diabetes Patients with and without SGLT2 Inhibitor Treatment: A Retrospective Study. Biomedicines. 2023; 11(10):2689. https://doi.org/10.3390/biomedicines11102689
Chicago/Turabian StyleNakhleh, Afif, Areen Othman, Amin Masri, Moshe Zloczower, Sagit Zolotov, and Naim Shehadeh. 2023. "Clinical Outcomes of Diabetic Ketoacidosis in Type 2 Diabetes Patients with and without SGLT2 Inhibitor Treatment: A Retrospective Study" Biomedicines 11, no. 10: 2689. https://doi.org/10.3390/biomedicines11102689
APA StyleNakhleh, A., Othman, A., Masri, A., Zloczower, M., Zolotov, S., & Shehadeh, N. (2023). Clinical Outcomes of Diabetic Ketoacidosis in Type 2 Diabetes Patients with and without SGLT2 Inhibitor Treatment: A Retrospective Study. Biomedicines, 11(10), 2689. https://doi.org/10.3390/biomedicines11102689