Effects of Golimumab and Ustekinumab on Circulating Dendritic Cell Migratory Capacity in Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Blood Processing
2.3. Antibody Labeling
2.4. PBMC Culture
2.5. Transwell Migration Experiments
2.6. Flow Cytometry and Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Differential Homing Marker Profile in DC from HC and IBD Patients
3.2. DC Migration Capacity toward GI Chemoattractants
3.3. Golimumab and Ustekinumab Modify the DC Migratory Profile of IBD Patients
3.4. Golimumab and Ustekinumab Modify the Migratory Capacity of cDC
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Thoreson, R.; Cullen, J.J. Pathophysiology of Inflammatory Bowel Disease: An Overview. Surg. Clin. N. Am. 2007, 87, 575–585. [Google Scholar] [CrossRef]
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The Global, Regional, and National Burden of Inflammatory Bowel Disease in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Jess, T. Implications of the Changing Epidemiology of Inflammatory Bowel Disease in a Changing World. United Eur. Gastroenterol. J. 2022, 10, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Barreiro-de Acosta, M.; Benítez, J.M.; Cabriada, J.L.; Casanova, M.J.; Ceballos, D.; Esteve, M.; Fernández, H.; Ginard, D.; Gomollón, F.; et al. EpidemIBD: Rationale and Design of a Large-Scale Epidemiological Study of Inflammatory Bowel Disease in Spain. Therap. Adv. Gastroenterol. 2019, 12, 1756284819847034. [Google Scholar] [CrossRef] [PubMed]
- Pillai, N.; Dusheiko, M.; Burnand, B.; Pittet, V. A Systematic Review of Cost-Effectiveness Studies Comparing Conventional, Biological and Surgical Interventions for Inflammatory Bowel Disease. PLoS ONE 2017, 12, e0185500. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of Dendritic Cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef] [PubMed]
- Askmyr, D.; Abolhalaj, M.; Gomez Jimenez, D.; Greiff, L.; Lindstedt, M.; Lundberg, K. Pattern Recognition Receptor Expression and Maturation Profile of Dendritic Cell Subtypes in Human Tonsils and Lymph Nodes. Hum. Immunol. 2021, 82, 976–981. [Google Scholar] [CrossRef]
- Henry, C.M.; Castellanos, C.A.; Reis e Sousa, C. DNGR-1-mediated cross-presentation of dead cell-associated antigens. Semin. Immunol. 2023, 66, 101726. [Google Scholar] [CrossRef]
- Bernardo, D.; Chaparro, M.; Gisbert, J.P. Human Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Mol. Nutr. Food Res. 2018, 62, e1700931. [Google Scholar] [CrossRef]
- Bsat, M.; Chapuy, L.; Baba, N.; Rubio, M.; Panzini, B.; Wassef, R.; Richard, C.; Soucy, G.; Mehta, H.; Sarfati, M. Differential Accumulation and Function of Proinflammatory 6-Sulfo LacNAc Dendritic Cells in Lymph Node and Colon of Crohn’s versus Ulcerative Colitis Patients. J. Leukoc. Biol. 2015, 98, 671–681. [Google Scholar] [CrossRef]
- Hart, A.L.; Al-Hassi, H.O.; Rigby, R.J.; Bell, S.J.; Emmanuel, A.V.; Knight, S.C.; Kamm, M.A.; Stagg, A.J. Characteristics of Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Gastroenterology 2005, 129, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, C.; Chen, S.; Zhang, X. Emerging Role of Dendritic Cell Intervention in the Treatment of Inflammatory Bowel Disease. BioMed Res. Int. 2022, 2022, 7025634. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, D.; Marin, A.C.; Fernández-Tomé, S.; Montalban-Arques, A.; Carrasco, A.; Tristán, E.; Ortega-Moreno, L.; Mora-Gutiérrez, I.; Díaz-Guerra, A.; Caminero-Fernández, R.; et al. Human Intestinal Pro-Inflammatory CD11chighCCR2+CX3CR1+ Macrophages, but Not Their Tolerogenic CD11c−CCR2−CX3CR1− Counterparts, Are Expanded in Inflammatory Bowel Disease. Mucosal Immunol. 2018, 11, 1114–1126. [Google Scholar] [CrossRef]
- Clahsen, T.; Pabst, O.; Tenbrock, K.; Schippers, A.; Wagner, N. Localization of Dendritic Cells in the Gut Epithelium Requires MAdCAM-1. Clin. Immunol. 2015, 156, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Mann, E.R.; Bernardo, D.; English, N.R.; Landy, J.; Al-Hassi, H.O.; Peake, S.T.; Man, R.; Elliott, T.R.; Spranger, H.; Lee, G.H.; et al. Compartment-Specific Immunity in the Human Gut: Properties and Functions of Dendritic Cells in the Colon versus the Ileum. Gut 2016, 65, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Argollo, M.; Kotze, P.G.; Kakkadasam, P.; D’Haens, G. Optimizing Biologic Therapy in IBD: How Essential Is Therapeutic Drug Monitoring? Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Aterido, A.; Guerra, I.; Iborra, M.; Cabriada, J.L.; Bujanda, L.; Taxonera, C.; García-Sánchez, V.; Marín-Jiménez, I.; Barreiro-de Acosta, M.; et al. Functional Rare Variants Influence the Clinical Response to Anti-TNF Therapy in Crohn’s Disease. Ther. Adv. Gastroenterol. 2019, 12, 175628481986784. [Google Scholar] [CrossRef]
- Peake, S.T.; Bernardo, D.; Knight, S.C.; Hart, A.L. Homing Marker Expression on Circulating Dendritic Cells Correlates with Different Phenotypes of Crohn’s Disease. J. Crohns Colitis 2013, 7, 594–596. [Google Scholar] [CrossRef]
- Bernardo, D.; Durant, L.; Mann, E.R.; Bassity, E.; Montalvillo, E.; Man, R.; Vora, R.; Reddi, D.; Bayiroglu, F.; Fernández-Salazar, L.; et al. Chemokine (C-C Motif) Receptor 2 Mediates Dendritic Cell Recruitment to the Human Colon but Is Not Responsible for Differences Observed in Dendritic Cell Subsets, Phenotype, and Function Between the Proximal and Distal Colon. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 22–39.e5. [Google Scholar] [CrossRef]
- Soleto, I.; Fernández-Tomé, S.; Mora-Gutiérrez, I.; Baldan-Martin, M.; Ramírez, C.; Santander, C.; Moreno-Monteagudo, J.A.; Casanova, M.J.; Casals, F.; Casabona, S.; et al. Differential Effects of Anti-TNFα and Anti-A4β7 Drugs on Circulating Dendritic Cells Migratory Capacity in Inflammatory Bowel Disease. Biomedicines 2022, 10, 1885. [Google Scholar] [CrossRef]
- Canavan, M.; Marzaioli, V.; Bhargava, V.; Nagpal, S.; Gallagher, P.; Hurson, C.; Mullan, R.; Veale, D.J.; Fearon, U. Functionally Mature CD1c+ Dendritic Cells Preferentially Accumulate in the Inflammatory Arthritis Synovium. Front. Immunol. 2021, 12, 745226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, F.; Chen, X.-Y.; Yan, B.-X.; Wang, Z.-Y.; Chen, S.-Q.; Zheng, M.; Man, X.-Y. The Epidermal Immune Microenvironment Plays a Dominant Role in Psoriasis Development, as Revealed by Mass Cytometry. Cell. Mol. Immunol. 2022, 19, 1400–1413. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Qin, X.; Wang, D.; Zhang, Z.; Tang, X.; Gao, X.; Chen, W.; Sun, L. Mesenchymal Stem Cell Therapy Induces FLT3L and CD1c+ Dendritic Cells in Systemic Lupus Erythematosus Patients. Nat. Commun. 2019, 10, 2498. [Google Scholar] [CrossRef] [PubMed]
- Skovdahl, H.K.; Granlund, A.v.B.; Østvik, A.E.; Bruland, T.; Bakke, I.; Torp, S.H.; Damås, J.K.; Sandvik, A.K. Expression of CCL20 and Its Corresponding Receptor CCR6 Is Enhanced in Active Inflammatory Bowel Disease, and TLR3 Mediates CCL20 Expression in Colonic Epithelial Cells. PLoS ONE 2015, 10, e0141710. [Google Scholar] [CrossRef]
- Martina, M.G.; Giorgio, C.; Allodi, M.; Palese, S.; Barocelli, E.; Ballabeni, V.; Szpakowska, M.; Chevigné, A.; Piet van Hamburg, J.; Davelaar, N.; et al. Discovery of Small-Molecules Targeting the CCL20/CCR6 Axis as First-in-Class Inhibitors for Inflammatory Bowel Diseases. Eur. J. Med. Chem. 2022, 243, 114703. [Google Scholar] [CrossRef]
- Meitei, H.T.; Jadhav, N.; Lal, G. CCR6-CCL20 Axis as a Therapeutic Target for Autoimmune Diseases. Autoimmun. Rev. 2021, 20, 102846. [Google Scholar] [CrossRef]
- Ortega Moreno, L.; Fernández-Tomé, S.; Chaparro, M.; Marin, A.C.; Mora-Gutiérrez, I.; Santander, C.; Baldan-Martin, M.; Gisbert, J.P.; Bernardo, D. Profiling of Human Circulating Dendritic Cells and Monocyte Subsets Discriminates Between Type and Mucosal Status in Patients With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 268–274. [Google Scholar] [CrossRef]
- Gross Even-Zohar, N.; Pick, M.; Hofstetter, L.; Shaulov, A.; Nachmias, B.; Lebel, E.; Gatt, M.E. CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J. Clin. Med. 2022, 11, 2913. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; D’Haens, G.; Lee, S.D.; Allez, M.; Fedorak, R.N.; Seidler, U.; Vermeire, S.; Lawrance, I.C.; Maroney, A.C.; et al. Randomised Clinical Trial: Vercirnon, an Oral CCR9 Antagonist, vs. Placebo as Induction Therapy in Active Crohn’s Disease. Aliment. Pharmacol. Ther. 2015, 42, 1170–1181. [Google Scholar] [CrossRef]
- Hassan-Zahraee, M.; Banerjee, A.; Cheng, J.B.; Zhang, W.; Ahmad, A.; Page, K.; von Schack, D.; Zhang, B.; Martin, S.W.; Nayak, S.; et al. Anti-MAdCAM Antibody Increases SS7+ T Cells and CCR9 Gene Expression in the Peripheral Blood of Patients with Crohn’s Disease. J. Crohns Colitis 2018, 12, 77–86. [Google Scholar] [CrossRef]
- Cheuk, S.; Wikén, M.; Blomqvist, L.; Nylén, S.; Talme, T.; Ståhle, M.; Eidsmo, L. Epidermal Th22 and Tc17 Cells Form a Localized Disease Memory in Clinically Healed Psoriasis. J. Immunol. 2014, 192, 3111–3120. [Google Scholar] [CrossRef] [PubMed]
- Linares, R.; Gutiérrez, A.; Márquez-Galera, Á.; Caparrós, E.; Aparicio, J.R.; Madero, L.; Payá, A.; López-Atalaya, J.P.; Francés, R. Transcriptional Regulation of Chemokine Network by Biologic Monotherapy in Ileum of Patients with Crohn’s Disease. Biomed. Pharmacother. 2022, 147, 112653. [Google Scholar] [CrossRef] [PubMed]
Variable | HC | aUC | qUC | aCD | qCD |
---|---|---|---|---|---|
Age (years) mean ± SD | 32.56 ± 6.12 | 46.73 ± 14.84 | 50.66 ± 11.83 | 44.86 ± 16.30 | 53.2 ± 15.15 |
Sex (Male), n (%) | 3 (20%) | 8 (53.3%) | 10 (66.6%) | 7 (46.6%) | 7 (46.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleto, I.; Ramirez, C.; Gómez, C.; Baldan-Martin, M.; Orejudo, M.; Mercado, J.; Chaparro, M.; Gisbert, J.P. Effects of Golimumab and Ustekinumab on Circulating Dendritic Cell Migratory Capacity in Inflammatory Bowel Disease. Biomedicines 2023, 11, 2831. https://doi.org/10.3390/biomedicines11102831
Soleto I, Ramirez C, Gómez C, Baldan-Martin M, Orejudo M, Mercado J, Chaparro M, Gisbert JP. Effects of Golimumab and Ustekinumab on Circulating Dendritic Cell Migratory Capacity in Inflammatory Bowel Disease. Biomedicines. 2023; 11(10):2831. https://doi.org/10.3390/biomedicines11102831
Chicago/Turabian StyleSoleto, Irene, Cristina Ramirez, Cristina Gómez, Montse Baldan-Martin, Macarena Orejudo, Jorge Mercado, María Chaparro, and Javier P. Gisbert. 2023. "Effects of Golimumab and Ustekinumab on Circulating Dendritic Cell Migratory Capacity in Inflammatory Bowel Disease" Biomedicines 11, no. 10: 2831. https://doi.org/10.3390/biomedicines11102831
APA StyleSoleto, I., Ramirez, C., Gómez, C., Baldan-Martin, M., Orejudo, M., Mercado, J., Chaparro, M., & Gisbert, J. P. (2023). Effects of Golimumab and Ustekinumab on Circulating Dendritic Cell Migratory Capacity in Inflammatory Bowel Disease. Biomedicines, 11(10), 2831. https://doi.org/10.3390/biomedicines11102831