
Citation: Gong, Y.; Hao, D.; Zhang,

Y.; Tu, Y.; He, B.; Yan, L. Molecular

Subtype Classification of

Postmenopausal Osteoporosis and

Immune Infiltration

Microenvironment Based on

Bioinformatics Analysis of

Osteoclast-Regulatory Genes.

Biomedicines 2023, 11, 2701.

https://doi.org/10.3390/

biomedicines11102701

Academic Editors: Chak-Sum Ho

and Daniela Merlotti

Received: 5 September 2023

Revised: 26 September 2023

Accepted: 29 September 2023

Published: 4 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Molecular Subtype Classification of Postmenopausal
Osteoporosis and Immune Infiltration Microenvironment Based
on Bioinformatics Analysis of Osteoclast-Regulatory Genes
Yining Gong 1,2 , Dingjun Hao 1,2, Yong Zhang 1, Yongyong Tu 1, Baorong He 1 and Liang Yan 1,*

1 Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China;
gong_yn@bjmu.edu.cn (Y.G.); 1310301542@bjmu.edu.cn (D.H.); zechaoqu@yau.edu.cn (Y.Z.);
1510301104@pku.edu.cn (Y.T.); 1310301541@bjmu.edu.cn (B.H.)

2 Institute of Orthopedic Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
* Correspondence: yanliang@yau.edu.cn

Abstract: Osteoporosis is common in postmenopausal women but is often asymptomatic until
a fracture occurs, highlighting the importance of early screening and preventive interventions.
This study aimed to develop molecular subtype risk stratification of postmenopausal osteoporosis
and analyze the immune infiltration microenvironment. Microarray data for osteoporosis were
downloaded and analyzed. Logistic and least absolute shrinkage and selection operator (LASSO)
regression analyses were used to construct the molecular risk model. Circulating blood samples
were collected from 10 enrolled participants to validate the key differentially expressed genes, and
consistent clustering based on the expression profiles of candidate genes was performed to obtain
molecular subtypes. Three key genes, CTNNB1, MITF, and TNFSF11, were obtained as variables and
used to construct the risk model. External experimental validation showed substantial differences in
the three key genes between patients with osteoporosis and the controls (p < 0.05). Three subtypes
were obtained based on dimensionality reduction clustering results. Cluster 3 had significantly more
patients with low bone mineral density (BMD), whereas Cluster 2 had significantly more patients with
high BMD (p < 0.05). This study introduced a novel molecular risk model and subtype classification
system, which is an evidence-based screening strategy that will guide the active prevention, early
diagnosis, and treatment of osteoporosis in high-risk postmenopausal women.

Keywords: osteoporosis; molecular subtype; risk stratification; immune infiltration microenvironment;
bioinformatics; osteoclast

1. Introduction

Osteoporosis is a systemic, aging-related, skeletal disease characterized by low bone
mass and microstructural destruction [1]. In clinical practice, osteoporosis is diagnosed as
a bone mineral density (BMD) T-score of −2.5 or less [2]. Osteoporosis leads to increased
bone fragility and greater susceptibility to fractures, thereby adversely affecting orthopedic
surgery because of the high incidence of implant failure [3]. Epidemiological studies have
shown that the prevalence of osteoporosis in postmenopausal women is as high as 32.1% [4].
In addition, owing to its age-related characteristics and the aging of the global population,
the number of patients with osteoporosis is expected to increase rapidly, resulting in higher
complication rates, mortality, and medical burden [5,6].

Osteoporosis is common in postmenopausal women but is often asymptomatic until
fractures occur. From the perspective of disease characteristics and cost-effectiveness,
early screening and preventive interventions are required [7,8]. There are many options
for treating osteoporosis, including anti-resorptive and anabolic medications, as well as
some natural compounds [9]. However, knowledge of screening and prevention has not
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developed at the same rate as diagnosis and treatment advances in recent years. Dual-
energy X-ray absorptiometry (DXA) of the hip and lumbar spine is the most widely used
tool for the diagnosis of osteoporosis, and is the recommended test of BMD screening
for all women aged 65 years or older by the US Preventive Services Task Force and other
professional societies [10,11]. However, in practice, it is difficult to screen the entire at-
risk population using DXA without triage tests [10]. Several epidemiological studies
have developed clinical decision-making tools for osteoporosis risk assessment to screen
postmenopausal women for BMD measurements [12–14]. However, there is still room for
these decision-making tools based solely on clinical information when it comes to their
sensitivity and specificity [15].

Both genetic and environmental factors contribute to the development of osteoporosis,
but compared with numerous previously reported clinical tools, risk assessment models of
osteoporosis based on genetic information are rare [16]. Since the clinical importance of the
genetic determination of osteoporosis is incontestable, a study of molecular risk models
based on regulation genes can be a timely and interesting contribution. Osteoclasts play an
important role in maintaining the balance of bone metabolism and have been extensively
studied in osteoporosis [17]. Previous studies have reported a few genetic markers associ-
ated with osteoporosis [18,19]. Comparisons between healthy and diseased individuals
at the transcript level facilitate the identification of differentially expressed genes (DEGs),
which may indicate disease causes or consequences and other factors correlated with the
disease under scrutiny [20]. In the present study, we aimed to further stratify the risk of
osteoporosis in postmenopausal women based on DEGs. Although the immune infiltration
microenvironment is closely related to the development of osteoporosis, little is known
about its relationship with patients at different risk levels [21]. Through this study, we also
intended to speculate on the differences in the immune infiltration microenvironment in
patients with different molecular subtypes.

To address these needs, in this study, we constructed a novel molecular risk model
and molecular subtypes in postmenopausal women by identifying DEGs in osteoclasts.
Such evidence-based screening strategies will guide the active prevention, early diagnosis,
and treatment of osteoporosis for high-risk postmenopausal women.

2. Materials and Methods
2.1. Public Dataset Source and Processing

GSE56815, a microarray of osteoporosis data of circulating monocytes, was down-
loaded from the Gene Expression Omnibus (GEO) using the R package “GEOquery”,
comprising a total of 80 samples from 40 female patients with high BMD and 40 with low
BMD. The data were pre-processed as follows: the probes corresponding to genes were
retained and the no-load probes were removed; multiple probes corresponding to the same
gene were then selected as average gene expression levels. The functions and correspond-
ing gene sets related to osteoclast regulation were obtained from the Molecular Signatures
Database (MSigDB). The gene expression profile data for these osteoclast-regulatory genes
were selected from the GSE56815 dataset for further differential analysis.

2.2. Participants

This study was approved by the institutional review board of Honghui Hospital (no.
202206029) and was performed according to the Helsinki Declaration of 1975, as revised
in 2000. Written consent was obtained from all participants included in the study. Ten
participants were enrolled in this study, with five each in the osteoporosis and control
groups. Circulating blood was collected from all participants. These participants underwent
spine surgery for degenerative lumbar disease in the hospital and were evaluated by a
senior osteoporosis specialist. Details of the participants are provided in the Results section.
All patients completed the Oswestry Disability Index and Karnofsky Performance Status
scales at the time of enrollment to minimize the influence of the external factors of daily
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life on BMD. All patients were evaluated by a senior osteoporosis specialist for primary
osteoporosis.

2.3. Identification of DEGs and Construction of the Molecular Risk Model

The “limma” package in R software (version 4.1.1, R Foundation for Statistical Comput-
ing, Vienna, Austria) was used to analyze the DEGs between high- and low-BMD samples
in the GSE56815 dataset. Heatmaps and boxplots of DEGs were produced using R software
(version 4.1.1) and the packages “pheatmap” and “ggplot”. Univariate and multivariate
logistic regression analyses were conducted to identify candidate genes related to BMD
among the DEGs. The LASSO regression model reduces the dimensionality of the data to
reduce noise or redundant genes. Candidate genes were subjected to LASSO regression
analysis using the R package “glmnet”. We used family = “binomial” to fit the model,
and the most effective candidate genes and the optimal value of the penalization λ were
determined via 10-fold cross-validation. The risk score of each patient with osteoporosis
was calculated using the corresponding regression coefficients and the expression levels of
the candidate genes. The calculation formula is as follows:

score = ∑n
i=1(coe f i × expri),

where coe f i is the LASSO regression coefficient and expri is the expression value of the
gene. We divided the patients with osteoporosis into high- and low-risk groups based on
the median value. The area under the receiver operating characteristic curve was calculated
using the R package “pROC” to evaluate the prediction performance.

2.4. External Experimental Validation

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood sample
of each patient. Total RNA from PBMCs was extracted using TRIzol reagent (Ambion;
Thermo Fisher Scientific, Waltham, MA, USA) following standard procedures. An optical
density ratio at 260 nm/208 nm of 1.8–2.0 satisfied the experimental requirements. RNA
(2 µg) from each sample was reverse-transcribed into cDNA using 5× HiScript II Select
qRT SuperMix II (VAZYME, Nanjing, China). qPCR was performed with SYBR Green
Master Mix (VAZYME) using an ABI QuantStudio 6 Real-Time System (Applied Biosys-
tems, Waltham, MA, USA), according to the standard protocols, programmed to perform
42 cycles in total. Specific primers for mRNAs were synthesized by Tsingke Biotechnology
(Beijing, China). Relative mRNA transcript levels were normalized to those of β-actin.
The primer sequences are as follows: CTNNB1 forward CCAAGTGGGTGGTATAGAGG,
reverse AGTCCATAGTGAAGGCGAAC (156 bp); MITF forward CCAAAGAGAGGCA-
GAAAAAGGA, reverse CGTGGATGGAATAAGGGAAAGTC (311 bp); TNFSF11 forward
ATCTGGTTCCCATAAAGTGAG, reverse CGAAAGCAAATGTTGGCATA (141 bp); and
β-actin forward CCCTGGAGAAGAGCTACGAG, reverse CGTACAGGTCTTTGCGGATG
(180 bp). The expression level of each mRNA was calculated using the 2−44Ct method.

2.5. Abundance of Infiltrating Immune Cells

The CIBERSORT algorithm uses the deconvolution method to extract features from
RNA-sequencing data and inversely calculates the proportions of various cellular com-
ponents in bulk-seq. The R script “CIBERSORT” was used to detect the abundance of
22 immune cells in all samples.

2.6. Molecular Subtypes of Osteoporosis Samples

Consensus clustering is an algorithm that can be used to identify the members of
clusters and their numbers in a dataset. We used the R package “ConsensusClusterPlus”
to perform consistent clustering of samples based on the expression profiles of candidate
genes to obtain three molecular subtypes.
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2.7. Functional Enrichment Analysis and Gene Set Variation Analysis

The R package “clusterProfiler” was used to perform functional enrichment analysis
for DEGs of each subtype, and the significantly enriched pathways and functions were
screened using a threshold of p < 0.05. We downloaded the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway gene set from MSigDB and used the R package “GSVA” to
calculate the pathway enrichment scores for each sample. Gene set variation analysis is a
non-parametric, unsupervised method for estimating enriched variation in gene sets from
samples of expression datasets. The gene set file “c2. cp. kegg. v7.5.1. symbols”, containing
184 key genes, was downloaded from MSigDB.

2.8. PPI Network Construction and Topology Feature Analysis

We used the STRING database to map the PPI networks of 26 DEGs on human protein
interaction networks in the database, and then, reconstructed the network using Cytoscape
(version 3.9.1). The MCODE plugin was used to detect important co-regulation modules
for sub-network analysis. The cytoHubba plugin was used to compute hub nodes.

2.9. Quantification and Statistical Analyses

All statistical analyses were performed using R, version 4.1.1 (R Foundation for Statis-
tical Computing, Vienna, Austria). The Wilcoxon test was used to calculate the statistical
significance of two groups of variables, and the Kruskal-Wallis test was used to calculate the
statistical significance of multiple groups of variables. Spearman’s correlation coefficient
was used to analyze the correlation between two groups of variables. Differences in clinical
characteristics between the molecular subtypes were determined using the Chi-square test.

3. Results
3.1. Functions of Osteoclast-Regulatory Genes

Functions related to osteoclast regulation were downloaded from MSigDB, and
nine functions related to osteoclast regulation were obtained, comprising five osteoclast
differentiation-related functions, three osteoclast development-related functions, and one
osteoclast proliferation-related function. These functions included 100 genes related to
osteoclast regulation, comprising 83, 13, and 4 genes regulating osteoclast differentiation,
development, and proliferation, respectively. Figure 1A illustrates the location of osteoclast-
regulatory genes on the chromosome. We mapped the osteoclast-regulatory genes in
the STRING database to obtain the interaction network of these genes. The majority of
the genes were related to osteoclast differentiation, whereas the osteoclast proliferation-
related genes were in the minority. Moreover, there was close interaction between the
three gene groups. There was an interaction between proliferation-related genes and a
large number of differentiation-related genes. In particular, this analysis suggested that
development-related SRC genes may play an important role in osteoclast differentiation
(Figure 1B).

3.2. Expression Levels and Correlation of Osteoclast-Regulatory Genes

The gene expression profile data of 96 osteoclast-regulatory genes were selected from
the GEO GSE56815 dataset based on a microarray of standardized osteoporosis data of
circulating monocytes, comprising a total of 80 samples from 40 female patients with high
BMD and 40 with low BMD. Sixteen DEGs were found between the high- and low-BMD
groups, among which six genes (LRRK1, ANXA2, POU4F2, CTSK, TNFSF11, and IFNAR1)
were substantially overexpressed in the low-BMD samples and 10 genes (JUNB, TNF, GAB2,
CCR1, IREB2, TOB2, CTNNB, GPR183, MITF, and LTF) were substantially overexpressed in
the high-BMD samples (p < 0.05) (Figure 2).
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osteoclast regulation on chromosomes. (B) Protein–protein interaction network of three types of
genes related to the regulation of osteoclasts and the proportion of each type of gene: osteoclast
development-related genes (black), osteoclast differentiation-related genes (orange), and osteoclast
proliferation-related genes (blue).
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Figure 2. Expression levels of osteoclast-regulatory genes according to bone mineral density (BMD).
(A) Expression heatmap of differentially expressed osteoclast regulation-related genes in patients
with high (light blue) and low (peach) BMD. (B) Boxplots comparing the expression distribution
of differentially expressed osteoclast-regulatory genes between patients with high (green) and low
(orange) BMD. The Wilcoxon test was used to determine the significance of differential expression.
ns: no statistically significant difference; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Spearman’s correlation coefficient was used to analyze the correlation between the 16
differentially expressed osteoclast-regulatory genes. TOB2 expression negatively correlated
with TNFSF11 expression (R = −0.37, p < 0.01), whereas TNF expression positively corre-
lated with JUNB expression (R = 0.63; p < 0.001) (Figure 3). These four genes are associated
with osteoclast differentiation. TOB2 belongs to the antiproliferative protein family and is
involved in the regulation of cell cycle progression. TNF is involved in the regulation of a
wide range of biological processes, including cell proliferation, differentiation, apoptosis,
and lipid metabolism. JUNB is involved in the positive regulation of transcription by RNA
polymerase II. TNFSF11 is a key factor in osteoclast differentiation and activation.
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Figure 3. Correlation of osteoclast-regulatory gene expression. Dot plot showing the correlations
between the expression levels of osteoclast regulation-related genes, analyzed via Spearman’s correla-
tion coefficient. The correlations between TOB2 and TNFSF11 (R = −0.37, p = 0.00072) and between
TNF and JUNB (R = 0.63, p < 2.2 × 10−16) are shown in detail.
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3.3. Molecular Risk Model for Osteoporosis

Univariate logistic regression was performed using BMD as the dependent variable
and the expression level of each differentially expressed osteoclast-regulatory gene as the
independent variables. Fifteen genes were found to be statistically significant, among
which CCR1, CTNNB1, GAB2, GPR183, IREB2, JUNB, LTF, MITF, TNF, and TOB2 emerged
as protective factors, whereas CTSK, ANXA2, LRRK1, POU4F2, and TNFSF11 emerged as
risk factors (p < 0.05) (Figure 4A).
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Figure 4. Construction of a molecular risk model for osteoporosis based on osteoclast-regulatory
genes. (A) Univariate logistic regression results of differentially expressed osteoclast regulation-
related genes. (B) Multivariate logistic regression results of CTNNB1, MITF, and TNFSF11. (C) Co-
efficient change of each feature according to the lambda change in the LASSO regression model.
(D) Distribution of risk scores between high (blue)- and low (yellow)-bone-mass-density (BMD)
groups. The Wilcoxon test was used to determine the significance of the difference in risk scores.
(E) Receiver operating characteristic curve to evaluate risk model performance according to the area
under the curve (AUC) value. (F) Confidence interval of the target parameter after cross-validation.

Least absolute shrinking and selection operator (LASSO) regression analysis was
performed on these genes to determine the coefficient change of each feature according to
the lambda (λ) change; the λ and log (λ) values were set to 0.14 and −1.97, respectively
(Figure 4C,F). Three of the fifteen genes, CTNNB1, MITF, and TNFSF11, were selected in
LASSO regression to construct the risk model (risk score = Exp (CTNNB1) × (−1.167227) +
Exp (MITF) × (−5.192496) + Exp (TNFSF11) × (12.019122)). The key roles of these three
genes in osteoporosis were verified using multivariate logistic regression, with CTNNB1
(OR = 3.501 × 10−7, p = 0.016) and MITF (OR = 2.475 × 10−14, p = 0.002) as protective
factors and TNFSF11 (OR = 9.245× 1022, p = 0.003) as a risk factor (Figure 4B). These results
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indicated that CTNNB1, MITF, and TNFSF11 are of great significance in the occurrence
and development of osteoporosis. Indeed, patients with low BMD had significantly higher
risk scores from the model and patients with high BMD had lower risk scores (p < 0.001)
(Figure 4D). Finally, the receiver operating characteristic curve of all samples demonstrated
the excellent diagnostic performance of our risk model (area under the curve = 0.8306;
Figure 4E).

3.4. External Experimental Validation of the Key Genes in the Osteoporosis Risk Model

Ten patients were enrolled in this study for experimental validation, including five
with and five without osteoporosis (see Table 1 for the inclusion and exclusion criteria).
The average age at enrollment was 62.2 ± 7.7 years, and the average time after menopause
was 15.8 ± 6.3 years. The average BMD T-values in the osteoporosis group were −3.1 ± 0.4
(spine) and −3.4 ± 1.0 (hip), and those in the control group were −1.3 ± 0.8 (spine) and
−1.1 ± 0.8 (hip). There was no significant difference between the control and osteoporosis
groups in terms of body mass index (26.7 ± 5.3 vs. 23.6 ± 3.5; p = 0.309), serum calcium
level (2.3 ± 0.1 vs. 2.3 ± 0.0; p = 0.633), serum phosphate level (1.3 ± 0.1 vs. 1.2 ± 0.2;
p = 0.369), Oswestry Disability Index (0.3 ± 0.2 vs. 0.5 ± 0.1; p = 0.087), and Karnofsky
Performance Status (82.0 ± 11.0 vs. 72.0 ± 4.5; p = 0.114). The quantitative polymerase
chain reaction (qPCR) of osteoclast regulation genes selected in the risk model in these
patients showed consistent results with the analysis of public microarray data. TNFSF11
was significantly upregulated (p = 0.001), whereas CTNNB1 (p = 0.001) and MITF (p = 0.017)
were significantly downregulated, in the osteoporosis group (Figure 5).

Table 1. Inclusion and exclusion criteria for participants in the external experimental validation
study.

Inclusion Criteria Exclusion Criteria

Confirmed diagnosis of osteoporosis according
to WHO criteria (osteoporosis group)

Complications, including skeletal neoplasms,
tuberculosis, infection, ankylosing spondylitis

Bone mineral density was determined as the
lowest value in the lumbar spine and hip Combined history of skeletal system surgery

Women ≥ 50 years old, <80 years old, and who
were postmenopausal

Combined severe cardiopulmonary disease,
severe liver or kidney dysfunction, untreated
clotting disorders, and other major diseases

Primary osteoporosis (osteoporosis group) Hypocalcemia or hypophosphatemia

Able to take care of themselves in daily life;
Karnofsky performance status score ≥70

Combined connective tissue disease a,
endocrine and metabolic diseases b,

gastrointestinal and nutritional diseases, and
hematological malignancy

Without previous anti-osteoporosis treatment History of drug use affecting bone
metabolism c

a Including systemic lupus erythematosus, rheumatoid arthritis, Sjogren’s syndrome, dermatomyositis, and
mixed connective tissue disease. b Including hyperparathyroidism, Cushing’s syndrome, hypogonadism, hyper-
thyroidism, pituitary prolactinoma, type 1 diabetes mellitus, and hypopituitarism. c Including glucocorticoids,
immunosuppressants, heparin, anticonvulsants, antineoplastic drugs, aluminum antacids, thyroid hormones,
GnRH-a, or dialysate.

3.5. Associations of Osteoclast-Regulatory Genes with the Immune Microenvironment

After dividing the patients into high- and low-risk groups according to the median
value of the risk score, we calculated the abundance of immune cells in the two groups.
The low-risk group had substantially more CD8+ T cells and the high-risk group had sub-
stantially more natural killer (NK) cells (Figure 6A). The expression of TNFSF11 positively
correlated with the abundance of M1-subtype macrophages (R = 0.25; p = 0.028). The
expression of MITF was significantly positively correlated with CD8+ T cells (R = 0.28;
p = 0.012) and negatively correlated with resting NK cells (R = −0.24; p = 0.032). The
expression of CTNNB1 was positively correlated with memory B cells (R = 0.256; p = 0.022)
and negatively correlated with naive B cells (R = −0.273; p = 0.014) (Figure 6B).
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Figure 5. Quantitative real-time polymerase chain reaction verification of key differentially expressed
genes. Compared with that in the control groups (red), the relative expression of CTNNB1 (A)
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We further analyzed human leukocyte antigen (HLA) gene sets extracted from the
GSE56815 dataset; HLA-DMB and HLA-DRB6 expression levels significantly differed be-
tween the high- and low-risk groups (Figure 6C). We found that TNFSF11 expression was
significantly negatively correlated with HLA-DOB expression (R = −0.04; p = 0.012); MITF
expression negatively correlated with HLA-DMB (R = −0.005; p = 0.038) and positively cor-
related with HLA-DOA (R = 0.388; p = 0.028) expression; and CTNNB1 expression positively
correlated with HLA-DOA (R = 0.114; p = 0.023), HLA-F (R = 0.638; p = 0.037), and HLA-G
(R = 0.752; p = 0.023) expression, and negatively correlated with HLA-F-AS1 expression
(R = −0.400; p = 0.020) (Figure 6D).

We next explored the differences in immune-response-related genes between the high-
and low-risk groups and found that the expression levels of LAG3, PDCD1, and CD244
differed significantly between the two groups (Figure 6E). TNFSF11 expression was signifi-
cantly positively correlated with LAG3 (R = 0.230; p = 0.040), CD244 (R = 0.228; p = 0.042),
and KLRG1 (R = 0.336; p = 0.002) expression. However, it was negatively correlated with
PDCD1 expression (R =−0.334; p = 0.003). MITF was significantly positively correlated with
CD27 (R = 0.237; p = 0.034), PDCD1 (R = 0.274; p = 0.014), and CTLA4 (R = 0.285; p = 0.011)
expression, but negatively correlated with CD244 (R = −0.427; p < 0.001). CTNNB1 expres-
sion was negatively correlated with CD7 expression (R = −0.290; p = 0.009) (Figure 6F).

3.6. Molecular Subtypes Mediated by Osteoclast-Regulatory Genes

Based on the osteoclast-regulatory genes (CTNNB1, MITF, and TNFSF11) in the risk
model, we used the R package “ConsensusClusterPlus” to cluster the osteoporosis patients
(Figure 7A). Based on the cumulative distribution function and delta area plots, we found
that K = 3 was a suitable value; therefore, we divided patients with osteoporosis into three
subtypes (Figure 7B,C). Dimensionality reduction clustering showed that the patients in
clusters 2 and 3 grouped into one class, with Cluster 1 mainly distributed at the bottom,
demonstrating heterogeneity among subtypes (Figure 7D). Additionally, the expression pat-
terns of osteoclast-regulatory genes in the three subtypes were characterized (Figure 7E,F).
The risk gene TNFSF11 was highly expressed in Cluster 3, whereas the protective genes
CTNNB1 and MITF were highly expressed in clusters 1 and 2, respectively. Finally, we
characterized the clinical characteristics across molecular subtypes (Figure 7G). Cluster
3 had considerably more patients with osteoporosis with low bone density who were
classified in the high-risk group, whereas Cluster 2 had considerably more patients with
high bone density and those classified in the low-risk group, according to our model.
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Figure 6. Osteoclast-regulatory genes and the immune microenvironment. (A) Differences in 22 types
of immune cells between high- (green) and low-risk (orange) groups. (B) Correlations between
CTNNB1, MITF, and TNFSF11 expression and the 22 types of immune cells. (C) Differences in
expression of HLA-related genes between high- (green) and low-risk (orange) groups. (D) Correla-
tions between CTNNB1, MITF, TNFSF11, and HLA-related genes. (E) Differences in expression of
immune-response-related genes between high- (green) and low-risk (orange) groups. (F) Correlations
between CTNNB1, MITF, and TNFSF11 expression levels and immune-response-related genes. The
Wilcoxon test was used to determine the significance of immune cells and related genes between
high- and low-risk groups. Spearman’s correlation coefficient was used to calculate the correlations.
ns: no statistically significant difference; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 7. Molecular subtypes of osteoporosis mediated by osteoclast-regulatory genes. (A) Heatmap
of sample clustering. (B) Cumulative distribution function curves for CTNNB1, MITF, and TNFSF11.
(C) Delta area of CTNNB1, MITF, and TNFSF11. (D) Sample dimensionality reduction cluster plot.
Peach: Cluster 1; green: Cluster 2; blue: Cluster 3. (E) Expression distribution of CTNNB1, MITF, and
TNFSF11 in the three molecular subtypes. The Kruskal–Wallis test was used to calculate the signifi-
cance of differences in gene expression. Blue: Cluster 1; orange: Cluster 2; red: Cluster 3. (F) Heatmap
of CTNNB1, MITF, and TNFSF11 expression. (G) Distribution of clinicopathological features in
molecular subtypes. * p < 0.05; **** p < 0.0001 (Chi-square test). Green: Cluster 1; pink: Cluster 2; light
blue: Cluster 3; blue: high BMD/postmenopausal/high risk; red: low BMD/premenopausal/low
risk. BMD: bone mineral density.

3.7. Immune Microenvironments of Different Molecular Subtypes

To characterize the immune microenvironments of the three subtypes, the patterns
of immune-infiltrating cells, immune response gene sets, and HLA-associated genes were
investigated. The Cluster 3 subtype had considerably more dendritic cells (p < 0.05)
(Figure 8A) and higher HLA-DRB6 expression (p < 0.01) (Figure 8B) than the other clus-
ters. PDCD1 (p < 0.05), CD27 (p < 0.001), CD7 (p < 0.05), and other immune genes were
highly expressed in Cluster 2, whereas CD244 (p < 0.05) was highly expressed in Cluster 1
(Figure 8C).
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Figure 8. Immune microenvironments of different molecular subtypes of osteoporosis. (A) Differences
in 22 immune cells among molecular subtypes of osteoporosis. (B) Expression differences in HLA-
related genes among molecular subtypes. (C) Expression differences in immune-response-related
genes among molecular subtypes. The Kruskal–Wallis test was used to calculate the significance
of differences in gene expression. ns: no statistically significant difference; * p < 0.05; ** p < 0.01;
*** p < 0.001. Green: Cluster 1; orange: Cluster 2; blue: Cluster 3.
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3.8. Functional Analysis of Different Molecular Subtypes

The differential analysis of pathway enrichment scores identified 27 significantly
different pathways between subtypes. We found that primary immunodeficiency and
some metabolism-related pathways, including cysteine and methionine metabolism and
glycerophospholipid metabolism, were mainly enriched in Cluster 2, indicating that this
cluster has metabolism-related characteristics. Additionally, the hedgehog signaling and
steroid hormone biosynthesis pathways were mainly enriched in Cluster 3 (Figure 9).
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enrichment scores for different molecular subtypes. Green: Cluster 1; pink: Cluster 2; blue: Cluster 3.

3.9. DEGs and Functional Analysis of Molecular Subtypes

Gene expression profiles were analyzed for differential expression between each
subtype using the R package “limma”. A total of 17, 11, and 20 DEGs (p < 0.05) were
identified in clusters 1, 2, and 3, respectively (Figure 10A). Functional enrichment analysis
of these DEGs using the R package “clusterprofiler” showed that Cluster 1 was mainly
enriched in osteoclast differentiation, myeloid cell differentiation, and Toll-like receptor
signaling (Figure 10B); Cluster 2 was mainly enriched in osteoclast differentiation, myeloid
cell differentiation, and phagosome maturation (Figure 10C); and Cluster 3 was mainly
enriched in osteoclast differentiation, myeloid cell differentiation, and Rap1 signaling
(Figure 10D).
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Figure 10. Differentially expressed genes and functional analysis of different molecular subtypes.
(A) Venn diagram showing differentially expressed genes among different molecular subtypes of
osteoporosis. Red: Cluster 1; blue: Cluster 2; yellow: Cluster 3. (B) Functions and pathways enriched
by differentially expressed genes of Cluster 1. (C) Functions and pathways enriched by differentially
expressed genes of Cluster 2. (D) Functions and pathways enriched by differentially expressed genes
of Cluster 3.

3.10. Potential Drug Targets Identified in the Protein–Protein Interaction (PPI) Network

The upregulated genes in each subtype (25 upregulated genes in total) were mapped
using the STRING database and the PPI network was reconstructed using Cytoscape
(Figure 11A). CTSK, CSF1, TNFSF11, CTNNB1, TNFRSF11A, and TNF formed a key sub-
network (Figure 11B), and were screened as key genes via cytoHubba according to the node
degree of the network (Figure 11C). Therefore, these six genes were selected as the hub
node, among which TNF and CTNNB1 were the upregulated genes of Cluster 1, and CTSK,
CSF1, TNFSF11, and TNFRSF11A were the upregulated genes of Cluster 3. The hub node
was used as a query in DGIdb (https://dgidb.genome.wustl.edu/ accessed on 4 September
2023), which obtained 100 gene–drug interaction pairs, including 29 gene–drug interaction
pairs with an interaction score >1 (Figure 11D).

https://dgidb.genome.wustl.edu/
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4. Discussion

In this study, we detected three key genes, CTNNB1, MITF, and TNFSF11, using
microarray data for osteoporosis. These genes were selected as variables to construct a
molecular risk model for predicting osteoporosis (risk score = Exp (CTNNB1)× (−1.167227)
+ Exp (MITF) × (−5.192496) + Exp (TNFSF11) × (12.019122)). Additionally, a molecular
subtype classification map in postmenopausal women was drawn by analyzing these
key genes. The results showed that Cluster 3 had significantly more patients with low
BMD, whereas Cluster 2 had significantly more patients with high BMD. Furthermore,
the immune microenvironment, DEGs, functional pathways, and gene–drug interactions
of different molecular subtypes were described in detail. The strategy of our model
complements the existing clinical assessment tools for screening high-risk postmenopausal
women with osteoporosis, while the subtype classification also provides a novel perspective
for further research.
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Loss of mobility after a fracture is often a trigger for fatal events in older adults [22].
The high incidence and peculiar pre-fracture nature of osteoporosis emphasize the impor-
tance of screening for this disease. Dual-energy X-ray is a widely used and effective tool
for diagnosing osteoporosis; however, it is not a practical screening tool. Although all
women aged 65 years or older are recommended to undergo screening with DXA, nearly
25% of women aged 65–85 years never undergo a BMD test or have regular check-ups at the
recommended frequency [10]. Additionally, studies have found that fewer DXA scans are
performed in high-risk patients, whereas excessive DXA scans are performed in low-risk
postmenopausal women [23]. A more detailed stratified strategy would be beneficial to
complement age as a means of pre-screening for patients suitable for DXA.

Although rapid bone loss already occurs during the menopausal transition, there is no
established risk assessment and screening strategy for younger postmenopausal women
for osteoporosis [24]. The heterogeneity of biological genetic information among different
populations may be an important factor in the progression of osteoporosis since some
women develop osteoporosis early after menopause [25,26]. Risk assessment models of
osteoporosis based on genetic information are rare, although several molecular models
for other diseases have been developed [27–29]. This is partly because of the poor genetic
information available on osteoporosis. Although some previous bioinformatics studies
have also analyzed DEGs related to osteoporosis, in this study, we intended to further
stratify the risk of osteoporosis in postmenopausal women posed by DEGs (Figure 4),
and our findings revealed the differences in the immune infiltration microenvironment
in patients with different molecular subtypes (Figure 8) [18,19]. Therefore, the molecular
classification map obtained in this study can help to fill in these knowledge gaps and
clinical needs.

We identified three key genes using regression analysis (Figure 4). CTNNB1 and MITF
are protective factors, whereas TNFSF11 is a risk factor for osteoporosis. CTNNB1 is located
at chromosome 3p22.1 and encodes important proteins for adherens junctions and the
cytoskeleton system [30]. MITF is located at chromosome 3p13 and encodes a transcription
factor that was first identified for its critical role in promoting the survival of migrating
melanoblasts [31]. TNFSF11 is located at 13q14.11 and encodes a member of the tumor
necrosis factor cytokine family, RANKL, which is a ligand for the receptor activator of
nuclear factor-κB and osteoprotegerin, directly related to osteoclast differentiation and
activation [32,33].

Our molecular risk model complements existing clinical assessment strategies for
osteoporosis; however, using this molecular model alone is not recommended. We believe
that a risk model system that includes both genetic and environmental factors can be a
better solution for a disease determined by both aspects such as osteoporosis [34]. Since
genetic testing is an invasive operation, we need to first use a highly sensitive clinical
assessment tool to screen perimenopausal women, and then, use this molecular model
to comprehensively classify the risk of osteoporosis to determine the frequency of DXA
examination for menopausal women.

Owing to the limited knowledge of the pathophysiology of osteoporosis, cases are
currently classified as “primary” or “secondary” based on largely unexplained clinical
associations [35]. Our analysis revealed three molecular subtypes of primary osteoporosis
according to differences in gene expression (Figure 7). Based on BMD levels in different
groups, we speculate that the Cluster 3 subtype is more prone to a phenotype of low BMD
with osteoporosis, Cluster 2 is a phenotype characterized by high BMD, and Cluster 1
showed an overall intermediate phenotype between clusters 2 and 3. Gene expression
analysis supported this result; the risk gene TNFSF11 was significantly highly expressed
in Cluster 3 and the protective gene MITF was highly expressed in Cluster 2. We further
characterized the functional pathways of the different subtypes, which may provide clues
for further in-depth studies of primary osteoporosis.

Another focus of this study was on the immune infiltration microenvironment across
different groups (Figure 8). Over the past two decades, important discoveries in the
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etiology of osteoporosis have demonstrated the deep integration of the skeletal system
with the immune system, and the regulation of gene expression in immune cells is closely
related to bone aging [36,37]. PDCD1 is an important immunosuppressive molecule [38],
and was found to be highly expressed in Cluster 2 and the low-risk group in this study.
Greisen et al. [39] confirmed that Pdcd1-knockout mice showed signs of osteoporosis.
Additionally, patients in Cluster 3 had significantly more dendritic cells, which are the most
functional antigen-presenting cells [40]. These results provide insight into the role of the
immune system in osteoporosis. Speculatively, autoimmunity may be an important factor
in osteoporosis development. TNFSF11, which was upregulated in Cluster 3, is a dendritic
cell survival factor involved in the regulation of T cell-dependent immune responses [41].
In contrast, T-cell activation was reported to induce the expression of TNFSF11, leading to
an increase in osteoclast genesis and bone resorption [42].

We also analyzed the upregulated genes in each subtype and reconstructed the PPI net-
work. CTSK, CSF1, TNFSF11, CTNNB1, TNFRSF11A, and TNF formed a key sub-network,
and their corresponding gene–drug interactions were analyzed (Figure 11). TNFRSF11A
is a target of diclofenac, an anti-inflammatory drug used to treat glaucoma, and TNFSF11
is a target of lenalidomide, denosumab, and anastrozole. Denosumab has also been used
to treat osteoporosis, whereas lenalidomide and anastrozole are antitumor drugs. TNF
is a target of adalimumab and etanercept, both of which are antirheumatic drugs. CTSK
is a target of drugs such as relacatib, which is an anti-osteoporosis drug that is not Food
and Drug Administration-approved. CSF1 is a target of pexidartinib, an antitumor agent.
Therefore, these drugs may also be potential candidates for the treatment of osteoporosis.
Furthermore, CTSK, CSF1, TNFSF11, CTNNB1, TNFRSF11A, and TNF may be the most
promising osteoporosis markers.

This study has some limitations. First, although the analyzed public dataset represents
the largest sample size for osteoporosis currently available, it is still insufficient to construct
a more effective molecular risk model; thus, further studies with large sample sizes are
needed as the cost of sequencing decreases. Second, since environmental factors also
contribute to the development of osteoporosis, and gene expression is indeed partially
driven by epigenetics, our molecular risk model only considers the genetic aspects of
osteoporosis and is not recommended for stand-alone use. However, the design and
validation of a risk assessment system that considers both genetic and environmental
factors will require a considerably more comprehensive analysis that is beyond the scope
of the present study. Third, we proposed three molecular subtypes and characterized their
genes, functional pathways, and immune infiltration. However, further clarification of the
differences and connections between the different subtypes needs to be provided by future
experiments.

In conclusion, CTNNB1, MITF, and TNFSF11 were identified as three key genes in-
volved in the occurrence and development of osteoporosis. Our molecular risk model and
subtype classification may complement existing clinical assessment tools and age-based
strategies for pre-screening DXA-suitable patients. This evidence-based screening strategy
will guide the active prevention, early diagnosis, and treatment of osteoporosis in high-risk
postmenopausal women. Additionally, we identified the immune infiltration microenviron-
ment in three molecular subtypes of osteoporosis, providing a novel perspective for further
research.
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