Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis of 1:3 [Silver(I) Diphenyl-2-pyridylphosphine]Br (Complex 1)
2.3. Synthesis of 1:3 [Silver(I) 4-(Dimethylamino)phenyldiphenylphosphine]Br (Complex 2)
2.4. Preparation of Complexes
2.5. Cell Cultures
2.6. Cell Treatments and Anti-Proliferative Studies
2.7. Analysis of Cell Death
2.8. Change in Mitochondrial Membrane Potential (ΔΨm)
2.9. Quantification of Reactive Oxygen Species (ROS)
2.10. Statistical Analyses
3. Results and Discussion
3.1. Viability Studies and Morphological Changes
3.2. Confirmation of Apoptotic Cell Death and Mitochondrial Targeting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ΔΨm | Mitochondrial membrane potential |
13C | Carbon 13 NMR |
CDCl3 | Deuterated chloroform |
CDDP | Cis-diamine-dichloro platinum (cisplatin) |
CHNS | Carbon, hydrogen, nitrogen, sulfur elemental analysis |
DMEM | Dulbecco’s modified Eagles medium |
DMSO | Dimethyl sulfoxide |
FCS | Fetal calf serum |
1H | Proton NMR |
HBSS | Hanks’ balanced salt solution |
IC50 | Half maximal inhibitory concentration |
IR | Infra-red spectrometry |
NMR | Nuclear magnetic resonance spectrometry |
31P | Phosphorous 31 NMR |
PARP | Poly (ADP-ribose) polymerase |
PBS | Phosphate buffered saline |
PS | Phosphatidylserine |
ROS | Reactive oxygen species |
SEM | Standard error of the mean |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2021, 2071, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Street, W. Colorectal Cancer Facts & Figures 2020–2022; American Cancer Society: Atlanta, GA, USA, 2020; Volume 48. [Google Scholar]
- Anaya-Eugenio, G.D.; Tan, C.Y.; Rakotondraibe, L.H.; de Blanc, E.C.C. Tumor suppressor p53 independent apoptosis in HT-29 cells by auransterol from Penicillium aurantiacobrunneum. Biomed. Pharmacother. 2020, 127, 110124. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol. 2014, 19, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 1, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yan, L.; Che, M.; Luo, G.; Hao, J.; Pan, J.; Hu, S.; Guo, P.; Li, W.; Wang, R.; et al. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging 2020, 12, 611. [Google Scholar] [CrossRef] [PubMed]
- Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol. Rep. 2013, 29, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 2015, 5, e1257. [Google Scholar] [CrossRef]
- Raju, S.K.; Karunankaran, A.; Kumar, S.; Sekar, P.; Murugesan, M.; Karthikeyan, M. Silver complexes as anticancer agents: A perspective review. German J. Pharm. Biomater. 2022, 1, 6–28. [Google Scholar] [CrossRef]
- Malik, M.; Iqbal, M.A.; Iqbal, Y.; Malik, M.; Bakhsh, S.; Irfan, S.; Ahmad, R.; Pham, P.V. Biosynthesis of silver nanoparticles for biomedical applications: A mini review. Inorg. Chem. Commun. 2022, 145, 109980. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. A pharmacological and toxicological Profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010, 2010, 910686. [Google Scholar] [CrossRef] [PubMed]
- Banti, C.N.; Raptopoulou, C.P.; Psycharis, V.; Hadjikakou, S.K. Novel silver glycinate conjugate with 3D polymeric intermolecular self-assembly architecture: An antiproliferative agent which induces apoptosis on human breast cancer cells. J. Inorg. Biochem. 2021, 216, 111351. [Google Scholar] [CrossRef]
- Gao, X.; Lv, X.; Zhang, R.; Luo, Y.; Wang, M.; Chen, J.; Zhang, Y.; Sun, B.; Sun, J.; Liu, Y.; et al. Design, synthesis and in vitro anticancer research of novel tetrandrine and fangchinoline derivatives. Bioorg. Chem. 2021, 109, 104694. [Google Scholar] [CrossRef]
- Abdul Halim, S.N.A.; Nordin, F.J.; Mohd Abd Razak, M.R.; Mohd Sofyan, N.R.F.; Abdul Halim, S.N.; Rajab, N.F.; Sarip, R. Synthesis, characterization, and evaluation of silver (I) complexes with mixed-ligands of thiosemicarbazones and diphenyl (p-tolyl) phosphine as biological agents. J. Coord. Chem. 2019, 72, 879–893. [Google Scholar] [CrossRef]
- Ferreira, E.; Munyaneza, A.; Omondi, B.; Meijboom, R.; Cronjé, M.J. The effect of 1, 2 Ag (I) thiocyanate complexes in MCF-7 breast cancer cells. BioMetals 2015, 28, 765–781. [Google Scholar] [CrossRef]
- Human, Z.; Munyaneza, A.; Omondi, B.; Meijboom, R.; Cronjé, M.J. The induction of cell death by phosphine silver (I) thiocyanate complexes in SNO-esophageal cancer cells. BioMetals 2015, 28, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Potgieter, K.; Cronjé, M.J.; Meijboom, R. Synthesis and characterisation of silver (I) benzyldiphenylphosphine complexes: Towards the biological evaluation on SNO cells. Inorg. Chim. Acta 2015, 437, 195–200. [Google Scholar] [CrossRef]
- Potgieter, K.; Cronjé, M.J.; Meijboom, R. Synthesis of silver (I) p-substituted phenyl diphenyl phosphine complexes with the evaluation of the toxicity on a SNO cancer cell line. Inorg. Chim. Acta 2016, 453, 443–451. [Google Scholar] [CrossRef]
- Human-Engelbrecht, Z.; Meijboom, R.; Cronjé, M.J. Apoptosis-inducing ability of silver(I) cyanide-phosphines useful for anti-cancer studies. Cytotechnology 2017, 69, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, Z.; Meijboom, R.; Cronjé, M.J. The ability of silver (I) thiocyanate 4-methoxyphenyl phosphine to induce apoptotic cell death in esophageal cancer cells is correlated to mitochondrial perturbations. BioMetals 2018, 31, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Augustine, S.; Mathew, A.A.; Kanthal, S.K.; Panonummal, R. Apoptosis promoting activity of selected plant steroid in MRMT-1 breast cancer cell line by modulating mitochondrial permeation pathway. Steroids 2023, 190, 109151. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.E.; Becceneri., A.B.; Santiago, J.V.; Neto, J.A.G.; Ellena, J.; Cominetti, M.R.; Pereira, J.C.; Hannon, M.J.; Netto, A.V. Silver (I) complexes of 3-methoxy-4-hydroxybenzaldehyde thiosemicarbazones and triphenylphosphine: Structural, cytotoxicity, and apoptotic studies. Chem. Soc. Dalton Trans. 2020, 49, 16474–16487. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Margreiter, R.; Amberger, A.; Saks, V.; Grimm, M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim. Biophys. Acta Mol. Cell Res. 2011, 1813, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, J. Cytochrome c in cancer therapy and prognosis. Biosci. Rep. 2022, 42, BSR20222171. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.B.; Yao, F.B.; Zhao, J.; Zhang, W.; Chen, L.; Wang, X.; Yang, P.; Tang, J.; Yang, C. Unraveling mitochondria-targeting reactive oxygen species modulation and their implementations in cancer therapy by nanomaterials. Exploration. 2023, 3, 20220115. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhu, D.; Huang, P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med. Chem. 2013, 5, 53–67. [Google Scholar] [CrossRef]
- Constance, J.E.; Lim, C.S. Targeting malignant mitochondria with therapeutic peptides. Ther. Del. 2012, 3, 961–979. [Google Scholar] [CrossRef]
- Naganagowda, G.; Engelbrecht, Z.; Potgieter, K.; Malan, F.P.; Ncube, P.; Cronjé, M.J.; Meijboom, R. Synthesis, crystal structure and spectral studies of silver (I) cyclohexyldiphenylphosphine complexes: Towards the biological evaluation on malignant and non-malignant cells. J. Coord. Chem. 2023, 76, 45–60. [Google Scholar] [CrossRef]
- Singh, M.P.; Chauhan, A.K.; Kang, S.C. Morin hydrate ameliorates cisplatin-induced ER stress, inflammation, and autophagy in HEK-293 cells and mice kidney via PARP-1 regulation. Int. Immunopharmacol. 2018, 56, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, Z.; Potgieter, K.; Mpela, Z.; Malgas-Enus, R.; Meijboom, R.; Cronjé, M.J. A comparison of the toxicity of mono, bis, tris and tetrakis phosphine silver complexes on SNO esophageal cancer cells. Anticancer. Agents Med. Chem. 2018, 18, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.Y.G.; Rocha, J.S.; Felix, D.P.; Oliveira, G.P.; Lima, M.A.; Farias, R.L.; Zanetti, R.D.; Netto, A.V.G.; Zambom, C.R.; Garrido, S.S.; et al. Cytotoxicity and antibacterial activity of silver complexes bearing semicarbazones and triphenylphosphine. Chem. Select 2020, 5, 14559–14563. [Google Scholar] [CrossRef]
- Meijboom, R.; Bowen, R.J.; Berners-Price, S.J. Coordination complexes of silver(I) with tertiary phosphine and related ligands. Coord. Chem. Rev. 2009, 235, 325–342. [Google Scholar] [CrossRef]
- Danmak, K.; Porchia, M.; De Franco, M.; Zancato, M.; Naili, H.; Gandin, V.; Marzano, C. Antiproliferative Homoleptic and heteroleptic phosphino silver(I) complexes: Effect of ligand combination on their biological mechanism of action. Molecules 2020, 25, 5484. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska-Lis, U.; Felczak, A.; Chęińska, L.; Szabłowsak-Gadomsak, K.; Patyna, E.; Małecki, M.; Lisowska, K.; Ochochi, J. Antibacterial activity and cytotoxicity of silver(I) complexes of pyridine and (benz)imidazole derivatives. X-ray crystal structure of [Ag(2,6-di(CH2OH)py)2]NO3. Molecules 2016, 21, 87. [Google Scholar] [CrossRef] [PubMed]
- Sofyan, N.R.F.M.; Nordin, F.J.; Mohd Abd Razak, M.R.; Áin Abdul Halim, S.N.; Mohd Khir, N.A.F.; Muhammad, A.; Rajab, N.F.; Sarip, R. New silver complexes with mixed thiazolidine and phosphine ligands as highly potent antimalarial and anticancer agents. J. Chem. 2018, 2018, 8395374. [Google Scholar]
- Bresciani, G.; Busto, N.; Ceccherini, V.; Bortoluzzi, M.; Pampaloni, G.; Garcia, B.; Marchetti, F. Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents. J. Inorg. Biochem. 2022, 227, 111667. [Google Scholar] [CrossRef] [PubMed]
- Gil-Moles, M.; Olmos, M.E.; Monge, M.; Beltrán-Visiedo, M.; Marzo, I.; López-de-Luzuraga, J.M.; Concepión Gimeno, M. Silver-based terpyridine complexes as antitumor agents. Chem. Eur. J. 2023, 5, e202300116. [Google Scholar] [CrossRef]
- Chrysouli, M.P.; Bant, C.N.; Kourkoumelis, N.; Panayiotou, N.; Markopoulos, G.S.; Tasiopoulos, A.J.; Hadjikakou, S.K. Chloro(triphenylphosphine)gold(I) a forefront reagent in gold chemistry as apoptotic agent for cancer cells. J. Inorg. Biochem. 2018, 179, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Altay, A.; Caglar, S.; Caglar, B.; Sahin, Z.S. Novel silver(I) complexes bearing mefenamic acid and pyridine derivatives: Synthesis, chemical Characterization, and in vitro anticancer evaluation. Inorganica Chim. Acta 2019, 493, 61–71. [Google Scholar] [CrossRef]
- Montagner, D.; Gandin, V.; Marzano, C.; Erxleben, A. DNA damage and induction of apoptosis in pancreatic cancer cells by new dinuclear bis(triazacyclonane) copper complex. J. Inorg. Biochem. 2015, 145, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, V.T.; Icsel, C.; Batur, J.; Aydinlik, M.C.; Buyukgungor, O. Synthesis, structures, and biomolecular interactions of new silver(I) 5,5 -diethylbarbiturate complexes of monophosphines targeting Gram-positive bacteria and breast cancer cells. J. Chem. Soc. Dalton Trans. 2017, 46, 8110–8124. [Google Scholar] [CrossRef]
- Landes, T.; Martinou, J.-C. Mitochondrial outer membrane permeabilization during apoptosis: The role of mitochondrial fission. Biochim. Biophys. Acta 2011, 1813, 540–545. [Google Scholar] [CrossRef]
- Kriel, F.H.; Coates, J. Synthesis and Antitumour activity of gold(I) and silver(I) complexes of hydrazine-bridged diphosphine ligands. S. Afr. J. Chem. 2012, 65, 271–279. [Google Scholar]
- Harurluoglu, B.; Altay, A.; Caglar, S.; Yeniceri, E.K.K.; Caglar, B.; Şahin, Z.S. Binuclear silver(I) complexes with non-steroidal anti-inflammatory drug tolfenamic acid: Synthesis, characterization, cytotoxic activity, and evaluation of cellular mechanism of action. Polyhedron 2021, 202, 115189. [Google Scholar] [CrossRef]
- Eloy, L.; Jarrousse, A.-S.; Teyssot, M.-L.; Gautier, A.; Morel, L.; Jolivat, C.; Cresteil, T.; Roland, S. Anticancer sctivity of silver–N-heterocyclic carbene complexes: Caspase-independent induction of apoptosis via mitochondrial apoptosis-inducing factor (AIF). ChemMedChem 2012, 7, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, S.; Jin, X.; Tan, J.; Lou, J.; Zhang, X.; Zhao, Y. Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species mediated mitochondrial pathway. Eur. J. Med. Chem. 2014, 86, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Chelliah, R.; Hu, X.; Oh, D.-H.; Kathiresan, K.; Wanga, M.-H. Antioxidant, anti-lung cancer, and anti-bacterial activities of toxicodendron vernicifluum. Biomolecules 2019, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Al-kawmani, A.A.; Alania, K.M.; Farah, M.A.; Ali, M.A.; Hailan, W.A.Q.; Al-Hemaid, M.A. Apoptosis-inducing potential of biosynthesized silver nanoparticles in breast cancer cells. J. King Saud. Univ. Sci. 2020, 32, 2480–2488. [Google Scholar] [CrossRef]
Treatment | Malignant HT-29 Cells | |
IC50 Concentrations (±SEM) | ||
24 h | 48 h | |
CDDP | 200.96 µM (±10.35 µM) | 55.16 µM (±3.46 µM) |
1 | 7.49 µM (±0.20 µM) | 5.92 µM (±0.29 µM) |
2 | 21.75 µM (±1.97 µM) | 185.28 µM (±5.19 µM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, K.E.; Engelbrecht, Z.; Potgieter, K.; Meijboom, R.; Cronjé, M.J. Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells. Biomedicines 2023, 11, 2794. https://doi.org/10.3390/biomedicines11102794
Roberts KE, Engelbrecht Z, Potgieter K, Meijboom R, Cronjé MJ. Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells. Biomedicines. 2023; 11(10):2794. https://doi.org/10.3390/biomedicines11102794
Chicago/Turabian StyleRoberts, Kim Elli, Zelinda Engelbrecht, Kariska Potgieter, Reinout Meijboom, and Marianne Jacqueline Cronjé. 2023. "Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells" Biomedicines 11, no. 10: 2794. https://doi.org/10.3390/biomedicines11102794
APA StyleRoberts, K. E., Engelbrecht, Z., Potgieter, K., Meijboom, R., & Cronjé, M. J. (2023). Silver(I) Bromide Phosphines Induce Mitochondrial-Mediated Apoptosis in Malignant Human Colorectal Cells. Biomedicines, 11(10), 2794. https://doi.org/10.3390/biomedicines11102794