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Abstract: Lung cancer accounts for the highest number of deaths among men and women worldwide.
Although extensive therapies, either alone or in conjunction with some specific drugs, continue
to be the principal regimen for evolving lung cancer, significant improvements are still needed to
understand the inherent biology behind progressive inflammation and its detection. Unfortunately,
despite every advancement in its treatment, lung cancer patients display different growth mechanisms
and continue to die at significant rates. Autophagy, which is a physiological defense mechanism,
serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under
stressed conditions. In contrast, autophagy is believed to play a dual role during different stages
of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins;
however, during later stages, autophagy supports tumor cell survival by minimizing stress in the
tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to
trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of
different immune signaling cascades, systems biology can be an effective tool to understand these
interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how
systems biology can be exploited to target autophagic processes that resolve inflammatory responses
and contribute to better treatment in carcinogenesis.
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1. Introduction

For many years, lung cancer (LC) has been the most common cause of cancer-associated
mortality. Based on histological evaluations, LC is of two types: non-small cell lung cancer
and small-cell lung cancer. NSCLC accounts for 85% of the total diagnosed cases, whereas
small-cell lung cancer accounts for the remaining 15%. Depending on the location and the
cell type where LC occurs, NSCLC is divided into three types: adenocarcinoma (about
40%), squamous cell carcinoma (about 30%), and large-cell carcinoma (about 15%) [1],
as illustrated in Figure 1. Although several targeted therapies have revolutionized the
treatment of NSCLC, significant improvements are still needed to its diagnosis, staging,
and characterization. At present, several cytokines promote inflammatory events in cancer.
It has been observed that cytokines play a key role in transducing the signaling mechanisms
that modulate inherent autophagic events, leading to disease progression [2,3]. Therefore,
to overcome this effect, it is of ultimate importance to identify the principal signaling
pathway and its intermediates that can be targeted to achieve a novel therapeutic strategy
in lung cancer [4,5].

Cancer is a multifaceted inflammatory disease that displays distinct growth charac-
teristics, including continued proliferation, immune evasion, immortality, angiogenesis,
invasion, metastasis, and cell death avoidance [6]. The capability of cancer cells to escape
apoptotic mechanisms is a well-known fact that allows for the proliferation and metas-
tasis of tumor cells [7]. In the present report, the accumulation of impaired proteins and
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non-functional organelles suggests injured autophagic mechanisms and an imbalance in
tissue homeostasis, which further indicates the role of autophagy in the development of
cancer [8]. The detailed mechanism and crosstalk between cancer and autophagy are less
understood [9], but several studies indicate that autophagy is a double-edged sword that
has long been connected to both cancer development and immunotherapy. This suggests
the role of autophagy as both a tumor promoter and an inhibitor [10]. In fact, other re-
search implies that the autophagy process is regulated by transcription factors, which are
transduced by the signaling axis and may have an effect on tumor progression or repres-
sion. Therefore, it is important to deduce which signaling mechanism has an inherent role
in upregulating autophagic protein expression and which immunomodulatory process
exacerbates the biology behind cancer [11].

Figure 1. Overview of lung cancer and its types. Lung cancers are classified into two types: SCLC
and NSCLC. NSCLC includes three major subtypes: adenocarcinoma, squamous cell carcinoma, and
large-cell carcinoma. The figure shows the location where tumor development takes place. Also, the
frequency, growth rate, and specific age group are defined for each cancer type.

Different stress stimuli, such as internal and external stress, activate the body’s de-
fense mechanisms, which are essential for maintaining cellular homeostasis [12]. One such
mechanism activated by stress is autophagy, wherein protein aggregates, misfolded pro-
teins, and damaged organelles are engulfed in double-membrane vesicles, which then fuse
with the lysosome, producing energy via the degradation of subcellular components [13].
In general, autophagy can be classified into selective and non-selective types. Selective
autophagy operates by recognizing specific targets, like intracellular pathogens, impaired
organelles, and their proteins [14]. However, non-selective autophagy works at the ground
level, marking the cytoplasmic content for degradation [15]. In addition to preserving
organelle and protein quality, innate autophagy operates at a fundamental level together
with ubiquitin-mediated proteasomal degradation in order to ensure the elimination of
faulty proteins [16]. It is also described as a pathway to process and present the antigen to
T-cells. This reveals the importance of autophagy in host defense, which is also associated
with the generation of immune responses in inflammatory diseases like cancer [17].
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Understanding the cancer regulatory network in mammalian hosts is difficult due to
the complexity of the system. Molecular analysis helps to elucidate the disease pathology
at the bio-molecular interactions; however, this level of understanding is insufficient to link
the physiological response. Despite the fact that the standard methods are used in biology,
the complexity of biological systems presents new opportunities for discovery [18]. In the
last ten years, systems biology has become a modern approach to solving such an issue. It
is observed as a tool that best correlates genotype to phenotype and studies intricate con-
nections and their emergent features within biological systems. In cancer biology, it strives
to provide a more comprehensive understanding of how cancer develops and spreads.
Its approaches help to comprehend how the deregulation of signaling events facilitates
malignant phenotypes in healthy cells. Although computational methods revolutionized
the era of systems biology, various newer approaches have emerged to understand the
process behind oncogenesis [19]. A mathematical model is great for understanding the
intrinsic behavior and the extracellular crosstalk in the tumor microenvironment. It has
also paved the way to grasp the underlying cause of cancer drug resistance to unravel
mechanisms to discover potential regimens against cancer [20]. In this review, we detail
the autophagy process and how it aids in tumor development, metastasis, and contributes
to drug resistance in cancer. Further, we highlight the crucial role of systems biology
in modulating the effect generated as a result of physiological defense towards cancer
immunotherapy. Finally, we discuss the autophagic process as a therapeutic target for
resolving cancer-mediated inflammation.

2. Mechanism of Autophagy

Yoshinori Ohsumi received the Nobel Prize in Physiology or Medicine in 2016 for
his research on autophagy and its impact on chronic inflammation and diseases [21].
Autophagy, which is derived from the Greek words “auto”, meaning self, and “phage”,
meaning eating [22], is a defense mechanism conserved in eukaryotes, including yeasts,
flies, plants, and mammals [23], and is responsible for the degradation of molecules
enclosed in a double membranous structure to achieve cellular homeostasis. Autophagy
is induced by a range of physiological stresses, including oxidative and nutrient stress,
non-functional protein aggregates, and organelle dysfunction, and is broadly classified
into three major types depending on the delivery of cargo either through lysosomes or
vacuoles: microautophagy, macroautophagy, and chaperone-mediated autophagy. Mi-
croautophagy allows the lysosomal membrane itself to engulf molecules for degradation.
The process is divided into different types depending on the source and the substrate
used for degradation: micromitophagy (for mitochondria), micropexophagy (for per-
oxisomes), and microlipophagy (for lipid droplets). However, CMA uses the HSC70 to
identify cargo that has a pentapeptide motif, KFERQ, and allow its docking to LAMP2A.
Unlike microautophagy and CMA, macroautophagy refers to an exact autophagy mecha-
nism that is intricately linked to conserved autophagy-related genes for the formation of
autophagosomes [24–26]. The process of macroautophagy is divided into five different
stages: induction, nucleation, membrane maturation, autophagosome-lysosome fusion,
and degradation and recycling of products. The stage-by-stage dissection is crucial since
each stage contains a specific collection of possible treatment targets for preventing
autophagy in humans. In addition, current research raises the possibility that the bio-
logical consequences of tumor cell behavior may vary depending on which stage of the
autophagy pathway is inhibited [27].

A number of proteins regulate the autophagy process. mTOR, a mammalian target
of rapamycin, includes two complexes, mTORC1 and mTORC2 [28], each of which
demonstrates a unique function and its ability to develop cancer [29,30]. Of these,
activated mTOR complex 1 is known for its prime role in suppressing autophagy via
phosphorylating ATG proteins. However, under stress conditions, mTOR gets inhibited,
exerting a positive effect on autophagy initiation. During the process, AMPK acts as
a molecular sensor that controls mTORC1 and activates autophagy [31]. In the yeast
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system, the initial stages of autophagy and the mechanism of phagophore formation
are clearly understood, whereas in mammals, the process has not been well defined. As
detailed in the second figure, the activation of the ULK1 complex induces the process
of autophagy. Proteins like ULK1, ATG13, FIP200, and ATG101 constitute the ULK
complex [32]. Upon activation, it recruits other autophagic proteins like VPS34, Beclin-
1, VPS 15, and ATG14L to form the PI3KC3 complex (Figure 2). This induces the
synthesis of PI3P, a molecule that is rich in the membrane of the autophagosome [33].
A phagophore is a sac-like double membrane structure that is often referred to as an
isolation membrane. It originates from the ER, Golgi complex, mitochondria, and
other organelles and eventually develops into an autophagosome [34]. The sealing of
the autophagosome is achieved through the members of the ESCRT family, especially
VPS and CHMP2A [35]. However, its maturation is assisted through two ubiquitin-
like conjugation systems: the ATG12 conjugation system and the ATG8 conjugation
system. In the first conjugation event, an E1-like enzyme, ATG7, and an E2-like enzyme,
ATG10, conjugate together to expedite the transfer of ATG5 to ATG12. This results in
the formation of a heterodimeric complex that associates with ATG16L to achieve the
trimeric structure. The complex thus formed facilitates the second conjugation step and
gets occupied on the surface of autophagosomes [36]. During the second event, LC3
matures to interact with the autophagosome in the cytosol, which is indispensable for
the initial stages of autophagy [37].

Figure 2. The complete mechanism of autophagy. The pathway starts with the autophagy
signal that induces the molecular sensor, AMPK, to inhibit its target, mTOR. AMPK activates the
ULK complex to initiate the physiological cell death process. This is followed by the formation
of the PI3KC3 complex, which unites with the ULK complex to form an isolation membrane.
During the second step, the membrane interacts with two different conjugation complexes to
facilitate autophagosome elongation and maturation. Once the autophagosome matures, it is
ready to fuse with lysosomes for the degradation of products and recycling of nutrients back
into the cytosol.
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As per the amino acid sequence homology, there are three reported mammalian
variants of the ATG8 protein. It includes GABARAPs, LC3, and GATE-16 subfamilies. The
GABARAP and LC3 subfamilies are both necessary for effective autophagy. The GABARAP
families, including GATE-16, function in the maturation of autophagosomes [38]. However,
LC3 helps in the elongation of the phagophore, where a frequency of ATG8 controls the
size of autophagosomes [39]. In order to make the system homeostatic, the process requires
other proteins to achieve LC3II maturation. It is achieved through the cleavage of proLC3
into LC3I by an E1-like enzyme, ATG 4. Next, with the help of other ATG genes, LC3I
conjugates with PE to produce mature LC3II. These steps mark the elongation of the
isolation membrane to form autophagosomes. The formed autophagosomes then fuse
with lysosomes through proteins like SNAREs and Rab7 (small GTPases). Finally, the
lysosomes ensure the degradation of engulfed autophagic content and restore important
macromolecules back into the cytosol. This inherent process of autophagy enables the
production of crucial components and enhances cell survival, which are needed during
stressful situations [40].

3. Autophagy: An Anomalous Defense in Cancer

In cancer biology, autophagy is believed to play a paradoxical role in the genesis and
proliferation of cancer cells as well as in the suppression and progression of tumors [10].
According to Kisen et al., when elementary levels of autophagy were calculated in normal
and transformed cells, the amount of ubiquitinylated products was found to be higher in
healthy cells. These findings suggest a direct relationship between decreased autophagy
and cancer [41]. In general, autophagy operates at the basal cellular level in order to clear
damaged molecules and suppress inflammation. However, autophagy employed at an
inadequate level enhances tumor development in nutrient-deprived cells by preventing the
breakdown of non-functional proteins [13]. Autophagy during the early stages prevents the
development of tumors. However, after tumor development and malignant transformation,
cancer cells have shown increased levels of autophagy, exhibiting resistance to stressful
conditions [42].

It is notable that different tumor origins display distinct levels of autophagy; lung
cancer has gained resistance and shown high levels of autophagy even in unstressed con-
ditions. Furthermore, the extent of autophagy determines the fate of tumor cells, which
is dependent on the origin and type of the tumor, tumor stage, genomic content, and
tumor microenvironment [39,43]. Interestingly, it has been reported that the expression
level of many tumor suppressor genes and oncogenes influences the autophagic process,
where the loss of their regulatory control leads to malignancy [44]. Because of the role
of autophagy in regulating genomic stability and preventing tumor formation at early
stages, as well as safeguarding cancer cells against various stresses at later stage [45],
and also due to its dual role in cancer treatment, autophagy is often referred to as a
“double-edged sword” [46].

3.1. The Role of Autophagy in Tumor Inhibition

As discussed earlier, autophagy is a conserved process operating at the basal level
to get rid of damaged cellular components so as to attain equilibrium. It is the best-
known mechanism that limits the destruction of cells and maintains the integrity of
the genome. Proteins like mTOR and AMPK negatively regulate tumor suppressor
genes such as p53, TSC1, PTEN, and TSC2, which lead to autophagy initiation and
tumor suppression. On the other hand, oncogenes including mTOR, Akt, and Bcl-2
inhibit autophagy, suggesting their loss-of-function mutation contributes to autophagic
intermediate overexpression [47]. pTEN dephosphorylates PIP3 to PIP2 and modulates
the PI3K/Akt/mTOR pathway to promote autophagy. While a mutated copy of PTEN
inhibits autophagy in multiple cancers [48]. In addition, the role of p53 in autophagy
regulation in cancer is site-dependent. Inside the nucleus, transcription factor p53
stimulates autophagy via TSC1/TSC2 and AMPK activation, while cytoplasmic p53
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possesses an inhibitory effect on the autophagic process and induces autophagy only
upon its degradation [49,50]. In the majority of cancers, including lung cancer, an
alteration in the autophagic pathway is observed as a result of mutations in the PI3K-Akt
axis, which are the downstream effectors of important signaling events. Therefore, for
autophagy to be functional, it requires control either upstream or downstream of the
PI3K pathway [51,52]. Bcl-2, which is an anti-apoptotic protein, interacts with Beclin-
1 through its BH3 domain and lowers its affinity for autophagy cell death [53]. In
particular, Bcl-2 concentrations are found to be upregulated in almost all cancers [54].
Therefore, we can conclude that the presence of Bcl-2 prevents the onset of autophagy by
inhibiting Beclin-1, which suggests the role of Beclin-1 in autophagy.

Various mutation studies acknowledge the importance of the inherent pathway and
the important role of autophagic proteins in controlling tumor growth. Recent literature
reports the chief role of the BECNI gene encoding Beclin-1 as a tumor suppressor, which
has been observed by the absence of Beclin-1 in ovarian, prostate, and breast cancer.
In vitro and in vivo mouse model studies support the same research findings and suggest
the suppression of autophagy and subsequent cell proliferation. These results clearly
indicate that Beclin-1 is a potent tumor suppressor that, upon mutation, may negatively
regulate autophagy [55]. Moreover, certain studies reflect the decrease in the level of Beclin-
1 upon inflammation in cancers like hepatocellular carcinoma and cervical squamous
cell carcinoma [56,57]. Additionally, researchers have outlined other autophagy genes
as crucial components for cancer control. Proteins such as Bif-1 and UVRAG interact
with Beclin-1 and play a major role in promoting autophagy. Like Beclin-1, the loss
and depletion of the proteins, respectively, impair the maturation of autophagosomes,
leading to an increase in cell mass and tumorigenesis, as reported in patients with breast,
gastric, and colon cancers [58]. On the other hand, the higher mutation rates and genomic
instability in the immortalized mouse kidney cell line resulted in aberrant chromosomal
numbers due to autophagy inhibition [59]. In contrast to Beclin-1, there is evidence of other
autophagic proteins that have an effect on tumor progression. Following this, mutation
studies on ATG7 and ATG5 revealed an increased tendency for carcinogenesis, causing
immune dysfunction and chronic inflammation. Knockout studies in mice have revealed
the importance of other autophagic proteins as tumor suppressors [44]. Deletion of a
segment of ATG7 and ATG5 from mouse liver cells experiencing oxidative stress caused
liver carcinoma [60]. Consistently, other studies have indicated the importance of ATG3-
ATG5 in cancer progression. Moreover, the deficiency of ATG4 proteins in mice increased
their susceptibility to cancer infection [12]. Further, in an autophagy-deficient system
in cervical cancer, accumulated ROS provided evidence of autophagy as a scavenging
pathway that relieves the cell under stress conditions [61]. Also, it reduced inflammatory
responses by acting as a negative regulator of the NLRP3 inflammasome in fetal colon
cells [62]. Other studies have indicated the existence of anti-cancer medications that control
the autophagic process. Hence, autophagy-regulated therapy can be employed to target
cancer cell death. Altogether, these findings suggest autophagy is an indispensable pathway
for tumor suppression, and impairment in the functioning of any autophagy genes may
lead to cancer development.

3.2. The Role of Autophagy in Tumor Progression

Cancer cells display the ability to involve themselves in metastasis, which is the
infiltration of local tissues via the vascular system. Metastasis is a process in cancer that
helps tumor cells encounter increased mobility to migrate to different sites. The process is
achieved in multiple steps involving the migration of cells from the primary tumor origin,
where they enter the bloodstream and colonize the distant site upon exiting the vascular
cells [63]. Various stresses in the primary tumor cells stimulate the autophagic pathway
in order to protect them from inflammatory-associated death. As discussed earlier, the
mechanism of autophagy is dependent on the stage and severity of cancer progression.
In the early stages, it demonstrates a positive role that checks necroptosis and restricts
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their migration to distant sites. However, defects in autophagy lead to the accumulation
of toxins and ROS generation, which results in DNA damage. This damage to the cells
exerts a pro-tumorigenic role and promotes the survival of cancer cells in advanced stages
of cancer [64].

Epithelial mesenchymal transition is the crucial biological phenomenon that causes
tumor epithelial cells to attain a mesenchymal phenotype [65]. It includes loss of cell-cell
adhesion leading to cancer metastasis, increased cell mobility, and the invasiveness of
cancer cells [66,67]. Certain studies report the interconnection between the autophagic
process and EMT in cancer. Upon nutrient deprivation, the process of autophagy supported
the migration of HCC cells [68]. According to Catalano et al., it was noted that nutrient
stress and mTOR suppression induced autophagy and reduced cell-cell migration in the
cells of glioblastoma. Moreover, knockout experiments of autophagy-related proteins like
ATG7, ATG5, and Beclin-1 enhanced the invasiveness of cancer cells in glioblastoma [69].
Autophagy also upregulates HIF-1a, which produces VEGF and is responsible for tumor
vascularization in patients with pancreatic cancer [70]. The inhibition of the autophagic
pathway by the shRNA cassette had been associated with impaired cell invasion but not
with the proliferation of cells, as reported in the 3D model of glioblastoma [71]. Additionally,
autophagy initiation supported the invasion of bladder cells by regulating the TGF-β
pathway and EMT [72]. Furthermore, genetically-induced autophagy in Ras-activated
cells inhibited the EMT process [73]. Interestingly, other studies established an inverse
relationship between autophagy and cell migration in the cells of the primary tissue [69].
Intriguingly, the autophagy process can induce or inhibit the phenomenon of EMT and
vice versa [74].

The mechanism of autophagy in cancer is also driven by the signaling pathways
transduced by pro-inflammatory cytokine mediators. Of which, IL-6 and IL-17 are known
to induce the expression of autophagic intermediates that lead to macroautophagy in lung
cancer [75,76]. It induces transcription factors and upregulates inflammatory mediators
essential to pyroptotic cell death [77,78]. On the other hand, it elevates autophagic proteins
like LC3II and Beclin-1 to initiate the process of autophagy. These proteins achieve the
elongation of the isolation membrane, resulting in autophagosomal maturation. The
autophagosomes thus formed are key components in facilitating the autophagic process. All
these events together drive the process of inflammation in tumor-associated macrophages,
leading to an increased autophagy response in the cells of cancer patients [79]. In accordance
with the role of autophagy in mediating inflammation and promoting cancer metastasis via
canonical macroautophagic mechanisms, autophagy may serve as a therapeutic target in
lung cancer.

4. Autophagy Describes the Tumor Microenvironment

As discussed in the above sections, there are multiple stressors that drive the au-
tophagic mechanism. Moreover, the available literature suggests that autophagy modulates
the tumor microenvironment via different signaling mechanisms [33]. Autophagy is an
important physiological event that degrades macromolecules and abnormal protein com-
ponents that meet the energy demands of nutrient-deprived cells to maintain cellular
homoeostasis. It is also known to have a leading role in promoting angiogenesis. Through
its ability to induce HIF-1α, it directs the formation of new blood vessels. It has been
demonstrated that ATG5 regulates stress-induced angiogenesis through the HMGB1 path-
way [80]. STAT3 is a major transcription factor that induces HIF-1α in cancer-associated
fibroblasts and also elicits VEGF production to favor tumor development [81]. In contrast
to cell survival under stress conditions, the mechanism of autophagy supplies the local
tissues with plenty of nutrients [82]. In cancer, the fibroblasts mature into myofibroblasts,
attaining the CAF phenotype. Recent studies shed light on the importance of signaling
mechanisms in providing nearby tumor cells with the necessary signals to favor tumor
development. Co-injection of cancer cells and cancer-associated fibroblasts expressing
pro-autophagic molecules into immuno-compromised mice promoted tumor growth and
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metastasis in lung cancer cells [80]. This study reports the role of CAFs in providing a fertile
microenvironment for tumor cells [83]. However, it is unclear about the role of autophagy
in sustaining cancer cells under nutrient deprivation. Current research supports the role of
inflammation in uncontrolled cell proliferation and oncogenesis. Autophagy is supposed
to be a key player in inflammatory responses in lung cancer. However, its suppression is
linked to increased necrosis. Previous studies have indicated impairment in the autophagic
process and apoptotic mechanisms that induce necrosis, accelerating tumor growth via
inflammatory reactions. All of these results suggest that autophagy is crucial for cell death
and inflammation brought on by necrosis [84].

With time and in later stages of tumor development, tumor cells induce specific physi-
ological changes within the host tissues. The combination of cells and cytokines produced
through the signaling cascade constitutes TME [85]. The components of TME depend on
the type of tumor, but distinguishing qualities include immune cells, vascularization, and
extracellular matrices. According to some experts, TME is believed to be an active factor in
the development of cancer that contributes to tumor survival, localized infiltration, and
metastatic propagation. It is known to regulate low oxygen and nutrient stress through
angiogenesis to combat a hypoxic environment [86]. NFkB, which is a master regulator, is
stimulated through multiple signaling mechanisms to favor tumor growth, which further
results in tumor escape. Tumor escape is a condition that inhibits the natural tendency of
immune cells and promotes the apoptosis of cells inhibiting tumors. In order to suppress
the phenomenon of tumor escape, it is crucial to dive into its cellular and molecular un-
derstanding. Also, designing novel strategies against suppressive microenvironments can
favor pro-tumor activity [87].

Autophagy is a conserved cellular defense process that directly drives host inflamma-
tory events. Cancer, being a great example of inflammation, reflects the dynamicity and
unbalance of pro- and anti-inflammatory cytokines. At various stages of tumorigenesis,
cancer-associated inflammation leads to genome modification, increased cell proliferation,
anti-apoptotic mechanisms, and an angiogenic effect [88]. Previous studies believe immune
cells are a major force in causing cancer inflammation. On the basis of their mechanism of
action and their role in cancer development, immunocytes are categorized into two subsets:
the innate and adaptive immune subsets. On one side, innate immune cells refer to the
subsets that generate a host immune response and recognize cancer antigen irrespective
of the type of cancer and specificity. On the other hand, adaptive immune responses are
generated as a result of lymphocytes unique to the type of cancer [89]. In the next section,
we will discuss a detailed account of each of the immune arms and their intrinsic ability to
mitigate tumor growth and progression.

5. Immune Cells as Modulators of the Autophagy Mechanism

In this review, we focus on the functional aspects of every immune cell, with a special
focus on the signaling axes driving tumor progression. We also talk about how TME shapes
every anti-tumor element to promote the growth of the cancer. Also, for an understanding
of the primary role of immune cells during tumor development, refer to Figure 3.

5.1. Immune Cells

Broadly, the immune response in cancer is classified on the basis of the immune
regulators driving the inflammatory condition and is categorized into Type I, Type II,
and Type III immune cells. Type I immune cells include monocytes and macrophages
that play a key role in tissue repair and cellular homeostasis. However, dendritic cells,
natural killer cells, myeloid-derived suppressor cells, T-regs, and T-cells display great
significance in generating Type II immune responses in cancer. Type III immune cells
include subsets specific to the state of lung cancer, like stromal cells, endothelial cells, and
cancer-associated fibroblasts.



Biomedicines 2023, 11, 2706 9 of 33

5.1.1. Macrophages

Macrophages are the cells of the innate immune system that polarize from circu-
lating monocytes upon tissue damage. After differentiation, macrophages are able to
detect and respond to infection, exhibiting a critical role in tissue homeostasis and heal-
ing [90]. Being an essential driver of cancer-associated inflammation, their relevance
has been described at every step of cancer development [91,92]. On the basis of the evi-
dent roles of macrophages in inflammation, they are of two types: Type I macrophages
(M1 macrophages) and Type II macrophages (M2 macrophages). The former, being
pro-inflammatory in nature, generates immune responses with the aim of promoting
wound healing via the synthesis of pro-inflammatory mediators like IL-6, TNF-α, IL-1β,
and other cytokines [93]. Unlike M1 macrophages, M2 macrophages are also referred
to as tumor-associated macrophages. M2 macrophages, being anti-inflammatory in
nature [94,95], represent the cytokine pool of other anti-inflammatory subsets like MD-
SCs [96] and T-regs [97]. All these cells exert an immunosuppressive function and play a
major role in cancer-mediated inflammation through the production of TGF-β and IL-10
in host cells [98–100]. According to other studies, TAM exerts an immunosuppressive
role in tumor progression and angiogenesis through the production of EGF [101] and
VEGF [102], respectively. It is also supposed to remodel the extracellular matrix by
releasing MMPs upon activation [103]. A variety of chemokines, including MCSF [104]
and VEGF [105], recruit TAMs to the site of cancer inflammation. Also, every signaling
cascade happening in TAM activates the molecular mechanisms of macroautophagy,
resulting in chronic inflammation [106].

The polarization of monocytes into the M1 phenotype employs the activation of the
CCR2 receptor [107] to form IL-1β [108] and IL-23 [109]. This transition is also facilitated
by the IL-17 [110] and IL-23 [111] signaling processes with the aim of activating NFkB,
which is required for the translation of a pleiotropic IL-6 cytokine. In contrast, the effector
function of M2 macrophages is brought upon by anti-inflammatory mediators like IL-4,
IL-13 [112], and MCSF [113] generated by immune cells. Besides this, other signaling
pathways, such as IL-6 [114] and IL-17 [115] are activated to ensure the formation of
proteins involved in TAM’s survival and proliferation. The transcription factors activated
as a result of this signaling cascade are involved in triggering the autophagic events that
cause macroautophagy [116,117].

5.1.2. Dendritic Cell

DCs are professional APCs and, hence, play a crucial role in the presentation of an
antigen to mount an immune response. Due to its diverse role in the immune system,
DC links both innate and adaptive immunity [118]. The cytokine milieu of TME decides
the fate of DC by supplying environmental factors to generate either a pro-tumor or
an anti-tumor effect. Mostly, during the later stages of tumor development, it has
been viewed as tolerating the effects of immunosuppressive cytokines. DCs have been
shown to have an indirect effect on autophagy initiation via the production of IL-12;
it is a heterodimeric pro-inflammatory cytokine that stabilizes the NK cell [119] and
Th1 phenotype [120] to secrete IFN-γ [121]. This initiates a series of sequential events
that induce the expression of autophagic proteins and the activation of the canonical
mechanism of autophagy [122].

5.1.3. Natural Killer Cell

The cytotoxic ability of NK cells to recognize transformed and virally infected cells
makes them a potent immune subset [123]. The role of NK cells in cancer progression
relies on the activation of their IL-12 receptor, which stimulates the production of the pro-
inflammatory cytokine IFN-γ via the stimulation of STAT 4. Lymphokine thus released has
a varied role in the differentiation and stabilization of the Th1 phenotype. Also, previous
research has confirmed the anti-tumor effect of NK cells, which has been observed by
the effective killing of tumor cells that are in the bloodstream, preventing metastasis. It
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is evident that these cells produce the cytotoxic components, perforin and granzyme,
to destroy tumor cells and initiate apoptotic mechanisms [124] through the release of
inflammatory mediators like TNF-α [125].

5.1.4. Neutrophils

Neutrophils are recognized as the first immune cells to recruit at the site of inflamma-
tion. They are understood to play a primary role in pathogen clearance via phagocytosis
of bacterial components. Depending on the type of tumor and its role in cancer, TANs
are classified into N1 and N2 subtypes to represent anti-tumor and pro-tumor states, re-
spectively [126]. The recruitment of polymorphonuclear cells into TME is assisted by
stromal cells secreting CXCR2 ligands [127]. This promotes neutrophils to facilitate nascent
inflammation in tumor sites. Moreover, it has been shown to enhance invasiveness, vascu-
larization, and the proliferation of cancer cells with the secretion of VEGF and MMPs, as
reported in mouse models of lung and pancreatic cancer [128].

5.1.5. Myeloid-Derived Suppressor Cells

MDSCs refer to an anti-inflammatory subset that belongs to a myeloid lineage
supporting chronic inflammation. The recruitment of myeloid cells to the cancer site
depends on the secretion of growth factors by tumor cells. Although the differentiation
of MDSCs into M-MDSC (monocytic lineage) and PMN-MDSC (granulocytic lineage)
varies with the tumor type, their recruitment to the inflamed site is basically medi-
ated by the same variables that control the migration of granulocytes like neutrophils
and monocytes.

Cytokines belonging to the STAT family, like STAT 1, STAT 3, STAT 6, and Erk1/2,
maintain the MDSC phenotype. Its activation is dependent on the synthesis of IL-
1β, IL-4, IL-13, and VEGF by different carcinoma and immune cells. Among all the
transcription factors, STAT 1 and 6 are known to expand MDSC by regulating the
production of suppressive proteins. All these proteins produced as a result of the
signaling cascade stabilize the immunosuppressive phenotype of MDSC, together with
other immunomodulatory cells such as TAMs and T-regs [129]. Subsequently, upon
activation, M2 macrophages initiate other pathways to elevate macroautophagy, which
leads to the expression of autophagic intermediates [130]. Altogether, the data reveal the
importance of MDSCs in achieving M2 homeostasis, which triggers the phenomenon
of macroautophagy. Therefore, targeting specific transcription factors and signaling
intermediates may contribute to overcoming the autophagic pathway and, thereby,
suppressing tumor development.

5.1.6. T-Cells

T-cells are the principal players that orchestrate the adaptive immune system. De-
pending on the immunological background, T-cells can achieve either a pro-tumor or
an anti-tumor phenotype. These cells are actively researched in various cancer types
since they are the second most common immune cell type to be discovered in human
tumors after TAMs. The primary role of T-cells in early tumor development is well
established by their migration in the TME and their differentiation into effector T-cells
to get rid of tumor antigens [131]. Histopathology analysis of human tumors has con-
firmed the extension of tumor-associated T-cells in the hypoxic environment [95]. In
many malignancies, the differentiation of tumor-infiltrating Th1-related cytokines and
cytotoxic (CD8+) T-cells is associated with a favorable outcome for long-term survival
and cancer-free progression [132].
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If T-cells are highly constructive in mounting an antigenic response, how come cancer
cells conquer the effect of thymic cells? According to preclinical examinations in cancer
patients and mouse models, it has been reported that tumor cells use the immunoregulatory
characteristics of T-cells while impeding their anti-cancer activity, like tumor infiltration
and cytotoxic response [133]. There are various different T-cell populations inside the TME
that have an impact on carcinogenesis. CD8+ T-cells potentiate the killing of abnormal
tumor-associated antigens. Apart from cancer’s cytolytic response, CD8+ T-cells suppress
angiogenic activity through IFN-γ secretion [134,135]. Within the TME framework, CD4+
T-cells develop into distinct subtypes and integrate an extensive set of immunological
responses. T helper 1 (Th-1) cells are CD4+ T-cells that promote inflammation and aid
CD8+ cells [136] by secreting IL-2 and IFN-γ [137]. In several forms of cancer, higher Th1
cell counts within the TME are linked to favorable outcomes. The differentiation of CD4+
T-cells into a Th17 phenotype depends on IL-23 and TGF-β signaling that upregulates the
transcription factors RORγt and STAT 3 for the production of IL-17 cytokines [138]. The
immunomodulatory state of T-regs is acquired to reduce the inflammatory response of
pro-inflammatory cytokines. These suppressive cells release immunoregulatory cytokines
and dampen anti-tumor activity to promote M2 homeostasis, which lessens the pro-tumor
effect of T-cells forming protein molecules that influence inflammatory responses and
elevate autophagy [139].

5.1.7. Type III Immune Cells

As mentioned above, stromal cells, endothelial cells, and cancer-associated fibroblasts
constitute the type III immune responses in cancer. In order to facilitate crucial phases in
tumor growth, cancer cells recruit founder cells from the local endogenous stromal tissue.
The composition of stromal cells varies between different tumors and consists of CAFs,
vascular endothelial cells, stellate cells, and adipocytes. When stromal cells are attracted
to the TME, they release a variety of substances that have an impact on the malignancy of
transformed cells.

In the TME, endothelial cells assist in coordinating the development of new blood
vessels. In addition to its primary role, the vascular endothelium also transports immune
cells, maintains metabolic equilibrium, and supplies water and nutrients to the growing
tumor mass. Cancer cells utilize passive diffusion for exchanges of gases and the transfer of
nutrients during the early stages of tumor growth. While tumors are 1–2 mm3 in size, the
TME becomes hypoxic and acidic due to a lack of oxygen and an accumulation of metabolic
waste. To overcome an insufficient oxygen supply, cancer cells form new blood vessels. This
leads to the activation of HIF-1α in response to low levels of oxygen. In particular, HIF-1α
causes endothelial cells to produce pro-angiogenic factors like EGF, PDGF, and VEGF.

EC have a great degree of plasticity, can alter cell fate, and apparently undergo
endothelial-to-mesenchymal transition to achieve the CAF phenotype. Proteins like TGF-β
and BMP regulate the transformation process and the invasive nature of fibroblasts in
lung cancer. CAFs are regarded as a key player in furthering the crosstalk between cancer
cells and the TME. For example, the existence of CAFs is significantly associated with
breast and lung cancer patients. It is also shown to synthesize a majority of growth factors,
extracellular matrices, and cytokines to shape the TME. In order to further the migration
of cancer cells, they secrete MMPs and TGF-β to promote the angiogenic process. On the
whole, CAFs release immune-modulatory chemokines to facilitate an immunosuppressive
condition [86].
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Figure 3. Immune cells and their significance in lung cancer: As discussed earlier, the immune
response generated during inflammatory conditions is a result of different immune subsets. In
general, immune responses are divided into three major groups. This figure precisely defines the
functioning of immune cells and their primary role in cancer. Also, an increase in the number of
anti-inflammatory subsets causes the tumor to progress and undergo metastasis.

6. Inflammasome as a Crucial Regulator in Autophagy and Cancer

Cancer development is a complicated process that implies tumor cell internal and
external signals, both of which are essential for cell malignancy [140]. For a long time, the
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association between inflammation and the development of cancer has been known, and the
inflammatory response is understood to be crucial to the onset and development of cancer.
The inflammasome, which is a host’s innate multiprotein complex, was initially used to
describe mechanisms facilitating pro-inflammatory events against pathogens. NLRP3 is
the most widely studied inflammasome and has been linked to the etiology of several
disorders, including cancer. Being an important player in the pathogenesis of cancer, the
NLRP3 inflammasome comprises three crucial components: the NLRP3, the ASC (which
consists of the CARD domain), and pro-caspase 1 (which bears effector functions). Three
domains constitute NLRP3: an N-terminal pyrin domain (PYD), which interacts with the
ASC’s pyrin domain to assemble the inflammasome; a NACHT domain responsible for
inflammasome activation; and a C-terminal leucine-rich repeat (LRR) domain that does not
have much significance in inflammasome assembly. ASC activates autoproteolytic caspase-1
by binding pro-caspase 1 through their common domains. Caspase-1 releases inflammatory
cytokines like IL-1β and IL-18, which also cleave the protein GSDMD, causing pyroptosis,
a type of programmed cell death [141].

Tumoral subsets, including MDSC and TAMs, are known to release IL-1β and in-
duce CAFs to mediate inflammation [142]. In addition, a recent study reported its role
in promoting an immunosuppressive environment in the lung [143]. The production of
IL-1β by cancerous cells and TAMs has been shown to enhance the tumorigenic activity
of CAFs, indicating IL-1β is an effective driver to expedite tumor development [144]. Fur-
thermore, IL-1β has been shown to have autocrine signaling that directly favors cancer
progression [139]. Research by Daley et al. has provided insights on how NLRP3 proceeds
to host inflammation and produce anti-inflammatory cytokines upon the differentiation
and activation of an immunomodulatory subset. In the same study, the predominant role
of NLRP3 was associated with the differentiation of T-cell subsets into Th2, Treg, and
Th17 cells, facilitating IL-10 production [145]. Also, the pivotal role of the IL-6-STAT3
inflammatory loop has been linked with the genesis of MDSCs and their ability to induce
immunosuppression [146]. This suggests a significant role for NLRP3 in lowering the anti-
tumor response that promotes immunosuppression in patients with lung cancer [147,148].
A recent study in a mouse model of NSCLC showed that the cells of the myeloid lineage
produced IL-1β irrespective of inflammasome activation, which suggests the infiltration of
other immune cells to tumor sites [149]. In adenocarcinoma lung cancer patients, the ex-
tended role of IL-1β was shown to enhance expression levels of angiogenic molecules [150].
Also, LPS, which is a tumor antigen, induces the formation of lung tumors upon NLRP3
activation [151]. In line with this study, it is clear that the transcription factor NFkB drives
the recruitment and activation of the assembly that causes inflammasome formation [152].
Therefore, it is essential to neutralize the effect of NFkB so as to overcome the pro-tumor
activity of the NLRP3 inflammasome [153].

Autophagy is a physiological defense mechanism regulated by multiple proteins
and plays a pivotal role in nutrient recycling [154]. It is believed to play an essential
role in several life processes, from cell development and differentiation to ageing.
Besides the role of autophagy in maintaining homeostasis, studies indicate a rela-
tionship between the autophagy pathway and inflammatory events that form the
inflammasome [155]. In 2008, Saitoh and his group were the first to demonstrate the
relationship between autophagy and inflammation, where autophagy negatively regu-
lates inflammasome formation [156]. However, other studies have discussed the role
of autophagy in inducing NLRP3 activation. It has been discovered that NLR domains
interact with autophagy proteins, providing a method for direct NLR regulation of
autophagy [157]. According to previous studies, certain NLRs, both those that form
inflammasomes and those that do not, may engage in NACHT domain-mediated inter-
actions with the protein Beclin-1, which is essential for the start of autophagy [158].
Additionally, other studies have suggested a role of NLRs in promoting the formation
of autophagosomes [97].
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Interestingly, the role of NLRP3 in inducing autophagy was observed upon macrophage
infection with Pseudomonas aeruginosa. The finding was consistent with the significant ex-
pression of LC3II, which suggests the inflammasome’s role in driving autophagic events [157].
Despite this, the role of signaling pathways in transducing inflammatory events remains
unclear. Among the list of cytokines, IL-6 [159], IL-17 [160], M-CSF [161], and tumor
antigen, LPS [162] are essential for stimulating transcriptional activators responsible for
inflammasome assembly and autophagy activation. Although these cytokines employ
different signaling cascades, the activation of numerous transcription factors, including
JNK [163], NFkB [164], Erk1/2 [165], AP1 [166], and C/EBP-b/d [167], showed promising
results in NLRP3 inflammasome formation and autophagy initiation (Figure 4). However,
certain questions remain unresolved regarding the crosstalk between innate immunolog-
ical processes to determine the potential target for autophagic proteins favoring cancer
development. Therefore, to decipher anti-NLRP3-based cancer drugs, it is important to
unravel the molecular mechanisms that promote immunocompromised conditions and
initiate autophagy, promoting cancer cell survival.

Figure 4. Inflammasomes as modulators of autophagy mechanisms: Inflammasomes are multi-
protein complexes that drive host inflammation. The process of inflammasome formation starts
with various different ligands. Upon specific interaction between ligand and receptor, several
transcription factors get activated that may have a direct or indirect role in cancer progression.
Among all the transcription factors, NFkB assembles the inflammasome. Simultaneously, au-
tophagy is activated to relieve cellular stress. As a result, chronic inflammation occurs, which
results in macroautophagy.

Decisive Role of IL6-IL17-IL23 Axis in Autophagic Cell Death

IL-6 is a multi-functional cytokine that has a pleiotropic role in different immune
activities such as cell proliferation and differentiation, regulating its physiological role.
It exhibits both pro-inflammatory and anti-inflammatory functions through the type I
receptor complex associated with the signaling component, gp130. Under controlled
conditions, it activates various signaling events crucial for cell survival and development.
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However, its deregulation is associated with the onset of classical and trans-signaling
events facilitating chronic inflammation and with the pathophysiology of many inflam-
matory diseases like cancer, rheumatoid arthritis, multiple myeloma, AIDS, and many
more [168,169]. Through its role in mediating immune regulation, it is an important
target for disease control. In contrast to IL-6, IL-17 was discovered as a member of the
IL-17 family known to mediate the secretion of pro-inflammatory cytokines via immune
subsets. This family includes six structurally related cytokines, IL-17 A-F (A, B, C, D,
E, and F), of which IL-17 A is involved in the progression of the inflammatory state of
cancer and other autoimmune diseases. IL-17 is a pan-cytokine marker of CD4+ Th17
cells, which have markedly increased expression of a transcription factor, RORγt, which
activates STAT3 to control and stabilize IL-17A production. It has been reported that
T-cells have a prime role in maintaining Th17 attributes through their ability to produce
IL-23 cytokines and sustain the Th17 cell lineage. IL-23 belongs to the IL-12 family
of cytokines, and its evolution is linked to progressive inflammation. In addition, the
combination of the anti-inflammatory cytokine TGF-β and IL-6 has been observed to
support IL-17 secretion in a similar way as IL-23 does. With the reported evidence, we
can therefore summarize the major contribution of IL-23 together with IL-6 to nurture
the phenotype of the IL-17 family, specifically IL-17A [170,171]. During an inflamed
state, CD4+ cells behave as major cytokine producers, releasing multiple cytokines. To a
lesser extent, other accessory immunocytes control and regulate cytokine production.
In line with this, IL-6 is produced by monocytes, tumor cells, CAFs, endothelial cells,
and cells specific to a diseased state [172]. However, T-cell variants, including CD4, CD8,
and other immune subsets, generate IL-17A. The production of IL-23 has been reported
to occur through DCs and M1 macrophages [111,173]. Since the obvious roles of these
cytokines in progressing a diseased state can be targeted to rescue tumor development,
it helps to regress progressive inflammation.

The significance of these cytokines relies on the transduction of a signaling cascade
that activates different cellular mechanisms. Among these, IL-6 executes classical and
trans-signaling mechanisms to generate inflammatory responses in accordance with
the cellular environment. Both of the signaling events initiate three pathways: the
JAK-STAT pathway, the RAS-MAPK pathway, and PI3K signaling [174]. Focusing on
the insights into lung cancer, the production of IL-6 in lung TME actuates a signaling
response in T-cells, M2 macrophages (TAM), and Type III immune cells, including
CAFs and endothelial cells. In T-cells and Type III cells, the binding of IL-6 triggers
JAK1/2-STAT3 activation, which plays a key role in activating two different key events.
In T-cells, as discussed above, STAT3 expresses RORγt, which differentiates CD4+ T-
cells while maintaining the Th17 lineage. The proliferation of Th17 cells is associated
with the expression of IL-17 and IL-6, suggesting the autocrine role of IL-6 in mediating
inflammation. Besides driving inflammatory events, the role of STAT3 has been proposed
to upregulate the expression of HIF-1α, causing chronic inflammation through VEGF
production. This is in line with the chief role of IL-6 in driving disease states during
cancer development. To further understand the role of IL-6 in mediating cell death
events, it is of greater importance to know at which state and through which component
it triggers autophagic intermediate expression. As a result of PI3K/Akt signaling, IL-6
in M2 macrophages activates the canonical pathway of autophagy, leading to disease
progression. This is assisted by NFkB expression, which is known to have a dual role
in cancer. Primarily, it regulates the Nlrp3 gene, producing the protein form required
to assemble the inflammasome. On the other hand, NFkB activates several autophagic
intermediates like LC3II, Beclin-1, ATG5, ATG3, ULK, and ATG12. Since its role in
mediating autophagy is associated with cancer cell survival, this also reflects IL-6’s role
in linking inflammation and autophagy. Similarly, the activation of the MAPK pathway
via IL-6 facilitates Erk activation, which upregulates the expression of proteins related
to autophagy. Altogether, the above facts suggest the intricate role of IL-6 in assisting
innate immunological responses in cancer development.
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As aforementioned about the production of IL-17 by T-cells, it has a pronounced
signaling effect in monocytes, M2 macrophages, and Type III immune cells. In monocytes
and Type III cells, the binding of IL-17 through its receptor activates the TRAF6 pathway,
which leads to the ultimate activation of NFkB. Once expressed, it translates IL6, which
will have further significant roles in autophagy activation (refer above). In Type III cells,
apart from sustaining cancer cells in a nutrient-deprived environment, the role of NFkB
is vital to the proliferation, survival, and migration of cancer cells. It is achieved through
cyclin D1 protein expression (cell cycle protein), IL4/IL13 secretion (maintains a reducing
environment), VEGF production, and the expression of anti-apoptotic proteins like Bcl-2
and Bcl-xL. In TAMs, the role of IL-17 is expanding. Similarly, it activates the pathways, as
it did in the above two cells. Besides this, it activates various transcription factors that have
a pronounced effect on autophagy activation. Through IL-17, TFs like Erk, CEBP-b/d, AP1,
and NFkB, along with the MAPK intermediate MKK4/7, get activated. NFkB activates the
same autophagy proteins as we discussed for IL-6 signaling. Erk and CEBP-b/d take charge
of LC3II and Beclin-1 activation. AP1 is responsible for LC3II, ATG7, ATG5, and Beclin-1
activation. MKK4/7 is an indispensable intermediate that activates autophagy through
two different mechanisms. Firstly, it activates JNK, which is important to dissociate the
Beclin1-Bcl2 complex and trigger autophagic events. As JNK separates Beclin-1, it relieves
the inhibitory effect of Bcl-2, which is responsible for dictating macroautophagy in cancer-
infected cells. Next, upon JNK activation, it interferes with cell death mechanisms through
VPS34, ULK, LC3II, and ATG7 expression. After having discussed the diverse role of IL-17
in transducing signaling mechanisms, we can conclude that IL-17 plays a pivotal role in
harnessing autophagic events to promote cancer cell survival.

Lastly, the role of IL-23 in promoting autophagy is important. It is seen to be produced
through M1 macrophages and has an effector role in monocytes and T-cells. In monocytes,
IL-23 activates STAT3 through JAK2/TYK2 activation. The result is the production of IL-6,
which translocates to M2 macrophages to drive cell death mechanisms. In T-cells, it acts as
a mediator in differentiating Th17 cells and generating IL-17. Again, as discussed above,
the generated IL-17 plays a multi-functional role in driving autophagic cell death and
achieving inflammatory responses in cancer. Therefore, to sum up the above statements,
we can conclude the importance of the IL6-IL17-IL23 signaling axis in initiating innate
autophagic mechanisms. And it also suggests the role of these cytokines in mediating
inflammasome assembly in a cancerous state. Hence, to achieve a novel therapeutic
strategy, targeting the immune signaling axis would help overcome cancer development
and improve disease outcome.

7. Autophagy and Drug Resistance in Lung Cancer

It is interesting to note that various chemotherapy medications may have opposing
effects on autophagy, leading to either cell death or cell survival [175]. In cancer cells,
autophagy is triggered under stress as a result of gene mutations, epigenetic alterations,
or an imbalance in the cell’s ability to regulate its own growth. Over the last ten years,
the role of autophagy as a protective mechanism has been strengthened to facilitate cell
survival during chemotherapeutic treatments. The increased resistance towards anti-
cancer medications is seen to be offered by the multi-drug resistance protein 1 (MDR1),
which belongs to a class of ATP-binding cassette transporters [176]. As per the literature,
the concentration of autophagic proteins was found to be higher during chemotherapy,
suggesting a link between autophagy and MDR.

It is obvious that several studies have shown a strong association between au-
tophagy and drug resistance in NSCLC. Moreover, other studies have highlighted
the significance of multiple signaling pathways, including the MAPK pathway [177],
PI3K/Akt/mTOR [178], Wnt signaling [179], and p53 signaling [180], in causing cancer
cell resistance. Additionally, these signaling events have been shown to upregulate the
expression of autophagic intermediates, resulting in autophagy. The development of
resistance to EGFR inhibitors has long been a significant clinical problem. In NSCLC cells



Biomedicines 2023, 11, 2706 17 of 33

mutated with EGFR, erlotinib induces both autophagy and apoptosis, but blocking the
autophagy process can increase erlotinib’s cytotoxicity to cancer cells. In vitro studies
revealed the activation of autophagy mechanisms and LC3 expression upon EGFR resis-
tance in NSCLC patients [181]. According to a study by Wu T. et al., autophagic events
elevate cisplatin resistance in lung cancer cells. In contrast, the inhibition of autophagic
mechanisms weakened cisplatin-generated drug resistance [182]. Based on the above
findings, researchers postulate autophagy as a defense mechanism against cancer cells
that contributes to the development of drug resistance in lung cancer patients. Under-
standing how autophagy contributes to drug resistance will make it easier to investigate
ways to control autophagy to enhance cancer therapy. Due to the strong relationship
between autophagy and drug resistance, autophagy will likely develop into an effective
target in cancer treatment [183]. Also, combining autophagic therapy with the existing
anti-cancer drugs will facilitate clinical trial outcomes.

8. Systems Biology and Its Potential Role in Targeting Autophagy

Systems biology is a tool that allows us to retrieve the convoluted network of bio-
logical systems by understanding the behavior of every molecule involved in a reaction.
It entails a variety of methodologies to understand biological processes at the system
level, including network reconstruction, analysis, and mathematical modeling [184]. The
ability of a system to maintain its function in spite of extrinsic and intrinsic perturba-
tions is defined as robustness [185]. Adaptation, on the other hand, refers to a system’s
capacity to change its behavior in response to environmental changes [186]. Tumors are
intricate structures that exhibit robustness and adaptation; therefore, they eventually
develop resistance to anti-cancer medications [187]. Approaches to overcome resistance
are one of the major goals and promises of systems biology. Through systems perspec-
tives, researchers deepen their understanding at a molecular level and dissect signal
transduction pathways to analyze the phenomenon of drug resistance and determine
which medicine combinations works best for a particular tumor [188]. Therefore, it is
important to model the functioning of the signaling network to establish cell-specific
responses in molecular therapies.

Systems biology research seeks to comprehend the characteristics of a particular
system, which in the context of cancer may include primary cells from the patient or
tumor cell lines. Recently, systems biology findings from both SCLC and NSCLC have
been used to identify diagnostic features and investigate novel therapeutic strategies for
lung cancer [189]. Due to the significant contribution of NSCLC in developing cancer, a
major research focus reveals the importance of the immune axis in driving autophagic
mechanisms [11]. It is evident that several transcription factors, including NFkB, enhance
the cell death events that favor tumor cell survival, whereas its inhibition might help to
improve the clinical outcome [190]. With a better understanding of the autophagy system,
it is possible to develop inhibitors against early or late autophagic events and stop specific
cargo from entering autophagosomes in infected cells. At present, the chemotherapeutic
drug treatments available against cancer have become resistant for patients [191]. With
regard to the process of drug resistance in cancer, systems biology employs comprehensive
research that can provide solutions to challenging issues about progressive cancer [1]. In
addition, network biology, being a strong and valuable tool of systems biology, can be
utilized to analyze biological networks and achieve precision medicine [188]. Therefore,
it is of utmost importance to focus on intricate network connections between cellular
components that can open a path for the discovery of resistance-associated drug targets
and realize the potential for personalized molecular medicine.

After decades of conducting research focused on developing our understanding of
the pathophysiology of clinical oncology, it is well accepted that any or all outcomes
or symptoms in lung cancer are a combined effect of the molecular interactions in a
cell. These cells organize to form a whole organism, thereby increasing the complexity
of molecular entities from DNA to proteins. The complex diversity within a single cell
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expands researchers’ ability to define systems that can include factors in the context of
location and time. It is unreliable that each biological component experiences the same
environmental cues throughout. Instead, internal genome complexity is what provides
flexibility and achieves a long-term survivability effect in multicellular organisms [192].
As per evolutionary history and individual evolution, the increased adaptation from a
unicellular to a multicellular state resulted in an increased host’s adaptation in terms
of microchanges in the environment. Understanding how to replicate this organized
complexity in order to create predictive algorithms for future applications in healthcare
is an integral part of systems biology [193]. For instance, a regulatory transcription factor,
NFkB, may be a possible crosstalk between two complex phenomena such as autophagy and
the inflammasome that drives cancer progression [190]. Therefore, targeting the common
node may help reduce the system’s complexity in practical interventions and flourish in
the era of personalized medicine for disease treatment and its control monitoring.

Network Analysis Using Systems Biology

A network analysis expresses several elements, such as genes or proteins, and their
interconnections. A gene or protein molecular network can be schematically constructed
using nodes and edges. Genes, proteins, and drugs can all function as nodes in molecular
interactions. However, edges are functional entities that connect to the gene regulatory
network, protein interactions, and the mechanisms of drug inhibition and activation.
The way in which the nodes and edges are arranged in a network can be explored to
better understand biological systems [194]. In network biology, usually a few nodes
are designated as hubs due to their large interconnections between them. The higher
associations between nodes refer to modules that coincide with the biological entities of
molecular components [195]. To further analyze the biological network, there are many
significant tools that have been developed. One such method is network motifs, with which
we can decipher the important signaling network underlying tumor development [196].
Additionally, according to Przulj et al., the use of protein-protein interaction networks may
make it easier to unravel the transcription factors and/or important proteins that drive
chronic inflammation in a diseased state [197]. Also, its application may turn out to be a
good strategy for overcoming the phenomenon of cancer drug resistance.

Protein-protein interaction elucidates the interaction between proteins. To describe
the nodes and edges in a network, proteins are termed nodes, whereas the interactions
between them are referred to as edges [198]. For this, the data can be collected using
different methodologies, including computational approaches, or from various resources
such as STRING [199], HAPPI-2 [200], and Bioplex [201]. At present, PPI and its functioning
are widely accepted as facilitating high-throughput modeling of inter- and intra-cellular
signaling. This approach has been frequently adopted in other research to determine
differential gene expression from the transcriptome of diseased patients while extracting
a gene set from the other databases. Today, the use of networks has advanced to model
intercellular associations with scRNAseq data. To understand how autophagy assists cancer,
scRNAseq data can be obtained from healthy subjects and lung cancer patients to develop
a PPI-based network [202]. This can be achieved by identifying a proper network through
visualization of ligand-receptor interactions and the transduced signaling events with
respect to a particular ligand [203,204]. The differential gene expression can be compared
between two different groups, and genes that are highly expressed among them can be
considered cell markers. Using the selected candidate, the building of a cell-cell interaction
network can be executed, which can be further validated through statistical significance.
The network thus built helps in establishing the direct and indirect relationship between
immune cells and lets researchers know which immune subset plays a key role in advancing
cancerous states through modulating the cellular cytokine environment [205]. Besides that,
it informs us of the differences in autophagic protein expression between cancer patients
and the NHS. With this evidence, it will be simpler to churn out the common node and the
unregulated proteins during the different stages of autophagy.
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Another domain under network biology is the construction of metabolic networks,
wherein metabolites represent nodes and enzymes are edges [198]. By determining the
metabolites’ flow across the network in steady-state, flux-balance analysis is the method
most frequently used to analyze metabolic networks [206]. The goal of the study is to
maximize the outcome of a particular reaction by identifying the optimal potential flux
through the numerous reactions. Cell mass or ATP production are typically used to
illustrate these reactions. Recently, it has been possible to access the metabolic networks
of complete species. In order to simulate the human host, the Recon2 programme offers
a thorough global reconstruction of human metabolism [207]. In lung cancer, the signif-
icance of constructing a metabolic network implies the fact that it ensures evaluating
the metabolic profile of cancer cells and at what level it differs from untransformed
cells [208]. The network has been known to have a higher degree of interaction com-
pleteness, which makes it a perfect tool for modeling [209]. However, because RNA
sequencing is now much more high-throughput, metabolomic investigations are much
less common than transcriptomics research. To determine whether metabolic networks
could serve as a potential biomarker for predicting treatment response in NSCLC, more
research is required.

Yet another important arm of network biology is the Gene Regulatory Network, which
includes molecules guiding gene expression. In GRNs, nodes refer to any transcription fac-
tor, cis or trans-regulatory element, or miRNA, whereas edges refer to physical interactions
between molecules [198]. To map GRNs, techniques like ChIP, DNA affinity purification,
and ChIP sequencing can be adopted [210]. The modeling of GRNs can be completed
using Bayesian network approaches that employ the Bayes theorem to understand the
interdependent expression of two different genes [205]. The expanded use of GRNs in lung
cancer may be used to figure out the influence of autophagic proteins on cancer-associated
transcription factors. With this, it will be easier to identify the gene sets responsible for a
diseased state, and targeting such genes would be equally important to establish anti-cancer
treatment. Unlike GRNs, gene co-expression networks (GCNs) can be exploited to explore
cytokine signaling [211] in lung cancer patients. Genes here represent nodes; however,
co-expressed genes are edges [198]. According to a study with a focus other than cancer, the
transcriptomic profile of biopsies from healthy and unhealthy subjects investigated the role
of IL-23 in the pathogenesis of a diseased state due to its pro-inflammatory nature [212].
Similarly, to determine important molecules and the role of key players like IL-6 [114],
IL-17 [213], and IL-23 [214] in progressing NSCLC, the cytokine profiles of various immune
cells (as discussed above) can be studied. By analyzing the cytokine profile, the ratio
of pro-inflammatory to anti-inflammatory subsets can be evaluated to determine which
cells are more likely to have a shift towards tumorigenesis [215]. This also supports the
hypothesis that inflammatory diseases, including cancer, TB, HIV, IBD, and others, reflect a
pathogenic myeloid-cell lineage that creates immune-suppressive conditions, as unraveled
through various studies [216–218].

To understand the cell-signaling network, multi-layered networks are much more
focused under network biology. Over the last ten years, it has become popular to collect
multiple omics data types from an individual sample because it is believed that doing so
could give researchers deeper insights into the biology of disease. The emergence of multi-
omics requires the fusion of several network modeling strategies, which have been required
to unravel the crosstalk between autophagy and cancer [219]. A cell signaling network
consists of two components: an upstream component, which is a PPI network and contains
several intracellular events, and a downstream element that includes gene regulatory
networks and transcription factor-targeted interactions [220]. With the application of
specific algorithms to the cell signaling network of infected individuals, it is possible to
detect the signaling cascade confined to a particular infection [221]. Therefore, by adopting a
novel network biology methodology, researchers will be able to discover disease-associated
genes in subgroups of LC.
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Despite recent advances in elucidating cancer pathogenesis using the aforementioned
techniques of network biology, there are still a number of obstacles to be overcome before
precision therapy in lung cancer may be fully realized [222]. Previously, network biology
models could only reconstruct biological networks using data like PPI networks, differential
gene expression, or transcriptome data [223]. But recent advancements in cancer research
show that multi-layered networks are more likely to produce potent and applicable insights
for complicated diseases [192]. A study conducted on colorectal cancer reveals that the
type, number, and location of immune cells may serve as a more accurate prognostic
tool [224]. To date, a key challenge that will need to be explored in the aforementioned
approaches is how to well integrate the enormous volumes of multi-omics data produced
from various sources (Figure 5) and consequently yield therapeutically significant insights
into lung cancer. Therefore, achieving the objective of precision medicine in cancer would
require integrating patient genomes, transcriptomics, metabolomics, epigenomics, and
metagenomic records together with histopathology and clinical information throughout
time to maximize the potential of network biology [205].

Figure 5. Network biology and its approaches in targeting cancer (a) Defines the overview of a
network that includes nodes, hubs, edges, and modules. (b) Overview of different network biology
tools to penetrate deeper into lung cancer research. (c) Includes methodologies through which patient
data can be individualized for precision medicine.
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9. Autophagy as a Therapeutic in Cancer Development

In this review, we have detailed the role of autophagy as both a tumor promoter
and an inhibitor. In order to improve cancer immunotherapy, it is crucial to control
autophagy. Autophagy is a physiological cell death mechanism that supplies nutrients
to the inner cell mass of tumors. Being a double-edged sword, it develops cell resistance
to chemotherapeutic drugs. Various studies, including one by Boya et al., suggest the
stimulation of apoptosis upon autophagy inhibition. This implies the fact that lowering
the expression of autophagic proteins promotes the expression of pro-apoptotic molecules,
resulting in the programmed death of cancer cells [225]. Therefore, it is essential to modulate
the autophagic process, which can serve as a potential therapeutic in NSCLC.

Autophagy is a multi-step self-eating process where every single phase displays
a unique set of characteristics while maintaining cellular homeostasis. On the whole,
the process of autophagy can be broadly classified into early and late phases, which
signify the formation of uncommon complexes and the importance of autophagy initiation.
Focusing on its initial insights, there are certain principal regulators like ULK1, ATG4B,
and VPS34 that are in charge of Class III PI3K complex formation. Being a critical player
in a cell’s biological phenomena, the complex is also known to modulate the later stages
of internal processes. Of these, ULK1 and ULK2 are serine/threonine kinases and, hence,
can be important targets for uncontrolled cell survival. Intriguingly, previous research
has reported the efficacy of MRT67307 and MRT68921 towards ULK1 and ULK2, which
repress autophagy upon mTOR suppression and persuade apoptotic behavior in cancer
cells [226]. As discussed earlier about the role of Beclin-1 as a pro-autophagic molecule,
anti-apoptotic proteins like Bcl-xL and Bcl-2 impede its activity by binding to its BH3
domain. Also, the effects of wortmannin and 3-MA have been analyzed to modulate Beclin-
1’s interaction with VPS34, preventing autophagy [227]. These established references
suggest the potential of both ULK1/2 and Beclin-1 inhibitors to suppress the autophagic
pathway and improve apoptosis in cells bearing tumor antigens. The maturation of growing
double-membrane structures into an autophagosome is assisted by cysteine proteases like
ATG4B, together with ATG7 and ATG10. In vitro and in vivo studies suggest the efficacy
of NSC185058 against the ATG4B enzyme in promoting anti-tumor activity [228]. In
addition, other studies demonstrate that the increase in CD8+ infiltrating cells prevents
autophagy by mutating a copy of the ATG7 protein [229]. However, while the result
towards autophagy inhibition seems promising, more research is still being conducted to
improve lead medications to reduce tumor survival in lung cancer patients. The clinical
success of CQ as an autophagy inhibitor shows the therapeutic potential of autophagy
inhibition [230], but it also emphasizes the urgent need for the expansion of new compounds
in cancer therapy. Emphasizing the need for an hour for the development of antagonists
to target later autophagic events can serve as a milestone towards anti-tumor therapy. In
a recent study by Lu Zhang and his group, the discovery of a novel autophagy inhibitor,
CUR5g, has displayed a potent therapeutic effect in NSCLC. Without an immediate impact
on lysosome activity, it is believed to restrict autophagy by preventing autophagosome-
lysosome fusion by neutralizing the acidic environment of lysosomes [231]. Other organic
substances have been found in recent years to control autophagy and cause cancer cell
death. In the treatment of several tumor types, fixetine inhibits the PI3K/Akt/mTOR
pathway in human NSCLC cells, which can control autophagy [232]. Psoralen, a chemical
compound obtained from the polymorph of Angelica sinensis, has been shown to control
autophagy and apoptosis. By phosphorylating mTOR, angelicin promotes autophagic
proteins like ATG3, 5, 7, and 12 [233]. In order to treat cancer cells, natural compounds may
either encourage or prevent autophagy. These components can also be used to target cancer-
progressing autophagy regulators like Beclin-1, mTOR, NFkB, Erk, Akt, and ROS. As a
result, by controlling autophagy, natural chemicals may have huge therapeutic implications
in cancer treatment [234].
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10. Potential Limitations and Challenges of Targeting Autophagy in Lung
Cancer Treatment

As discussed in the paper regarding the role of autophagy in promoting inflammatory
responses, its long-term effect has been shown to remodel cancer treatment and drive host
immunosuppression. Being an essential homeostatic process, it establishes a pro-tumor
effect in cancer-infected cells. There are several studies that highlight the identification of
pharmacological inhibitors against autophagic proteins. CQ and HCQ are two lysomotropic
agents that have been used to treat malarial infections and rheumatological disorders. The
use of these to overcome existing cancer during clinical assessment has shown improved
outcomes. Additionally, the discovery of other specific inhibitors has shown to have a
potent effect on almost all stages of autophagy. Also, screening for the best possible target
has revealed immune infiltration at tumor sites and modulations in the autophagy process.
Despite their functional relevance and therapeutic implications, there are still challenges
in successful autophagic inhibition [235–238]. (1) Upon exposure of these molecules in
cancer patients, the inhibitor showed molecular perturbations that increased infection
severity. Similarly, in lung cancer, targeting autophagy may reflect molecular dynamics
and interfere with the other signaling events for further tumor development. Considering
the above fact, it therefore becomes important to quantify cell-specific markers for cellular
perturbations. (2) According to the available literature, autophagy inhibition in lung cancer
cells may lead to the overexpression of an important anti-tumor protein that complicates
disease severity. (3) It can also lead to a change in circulating metabolites that have had
an impact on repurposing inhibition kinetics. (4) Being a conserved cellular defense, the
inhibitory effects on autophagic flux are desirable for a long-lasting effect that may not
be reciprocated to favor defense in healthy cells. (5) Also, it may reverse the stimulatory
effect of those accessory proteins that mediate autophagy and may modulate immune
mechanisms towards immunosuppression. In order to overcome the above-underlined
potential limitations, genetic models could be great for addressing the inhibitor’s pharma-
cological activity. Amalgamating autophagic deletion studies could help provide insights
into cancer progression due to adaptive immune perturbations that can be rescued by
tuning the reaction kinetics and inhibitory flux. However, RNA technology and cassettes
can be used to specifically inhibit pathways that may have little or no effect on non-specific
targets. To advance this level of understanding, modeling a mathematical model while
mimicking intricate biological conditions would provide a fundamental understanding that
may be utilized to fine-tune the autophagic process. Moreover, interpreting the systems
biological analysis at the host cellular level can facilitate individualized medicine for lung
cancer patients.

11. Real World Examples or Case Studies to Illustrate the Practical Application of
Systems Biology in Cancer Research

To date, the practical implications of systems biology in cancer immunotherapy are not
very evident. This is due to the fact that studies at present are more inclined to gain insights
into the cellular and molecular aspects of NSCLC. With its advent around 2000, systems
biology has paved the way to resolve biological complexity, signaling networks, and
perturbed cellular events. Studies are being conducted to elucidate the network integrity
of established infections, like cancer, which has provided various intricate information
regarding a complex biological system [239–241]. Recalling the contributions of the systems
biology approach, it provides knowledge about the over-expressed protein candidate,
immune-molecular dynamics, and the factors that potentiate metastasis in nearby tissues.
Collecting and integrating this data would help provide information about actionable
nodes that regulate the pathway of cancer signaling and autophagic flux during infection.
Altogether, the above-established findings will help us to explore minute details, which
can be further utilized to arrive at the idea of achieving systems immuno-oncotherapeutics.
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12. Concluding Remarks

NSCLC is a leading cause of cancer-related death worldwide, but its treatment has
remained elusive for ages. Investigating the route of origin and the molecular theories
behind NSCLC will help improve disease prognosis and outcome [242]. Autophagy is a
physiological cell death process essential for maintaining cellular balance and homeostasis
to sustain cell metabolism in healthy cells. To understand the influence that the IL6-IL-
17-IL23 signaling axis has on autophagy, facilitating chronic inflammation, is therefore
needed to explore the intricacies between innate immunological defense mechanisms. With
a better understanding of the function and mechanics of autophagy, the issues with which
we are faced today will be undoubtedly more complicated than initially believed. Con-
sidering the influence autophagy has on cancer therapy, the crucial question that arises is
whether targeting the process would enhance or mitigate the outcome of chemotherapeutic
drugs. Additionally, the role of inflammasomes on the macroautophagy pathway and its
pro-tumor effect have inclined researchers more towards understanding and dissecting
the crosstalk that promotes tumor growth. However, the assembly of inflammasome com-
ponents produces cytokines that induce a signaling cascade and aggravate inflammatory
responses [141]. Still, understanding specific cytokines is inadequate due to the dynamic
nature of cancer-associated genes and their characteristics. Therefore, at this stage, it is
required to employ different approaches to understand the biological systems and their
response to environmental changes. To understand the intricacies of biological systems, the
field of systems biology evolved as a systematic approach that integrates quantitative data,
mathematical modeling, and computational biology methods. Recently, systems biology,
due to its broader perspective, has been adopted as a holistic approach to compensate for
the unresolved issues underlying cancer inflammation. It also offers a means by which the
knowledge can be translated to lung cancer patients [243].
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Abbreviations

3-MA 3-methyladenine
AMPK AMP-activated protein kinase
APC Antigen-presenting cell
ASC Adaptor apoptosis-associated speck-like protein
ATG autophagy-related genes
Bif1 Bax-interacting factor-1
BMP Bone morphogenetic protein
CAF Cancer-associated fibroblast
CARD Caspase activation and recruitment domain
ChIP Chromatin immunoprecipitation
CHMP2A Chromatin-modifying protein/charged multivesicular body protein 2A
CMA Chaperone-mediated autophagy
CQ Chloroquine
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DC Dendritic cell
EC Endothelial cell
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial mesenchymal transition
ESCRT Endosomal complexes required for transport
FIP200 the focal adhesion kinase family interacting protein of 200 kD
GABARAP GABA Type A Receptor-Associated Protein
GATE-16 Golgi-associated ATPase enhancer of 16 kDa
GRN Gene regulatory network
GSDMD Gasdermin D
HCC Hepatocellular carcinoma
HIF-1α hypoxia-inducible factor-1α
HIV Human immune deficiency virus
HMGB1 High mobility group box 1
HQ Hydroxychloroquine
HSC70 Heat shock cognate 71 KDa protein
IBD Inflammatory bowel disease
IFN-γ Interferon-gamma
IL Interleukin
JNK Jun N-terminal kinase
LAMP2A Lysosomal membrane protein
LC Lung Cancer
LC3 Microtubule-associated protein 1A/1B-light chain 3
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MAPK Mitogen-activated protein kinase
MCSF Macrophage colony stimulating factor
MDSC Myeloid-derived suppressor cells
MKK Mitogen-activated protein kinase kinase
MMP Matrix metalloproteinase
mTOR mammalian target of rapamycin
NACHT a central nucleotide binding and oligomerization
NK Natural killer cell
NLRP3 NLR family protein containing a pyrin domain 3
NSCLC Non-Small Cell Lung Cancer
PDGF-b Plate-derived growth factor
PE Phosphatidyl ethanol amine
PI3K Phosphoinositide-3-kinase
PI3KC3 Phosphatidylinositol 3-phosphate kinase class III
PI3P Phosphatidylinositol-3-phosphate
PIP2 Phosphatidylinositol 4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
PPI Protein-protein interaction
pTEN a phosphatase and tensin homolog
RORγt Rorc RAR-related orphan receptor gamma
ROS Reactive oxygen species
SCLC Small Cell Lung Cancer
scRNA Single-cell RNA sequencing
SNARE Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor
STAT Signal transducer and activator of transcription
TAM Tumour-associated macrophages
TAN Tumor-associated neutrophil
TB Tuberculosis
TC Tumor Cell
TF Transcription factor
TGF-β Transforming growth factor-b
Th T helper
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TME Tumor microenvironment
TNF-a Tumor necrosis factor-a
Treg T-regulatory cell
TSC Tuberous sclerosis
ULK1 unc-51-like kinase 1
UVRAG UV radiation resistance-associated gene
VEGF Vascular endothelial growth factor
VPS Vacuolar protein sorting

References
1. Viktorsson, K.; Lewensohn, R.; Zhivotovsky, B. Systems biology approaches to develop innovative strategies for lung cancer

therapy. Cell Death Dis. 2014, 5, e1260. [CrossRef] [PubMed]
2. Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene

Therapy. Cells 2021, 10, 100. [CrossRef]
3. Monkkonen, T.; Debnath, J. Inflammatory signaling cascades and autophagy in cancer. Autophagy 2018, 14, 190–198. [CrossRef]

[PubMed]
4. Alam, M.; Hasan, G.M.; Eldin, S.M.; Adnan, M.; Riaz, M.B.; Islam, A.; Khan, I.; Hassan, M.I. Investigating regulated signaling

pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed. Pharmacother. 2023, 161, 114452. [CrossRef] [PubMed]
5. Yuan, M.; Zhao, Y.; Arkenau, H.-T.; Lao, T.; Chu, L.; Xu, Q. Signal pathways and precision therapy of small-cell lung cancer. Signal

Transduct. Target. Ther. 2022, 7, 187. [CrossRef]
6. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
7. Sharma, A.; Boise, L.H.; Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers 2019, 11, 1144.

[CrossRef]
8. Feng, H.; Wang, N.; Zhang, N.; Liao, H.H. Alternative autophagy: Mechanisms and roles in different diseases. Cell Commun.

Signal. CCS 2022, 20, 43. [CrossRef]
9. Zada, S.; Hwang, J.S.; Ahmed, M.; Lai, T.H.; Pham, T.M.; Elashkar, O.; Kim, D.R. Cross talk between autophagy and oncogenic

signaling pathways and implications for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188565. [CrossRef]
10. Chavez-Dominguez, R.; Perez-Medina, M.; Lopez-Gonzalez, J.S.; Galicia-Velasco, M.; Aguilar-Cazares, D. The Double-Edge

Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front. Oncol. 2020, 10, 578418. [CrossRef]
11. Jiang, G.M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.T.; Meng, X.J.; Li, L.L.; Liu, Y.; Li, W.F.; Shan, H. The relationship between

autophagy and the immune system and its applications for tumor immunotherapy. Mol. Cancer 2019, 18, 17. [CrossRef] [PubMed]
12. Bhutia, S.K.; Mukhopadhyay, S.; Sinha, N.; Das, D.N.; Panda, P.K.; Patra, S.K.; Maiti, T.K.; Mandal, M.; Dent, P.; Wang, X.Y.; et al.

Autophagy: Cancer’s friend or foe? Adv. Cancer Res. 2013, 118, 61–95. [CrossRef] [PubMed]
13. Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [CrossRef]

[PubMed]
14. Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010, 221, 3–12. [CrossRef]
15. Vargas, J.N.S.; Hamasaki, M.; Kawabata, T.; Youle, R.J.; Yoshimori, T. The mechanisms and roles of selective autophagy in

mammals. Nat. Rev. Mol. Cell Biol. 2023, 24, 167–185. [CrossRef]
16. Chen, R.H.; Chen, Y.H.; Huang, T.Y. Ubiquitin-mediated regulation of autophagy. J. Biomed. Sci. 2019, 26, 80. [CrossRef]
17. Crotzer, V.L.; Blum, J.S. Autophagy and its role in MHC-mediated antigen presentation. J. Immunol. 2009, 182, 3335–3341.

[CrossRef]
18. Somvanshi, P.R.; Venkatesh, K.V. A conceptual review on systems biology in health and diseases: From biological networks to

modern therapeutics. Syst. Synth. Biol. 2014, 8, 99–116. [CrossRef]
19. Yalcin, G.D.; Danisik, N.; Baygin, R.C.; Acar, A. Systems Biology and Experimental Model Systems of Cancer. J. Pers. Med. 2020,

10, 180. [CrossRef]
20. Song, M.; Li, D.; Makaryan, S.Z.; Finley, S.D. Quantitative modeling to understand cell signaling in the tumor microenvironment.

Curr. Opin. Syst. Biol. 2021, 27, 100345. [CrossRef]
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