Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Data Extraction
2.2. Study Endpoints and Follow-Up
2.3. Blood Sampling and Antiphospholipid Antibody Measurement
2.4. Statistical Analyses
3. Results
3.1. Patient Baseline Characteristics
3.2. Laboratory Values at Four Time Points
3.3. Specific Subgroups of Patients
3.3.1. Patients Who Died during Hospitalization
3.3.2. Patients Who Experienced Thrombosis during Hospitalization
3.3.3. Patients with a History of Thrombosis
3.3.4. Patients with a History of Pregnancy Morbidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, E.M.; Bellone, J.M.; Hornsby, L.B.; Treadway, S.; Phillippe, H.M. Acquired Thrombophilia. J. Pharm. Pract. 2014, 27, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; DE Groot, P.G.; Koike, T.; Krilis, S.A. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J.; Zuily, S.; Meroni, P.L. Role of antiphospholipid antibodies in the diagnosis of antiphospholipid syndrome. J. Transl. Autoimmun. 2021, 4, 100134. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A. Additional laboratory tests to improve on the diagnosis of antiphospholipid syndrome. Letter to the editor. J. Thromb. Haemost. 2020, 18, 3117–3118. [Google Scholar] [CrossRef] [PubMed]
- Tonello, M.; Bison, E.; Cattini, M.G.; Pontara, E.; Iaccarino, L.; Denas, G.; Cheng, C.; Pengo, V. Anti-phosphatidyl-serine/prothrombin antibodies (aPS/PT) in isolated lupus anticoagulant (LA): Is their presence linked to dual test positivity? Clin. Chem. Lab. Med. 2021, 59, 1950–1953. [Google Scholar] [CrossRef]
- Žigon, P.; Podovšovnik, A.; Ambrožič, A.; Tomšič, M.; Hočevar, A.; Gašperšič, N.; Rotar, Ž.; Praprotnik, S.; Šemrl, S.S.; Čučnik, S. Added value of non-criteria antiphospholipid antibodies for antiphospholipid syndrome: Lessons learned from year-long routine measurements. Clin. Rheumatol. 2019, 38, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Zohoury, N.; Bertolaccini, M.L.; Rodriguez-Garcia, J.L.; Shums, Z.; Ateka-Barrutia, O.; Sorice, M.; Norman, G.L.; Khamashta, M. Closing the Serological Gap in the Antiphospholipid Syndrome: The Value of “Non-criteria” Antiphospholipid Antibodies. J. Rheumatol. 2017, 44, 1597–1602. [Google Scholar] [CrossRef]
- Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef]
- Yin, D.; de Groot, P.G.; Ninivaggi, M.; Devreese, K.M.J.; de Laat, B. Clinical relevance of isolated lupus anticoagulant positivity in patients with thrombotic antiphospholipid syndrome. Thromb. Haemost. 2021, 121, 1220–1227. [Google Scholar] [CrossRef]
- Cervera, R.; Khamashta, M.A.; Shoenfeld, Y.; Camps, M.T.; Jacobsen, S.; Kiss, E.; Zeher, M.M.; Tincani, A.; Kontopoulou-Griva, I.; Galeazzi, M.; et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 2009, 68, 1428–1432. [Google Scholar] [CrossRef]
- Duarte-Garcia, A.; Pham, M.M.; Crowson, C.S.; Amin, S.; Moder, K.G.; Pruthi, R.K.; Warrington, K.J.; Matteson, E.L. The Epidemiology of Antiphospholipid Syndrome: A Population-Based Study. Arthritis Rheumatol. 2019, 71, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- El Hachem, H.; Crepaux, V.; May-Panloup, P.; Descamps, P.; Legendre, G.; Bouet, P.E. Recurrent pregnancy loss: Current perspectives. Int. J. Womens Health 2017, 17, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Tsikouras, P.; Tsiggalou, C.; Bothou, A.; Gerede, A.; Apostolou, I.; Gaitatzi, F.; Chalkidou, A.; Anthoulaki, X.; Michalopoulos, S.; Dragoutsos, S.G.; et al. Antiphospholipid Syndrome and Pregnancy-Diagnosis, Complications and Management: An Overview [Internet]. In Inflammation in the 21st Century; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Capecchi, M.; Abbattista, M.; Ciavarella, A.; Uhr, M.; Novembrino, C.; Martinelli, I. Anticoagulant Therapy in Patients with Antiphospholipid Syndrome. J. Clin. Med. 2022, 11, 6984. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Blank, M.; Cervera, R.; Font, J.; Raschi, E.; Meron, P.L. Infectious origin of the antiphospholipid syndrome. Ann. Rheum. Dis. 2006, 65, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Gkrouzman, E.; Barbhaiya, M.; Erkan, D.; Lockshin, M.D. Reality Check on Antiphospholipid Antibodies in COVID-19-Associated Coagulopathy. Arthritis Rheumatol. 2021, 73, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Trahtemberg, U.; Rottapel, R.; Dos Santos, C.C.; Slutsky, A.S.; Baker, A.; Fritzler, M.J. Anticardiolipin and other antiphospholipid antibodies in critically ill COVID-19 positive and negative patients. Ann. Rheum. Dis. 2021, 80, 1236–1240. [Google Scholar] [CrossRef]
- Hasan Ali, O.; Bomze, D.; Risch, L.; Brugger, S.D.; Paprotny, M.; Weber, M.; Thiel, S.; Kern, L.; Albrich, W.C.; Kohler, P.; et al. Severe Coronavirus Disease 2019 (COVID-19) is Associated with Elevated Serum Immunoglobulin (Ig) A and Antiphospholipid IgA Antibodies. Clin. Infect. Dis. 2021, 73, e2869–e2874. [Google Scholar] [CrossRef]
- Stelzer, M.; Henes, J.; Saur, S. The Role of Antiphospholipid Antibodies in COVID-19. Curr. Rheumatol. Rep. 2021, 23, 72–74. [Google Scholar] [CrossRef]
- Taha, M.; Samavati, L. Antiphospholipid antibodies in COVID-19: A meta-analysis and systematic review. RMD Open 2021, 7, e001580. [Google Scholar] [CrossRef]
- Bitterman, L.; Solhjoo, M.; Shah, V.; Kwon, S.M.; Torralba, K.; Kazbour, H. Catastrophic Antiphospholipid Syndrome as a Complication of COVID-19 Infection. J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231165736. [Google Scholar] [CrossRef]
- Gazzaruso, C.; Mariani, G.; Ravetto, C.; Malinverni, L.; Tondelli, E.; Cerrone, M.; Sala, V.; Bevilacqua, L.; Altavilla, T.; Coppola, A.; et al. Lupus anticoagulant and mortality in patients hospitalized for COVID-19. J. Thromb. Thrombolysis 2021, 52, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Božič, B.; Kveder, T.; Stegnar, M.; Morosini-Berus, E.; Kos-Golja, M.; Peternel, P.; Rozman, B. Influence of degraded phosphatidylserine on binding of antiphospholipid antibodies. Int. Arch. Allergy Immunol. 1997, 112, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Žigon, P.; Ambrožic, A.; Cucnik, S.; Kveder, T.; Rozman, B.; Božic, B. Modified phosphatidylserine-dependent antiprothrombin ELISA enables identification of patients negative for other antiphospholipid antibodies and also detects low avidity antibodies. Clin. Chem. Lab. Med. 2011, 49, 1011–1018. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Pierangeli, S.S.; De Laat, B.; Tripodi, A.; Atsumi, T.; Ortel, T.L. Testing for Antiphospholipid antibodies with Solid Phase Assays: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2014, 12, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Avcin, T.; Markelj, G.; Niksic, V.; Rener-Primec, Z.; Cucnik, S.; Zupancic, M.; Rozman, B.; Neubauer, D. Estimation of antiphospholipid antibodies in a prospective longitudinal study of children with migraine. Cephalalgia 2004, 24, 831–837. [Google Scholar] [CrossRef]
- Žigon, P.; Perdan Pirkmajer, K.; Tomšič, M.; Kveder, T.; Božič, B.; Šemrl, S.S.; Čučnik, S.; Ambrožič, A. Anti-Phosphatidylserine/Prothrombin Antibodies Are Associated with Adverse Pregnancy Outcomes. J. Immunol. Res. 2015, 2015, 975704. [Google Scholar] [CrossRef]
- Cucnik, S.; Ambrozic, A.; Bozic, B.; Skitek, M.; Kveder, T. Anti-beta2-glycoprotein I ELISA: Methodology, determination of cut-off values in 434 healthy Caucasians and evaluation of monoclonal antibodies as possible international standards. Clin. Chem. Lab. Med. 2000, 38, 777–783. [Google Scholar] [CrossRef]
- Reber, G.; Schousboe, I.; Tincani, A.; Sanmarco, M.; Kveder, T.; de Moerloose, P.; Boffa, M.C.; Arvieux, J. Inter-laboratory variability of anti-beta2-glycoprotein I measurement. A collaborative study in the frame of the European Forum on Antiphospholipid Antibodies Standardization Group. Thromb. Haemost. 2002, 88, 66–73. [Google Scholar]
- Žigon, P.; Čučnik, S.; Ambrožič, A.; Kveder, T.; Šemrl, S.S.; Rozman, B.; Božič, B. Detection of antiphosphatidylserine/prothrombin antibodies and their potential diagnostic value. Clin. Dev. Immunol. 2013, 2013, 724592. [Google Scholar] [CrossRef]
- Ogrič, M.; Žigon, P.; Sodin-Semrl, S.; Zlatković-Švenda, M.; Zdravković, M.; Ovuka, M.; Švec, T.; Lakota, K.; Radšel, P.; Rotar, Ž.; et al. Longitudinal Analysis of Antiphospholipid Antibody Dynamics after Infection with SARS-CoV-2 or Vaccination with BNT162b2. Int. J. Mol. Sci. 2022, 24, 211. [Google Scholar] [CrossRef]
- Mendoza-Pinto, C.; Escárcega, R.O.; García-Carrasco, M.; Bailey, D.J.O.; Gálvez-Romero, J.L.; Cervera, R. Viral infections and their relationship with catastrophic antiphospholipid syndrome: A possible pathogenic mechanism of severe COVID-19 thrombotic complications. J. Intern. Med. 2020, 288, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, K.; Bazan-Socha, S.; Celejewska-Wójcik, N.; Górka, K.; Lichołai, S.; Polok, K.; Stachura, T.; Zaręba, L.; Dziedzic, R.; Gradzikiewicz, A.; et al. Decreased protein C activity, lower ADAMTS13 antigen and free protein S levels accompanied by unchanged thrombin generation potential in hospitalized COVID-19 patients. Thromb. Res. 2023, 223, 80–86. [Google Scholar] [CrossRef]
- Ahmad, F.; Kannan, M.; Ansari, A.W. Role of SARS-CoV-2-induced cytokines and growth factors in coagulopathy and thromboembolism. Cytokine Growth Factor Rev. 2022, 63, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Erkan, D.; Lee, A.I. COVID-19 and antiphospholipid antibodies. Best Pract. Res. Clin. Haematol. 2022, 35, 101402. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Lopez-Olivo, M.A.; Pinto-Patarroyo, G.P.; Suarez-Almazor, M.E. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus 2016, 25, 1520–1531. [Google Scholar] [CrossRef]
- Stenton, S.; Mc Partland, J.; Shukla, R.; Turner, K.; Marton, T.; Hargitai, B.; Bamber, A.; Pryce, J.; Peres, C.L.; Burguess, N.; et al. SARS-CoV-2 placentitis and pregnancy outcome: A multicentre experience during the Alpha and early Delta waves of coronavirus pandemic in England. EClinicalMedicine 2022, 47, 101389. [Google Scholar] [CrossRef]
- Serrano, M.; Espinosa, G.; Serrano, A.; Cervera, R. COVID-19 and the antiphospholipid syndrome. Autoimmun. Rev. 2022, 21, 103206. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, W.; Jiang, W.; Xiao, M.; Li, Y.; Tang, N.; Liu, Z.; Yan, X.; Zhao, Y.; Li, T.; et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J. Thromb. Thrombolysis 2020, 50, 580–586. [Google Scholar] [CrossRef]
- Moore, G.W. Commonalities and contrasts in recent guidelines for lupus anticoagulant detection. Int. J. Lab Hematol. 2014, 36, 364–373. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. Lupus anticoagulant testing during anticoagulation, including direct oral anticoagulants. Res. Pract. Thromb. Haemost. 2022, 6, e12676. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Cohen, H.; Devreese, K.M.J. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2020, 18, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V. Additional laboratory tests to improve on the diagnosis of antiphospholipid syndrome. J. Thromb. Haemost. 2020, 18, 1846–1848. [Google Scholar] [CrossRef]
- Egri, N.; Bentow, C.; Rubio, L.; Norman, G.L.; Lopez-Sanudo, S.; Mahler, M.; Perez-Isidro, A.; Cervera, R.; Vinas, O.; Espinosa, G.; et al. Anti-Phosphatidylserine/Prothrombin Antibodies at Two Points: Correlation with Lupus Anticoagulant and Thrombotic Risk. Front. Immunol. 2021, 12, 754469. [Google Scholar] [CrossRef] [PubMed]
- Cattini, M.G.; Bison, E.; Pontara, E.; Cheng, C.; Denas, G.; Pengo, V. Tetra positive thrombotic antiphospholipid syndrome: Major contribution of anti-phosphatidyl-serine/prothrombin antibodies to lupus anticoagulant activity. J. Thromb. Haemost. 2020, 18, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Barbhaiya, M.; Zuily, S.; Ahmadzadeh, Y.; Amigo, M.C.; Avcin, T.; Bertolaccini, M.L.; Branch, D.W.; de Jesus, G.; Devreese, K.M.J.; Frances, C.; et al. Development of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria. Arthritis Care Res. 2021, 73, 1490–1501. [Google Scholar] [CrossRef]
Normal Range |
Admission (n = 107) |
Worsening (n = 10) |
Discharge (n = 101) |
Follow-Up (n = 91) | Admission/ Discharge | Admission/Follow-Up | ||
---|---|---|---|---|---|---|---|---|
Mean ± SD /Median (IQR) † | p - Value | |||||||
HAEMATOLOGY | Erythrocyte sedimentation rate (mm/h) | 0–15 | 50.2 (22.4) | 61.5 (8.5) | 28 (11.2) | 12.2 (11.9) | <0.001 * | <0.001 * |
C- reactive protein (mg/L) † | <5.0 | 91.8 (93.7)† | 123.4 (194.5) † | 3.6 (5.9) † | 2.8 (4.7) † | <0.001 * | <0.001 * | |
Erytrocytes (×1012/L) | 4.50–6.30 | 4.51 (0.5) | 4.3 (0.4) | 4.6 (1.3) | 4.8 (0.5) | 0.24 | <0.001 * | |
Haemoglobin (g/L) | 140–175 | 132.3 (15.7) | 129.1 (15.6) | 132.2 (13.9) | 139 (14.6) | 0.98 | <0.001 * | |
Haematocrit (%) | 0.400–0.520 | 0.4 (0.04) | 0.4 (0.04) | 0.4 (0.04) | 0.4 (0.05) | 0.35 | <0.001 * | |
Leucocytes (×109/L) | 4.40–11.50 | 6 (2.5) | 8.4 (5) | 10.8 (4.2) | 7.1 (2.2) | <0.001 * | <0.001 * | |
Neutrophils (×109/L) | 2.20–8.05 | 3.12 (0.78) | 5.92 (3.48) | 7.66 (2.18) | 3.65 (0.77) | <0.001 * | 0.02 * | |
Lymphocytes (×109/L) | 1.10–4.60 | 0.75 (0.44) | 0.55 (0.26) | 0.87(0.05) | 2.4 (0.69) | <0.001 * | <0.001 * | |
Platelets (×109/L) | 150–400 | 214.9 (78) | 224.3 (87.1) | 315.6 (105.7) | 246 (55.4) | <0.001 * | 0.01 * | |
BIOCHEMISTRY | D-dimer (mg/L) † | <0.5 | 0.71 (0.81) † | 1.18 (3.15) † | 0.50 (0.55) † | 0.39 (0.34) † | 0.04 * | <0.001 * |
Ferritin (µg/L) | 4.63–204.00 | 997 (664.8) | 1523.3 (420.2) | 692 (533.2) | 195.3 (185) | <0.001 * | <0.001 * | |
Troponin (ng/L) † | 0–11.6 | 5.91 (7.44) † | 25.93 (23.47) † | 3.19 (5.47) † | 2.82 (2.36) † | <0.001 * | <0.001 * | |
Procalcitonin (ng/mL) † | <0.08 | 0.07 (0.09) † | 0.12 (0.22) † | 0.02 (0.01) † | 0.03 (0.02) † | <0.001 * | <0.001 * | |
LDH (U/L) | 230–480 | 666.8 (282) | 1107.5 (487.8) | 394 (111.2) | 370.3(65.9) | <0.001 * | <0.001 * | |
ANTIPHOSPHOLIPID ANTIBODIES | aCL IgG (AUG) | ≤10 | 4.49 (6.22) | 7.00 (7.90) | 9.13 (9.54) | 5.99 (5.19) | <0.001 * | <0.001 * |
aCL IgM (AUM) | ≤10 | 3.34 (3.77) | 4.0 (1.79) | 9.92 (12.10) | 3.21 (6.53) | <0.001 * | <0.001 * | |
aCL IgA (AUA) | ≤10 | 1.71 (2.66) | 1.71 (2.66) | 1.65 (1.79) | 0.45 (0.87) | 0.73 | <0.001 * | |
anti-β2GPI IgG (AUG) | ≤1 | 0.10 (0.31) | 0.14 (0.36) | 0.44 (1.42) | 0.40 (0.99) | 0.002 * | <0.001 * | |
anti-β2GPI IgM (AUM) | ≤1 | 0.04 (0.24) | 0.00 (0.00) | 0.10 (0.41) | 0.20 (0.88) | 0.32 | 0.07 | |
anti-β2GPI IgA (AUA) | ≤1 | 0.23 (0.75) | 0.21 (0.43) | 0.25 (0.83) | 0.20 (0.62) | 0.81 | 0.37 | |
aPS/PT IgG (AUG) | ≤4 | 1.03 (0.42) | 1.21 (0.69) | 0.93 (0.59) | 1.22 (0.51) | 0.07 | <0.001 * | |
aPS/PT IgM (AUM) | ≤4 | 0.78 (3.60) | 3.50 (12.26) | 0.99 (4.52) | 0.98 (4.71) | 0.66 | 0.97 | |
aPS/PT IgA (AUA) | ≤4 | 1.54 (1.19) | 2.14 (1.23) | 1.52 (1.22) | 0.82 (1.24) | 0.88 | <0.001 * |
Admission (n = 107) |
Worsening (n = 10 ) ** |
Discharge (n = 101) |
Follow-Up (n = 91) | Admission/ Discharge | Admission/Follow-Up | |
---|---|---|---|---|---|---|
Number (%) | p -Value | |||||
aCL IgG | 9 (8.4) | 3 (21.4) | 28 (27.7) | 13 (14.3) | <0.001 * | 0.28 |
aCL IgM | 4 (3.7) | 0 (0.0) | 23 (22.8) | 6 (6.6) | <0.001 * | 0.71 |
aCL IgA | 3 (2.8) | 0 (0.0) | 1 (1) | 0 (0.0) | 0.32 | 0.08 |
anti-β2GPI IgG | 0 (0.0) | 0 (0.0) | 7 (6.9) | 5 (5.5) | 0.01 * | 0.02 * |
anti-β2GPI IgM | 1 (0.9) | 0 (0.0) | 2 (2) | 4 (4.4) | 1.00 | 0.16 |
anti-β2GPI IgA | 4 (3.7) | 0 (0.0) | 4 (4) | 4 (4.4) | 1.00 | 1.00 |
aPS/PT IgG | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1.00 | 1.00 |
aPS/PT IgM | 5 (4.7) | 1 (7.1) | 5 (5) | 4 (4.4) | 1.00 | 0.32 |
aPS/PT IgA | 1 (0.9) | 0 (0.0) | 2 (2) | 1 (1.1) | 0.32 | 1.00 |
aPLA positivity (9) 1 | 16 (14.8) | 2 (20.0) | 48 (47.5) | 24 (26.4) | <0.001 * | <0.001 * |
aCL positivity (3) 2 | 12 (10.8) | 2 (20.0) | 42 (41.6) | 18 (19.8) | <0.001 * | 0.33 |
anti- β2GPI positivity (3) 3 | 5 (4.5) | 0 (0.0) | 12 (11.9) | 11 (12.1) | 0.11 | 0.18 |
aPS/PT positivity (3) 4 | 4 (3.7) | 1 (10.0) | 6 (5.9) | 4 (4.4) | 0.50 | 1.00 |
Double positivity 5 | 1 (0.9) | 1 (0.9) | 9 (8.9) | 5 (5.5) | 0.02 * | 0.10 |
Triple positivity 6 | 2 (1.9) | 0 (0.0) | 1 (1.0) | 2 (2.2) | 0.32 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatković-Švenda, M.; Ovuka, M.; Ogrič, M.; Čučnik, S.; Žigon, P.; Radivčev, A.; Zdravković, M.; Radunović, G. Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19. Biomedicines 2023, 11, 3117. https://doi.org/10.3390/biomedicines11123117
Zlatković-Švenda M, Ovuka M, Ogrič M, Čučnik S, Žigon P, Radivčev A, Zdravković M, Radunović G. Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19. Biomedicines. 2023; 11(12):3117. https://doi.org/10.3390/biomedicines11123117
Chicago/Turabian StyleZlatković-Švenda, Mirjana, Milica Ovuka, Manca Ogrič, Saša Čučnik, Polona Žigon, Aleksandar Radivčev, Marija Zdravković, and Goran Radunović. 2023. "Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19" Biomedicines 11, no. 12: 3117. https://doi.org/10.3390/biomedicines11123117
APA StyleZlatković-Švenda, M., Ovuka, M., Ogrič, M., Čučnik, S., Žigon, P., Radivčev, A., Zdravković, M., & Radunović, G. (2023). Antiphospholipid Antibodies and Vascular Thrombosis in Patients with Severe Forms of COVID-19. Biomedicines, 11(12), 3117. https://doi.org/10.3390/biomedicines11123117