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Abstract: Ovarian cancer is the leading cause of death among gynecologic cancers. Paclitaxel
is used as a standard first-line therapeutic agent for ovarian cancer. However, chemotherapeutic
resistance and high recurrence rates are major obstacles to treating ovarian cancer. We have found that
tephrosin, a natural rotenoid isoflavonoid, can resensitize paclitaxel-resistant ovarian cancer cells to
paclitaxel. Cell viability, immunoblotting, and a flow cytometric analysis showed that a combination
treatment made up of paclitaxel and tephrosin induced apoptotic death. Tephrosin inhibited the
phosphorylation of AKT, STAT3, ERK, and p38 MAPK, all of which simultaneously play important
roles in survival signaling pathways. Notably, tephrosin downregulated the phosphorylation of
FGFR1 and its specific adapter protein FRS2, but it had no effect on the phosphorylation of the EGFR.
Immunoblotting and a fluo-3 acetoxymethyl assay showed that tephrosin did not affect the expression
or function of P-glycoprotein. Additionally, treatment with N-acetylcysteine did not restore cell
cytotoxicity caused by a treatment combination made up of paclitaxel and tephrosin, showing that
tephrosin did not affect the reactive oxygen species scavenging pathway. Interestingly, tephrosin
reduced the expression of the anti-apoptotic factor XIAP. This study demonstrates that tephrosin is a
potent antitumor agent that can be used in the treatment of paclitaxel-resistant ovarian cancer via the
inhibition of the FGFR1 signaling pathway.

Keywords: ovarian cancer; paclitaxel resistance; tephrosin; FGFR1/FRS2 signaling pathway

1. Introduction

Epithelial ovarian cancer is one of the most lethal gynecological cancers [1,2]. It has
been reported that the initial diagnosis rate of ovarian cancer is low, and less than half of
patients survive more than five years after diagnosis [3]. First-line therapies are based on
cytoreductive surgery and are combined with platinum- and taxane-based chemothera-
peutics [4–6]. Paclitaxel, one of the taxane families, binds to the β-subunit of tubulin in
the absence of GTP, a typical factor that is essential for microtubule polymerization [7].
Binding stabilizes the associated microtubules and inhibits tubulin depolymerization [8,9].
Then, cell cycle arrest and apoptosis are induced [10]. The chemoresistance of tumor cells
is a major cause of chemotherapy failure for most human cancers [11,12]. In particular, it
has been reported that 80% of ovarian cancer patients experience a relapse of paclitaxel re-
sistance [5,13,14], which demands the development of strategies to suppress chemotherapy
resistance and enhance patient survival with improved treatment effectiveness.

Accumulating evidence has implied that various mechanisms have been identified
that contribute to chemoresistance [12,15]. Although pharmacological factors due to an
inadequate drug concentration and reduced drug stability at the tumor site may contribute
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to reduced therapeutic efficiency, cellular factors play an important role in chemoresis-
tance [12,16]. It has been reported that hyperactivation related to the survival signaling path-
way among cellular factors affects chemoresistance [17], including AKT [18–20], STAT3 [21],
ERK [22,23], and p38 MAPK [24,25]. In particular, AKT has been identified to mediate
the survival signals that preserve various cancer cells in the cell death pathway [15,26,27]
and regulate sensitivity to paclitaxel [28–30]. ERK, STAT3, and p38 MAPK have also been
found to regulate paclitaxel-induced chemosensitivity in many carcinomas, including lung
cancer [31], gastric cancer [32], breast cancer [33,34], and ovarian cancer [35,36]. In addition
to the cellular factors related to the prosurvival pathway, endogenous reactive oxygen
species (ROS) contribute to the resistance to chemotherapy by activating the MAPK and
AKT signaling pathways [37–39]. In addition, previous studies have identified that the
regulation of the expression of pro- and anti-apoptotic factors is related to chemoresistance
in cancer [40–42]. It has been reported that acquired drug resistance is also caused by in-
creased drug efflux and decreased drug uptake [43]. P-gp (P-glycoprotein) plays a key role
in drug efflux [9], and previous studies have shown that the regulation of P-gp expression
mediates chemoresistance in various cancers [44–46].

The fibroblast growth factor receptor (FGFR) is a kind of receptor tyrosine kinase (RTK)
encoded by four genes, namely FGFR1, FGFR2, FGFR3, and FGFR4 [47]. The binding of
ligands to the FGFR family induces receptor dimerization and the phosphorylation of the
tyrosine kinase domain [48]. As the docking protein FGFR substrate (FRS2) is activated, it
binds to growth factor receptor-bound 2 (GRB2) or the tyrosine phosphatase SHP2 protein.
The RAS/MAPK [49] and PI3K/AKT [50] signaling pathways are activated. In the case of
the STAT pathway, it is activated by the phosphorylation of the FGFR [51]. As a physio-
logical function of the FGFR signaling pathway, it is involved in the overall development
process of major cells, such as proliferation, differentiation, and survival [52]. The FGFR
signaling pathway also induces the proliferation, survival, migration, and invasion of can-
cer cells [53]. Dysregulation of the FGFR signaling pathway has been observed in various
cancers, and amplifications of the FGFR gene account for 66% of all aberrations among
FGFR alterations [48]. Helsten T et al. reported that FGFR aberrations occurred frequently
in gynecological cancers, such as breast carcinoma, endometrial adenocarcinoma, and ovar-
ian carcinoma, among all types of cancer [54]. Previous studies have reported that FRS2, a
downstream factor of the FGFR signaling pathway, is repeatedly amplified in high-grade
serous ovarian cancer (HGSOC), which accounts for 70–80% of all ovarian carcinomas [55].
FRS2 has been identified as one of 50 genes essential for survival in ovarian cancer cell
lines [55]. Previous studies have shown that the overexpression of FRS2 promotes tumori-
genesis in ovarian cancer [56], breast cancer [57], lung adenocarcinoma [58], and prostate
cancer [59]. Regarding paclitaxel resistance, several studies have revealed the effect of
resensitization by targeting the FGFR signaling pathway [60–63]. Despite research showing
that the FGFR signaling pathway is important in cancer, the role of the FGFR signaling
pathway in paclitaxel-resistant ovarian cancer is still not entirely clear.

Rotenone is a natural hydrophobic component mainly isolated from the root and bark
of Derris species. As a highly toxic compound, rotenone has been used as a herbicide and an
insecticide [64]. It has also been reported that rotenone exhibits antitumor activity in lung
cancer [65], colon cancer [66], and breast cancer [67]. Tephrosin, one of the rotenoid families,
has also been reported to have anticancer effects in some cancers, including pancreatic
cancer [68] and non-small-cell lung cancer [69]. The anticancer effects of tephrosin are
gradually being determined, but currently the effect of tephrosin on ovarian cancer is not
clear. Furthermore, whether tephrosin affects paclitaxel resistance is not known. Here, we
reported for the first time that tephrosin restores chemosensitivity in paclitaxel-resistant
ovarian cancer cells via inhibiting the FGFR signaling pathway.
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2. Materials and Methods
2.1. Cell Lines and Culture

SKOV3, SKOV3-TR, and HeyA8-MDR ovarian carcinoma cell lines were provided by
Professor A.K. Sood (University of Texas MD Anderson Cancer Center, Houston, TX, USA).
All cell lines were cultured in Roswell Park Memorial Institute’s (RPMI) 1640 medium
(Biowest, Nuaillé, France), supplemented with 10% fetal bovine serum (FBS, Corning, NY,
USA) and 1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). A
humidified 37 ◦C incubator with 5% CO2 was used to culture these cell lines. To maintain
the paclitaxel resistance for SKOV3-TR and HeyA8-MDR cells, 50 nM of paclitaxel was
added once every 2 days for sub-culture. Tephrosin and BGJ398 were purchased from
MedChemExpress (Monmouth Junction, NJ, USA). N-acetylcysteine (NAC) was obtained
from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell Viability Using the Water-Soluble Tetrazolium 1 (WST-1) Assay and Crystal Violet Assay

Cells (5.0 × 103) were seeded in 96-well plates for 24 h and then treated with each
drug for 48 h. The WST-1 assay was performed to determine cell viability using EZ-Cytox
(DoGen, Seoul, Republic of Korea). The medium contained in each well was suctioned
and washed once with Dulbecco’s Phosphate-Buffered Salines (DPBS, WelGENE, Seoul,
Republic of Korea). The EZ-Cytox solution was then diluted to 1/10 in RPMI 1640 medium
and added to each well. After incubation for 30 min, cell viability analysis was performed
by measuring the absorbance value at 450 nm using the Synergy™ HTX Multi-Mode
Microplate Reader (Bioteck, Winooski, VT, USA). The crystal violet assay was examined
to visually confirm the results of the WST-1 assay on cell viability of each drug. Cells
(5.0 × 104) were seeded in 24-well plates for 24 h and then treated with each drug for 48 h.
Then, cells were added to 500 µL of 0.2% crystal violet solution (Biopure, Seoul, Republic
of Korea) in each well and stained for 30 min.

2.3. Cell Cytotoxicity Analysis Using the Lactate Dehydrogenase (LDH) Assay

The LDH assay was used to identify cell cytotoxicity using the EZ-LDH kit (DoGen,
Seoul, Republic of Korea). After 48 h of treatment with tephrosin (1, 2, 5, 10, 20, and 40 µM)
in SKOV3-TR cells, the culture media were collected separately, and the floating cells
were precipitated using centrifugation (600× g, 5 min). In total, 10 µL of the supernatant
was added in triplicate to 100 µL of the LDH reaction mixture (WST substrate mix and
LDH assay buffer) in new 96-well plates. The mixtures were reacted for 30 min at room
temperature in the dark. Cell cytotoxicity was analyzed by measuring absorbance at 450 nm
using the Synergy™ HTX Multi-Mode Microplate Reader (Bioteck, Winooski, VT, USA).

2.4. Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Reverse Transcription
Quantitative Polymerase Chain Reaction (RT-qPCR) Tests

Cells (2.0 × 105) were seeded in 60 mm culture plates for 24 h. After 48 h of treatment
with paclitaxel (200 nM), tephrosin (10 µM), and a combination treatment composed
of paclitaxel and tephrosin, the total genomic RNA was extracted using the Ribo-EX
reagent (GeneAll Biotechnology Co., Ltd., Seoul, Republic of Korea). Complementary
DNA was synthesized from the RNA using M-MLV Reverse Transcriptase (Invitrogen,
MA, USA). First-strand cDNA was included in the PCR amplification mixture. This
mixture included a 2.5 mM dNTP mixture, 10X reaction buffer with MgCl2, Taq DNA
polymerase (Bioneer, Daejeon, Republic of Korea), dimethyl sulfoxide (DMSO, Sigma-
Aldrich, Darmstadt, Germany), and each specific primer mixture. PCR products were
subjected to gel electrophoresis in 1% agarose (BioShop Canada Inc., Burlington, ON,
Canada) containing StaySafe Nucleic Acid Gel Stain (Real Biotech Corporation, Banqiao
City, Taiwan) to confirm the mRNA expression of the related genes. EvaGreen qPCR Mix
Plus (ROX) master mix (Solis BioDyne, Tartu, Estonia) was contained in RT-qPCR, and
the relative quantifications of target gene mRNA were analyzed using the StepOnePlus™
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Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). The primer sequences
for RT-PCR and RT-qPCR tests are presented in Table S1.

2.5. Immunoblotting

Cells (6.0 × 105) were seeded in 100 mm culture plates without treatment with pa-
clitaxel (50 nM) for 24 h. After 48 h of treatment with each drug, total cells were lysed in
RIPA buffer (25 mM Tris-Cl, 150 mM NaCl, 1% NP40, 1% sodium deoxycholate, 0.025%
SDS, 5 mM ethylenediaminetetraacetic acid) supplemented with PhosSTOP (Roche, Basel,
Switzerland). The amount of total protein was quantified using a BCA Protein Assay Kit
(Thermo Fisher Scientific, MA, USA). Proteins were separated using 8% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The proteins in the gel were trans-
ferred to 0.2 µm nitrocellulose membranes (Cytiva, Amersham, UK). After blotting, the
membranes were blocked in 2% skim milk (Biopure, Cambridge, MA, USA) for 90 min and
incubated with primary antibodies overnight at 4 ◦C.

Antibodies against Actin (sc-47778), FRS2 (sc-17841), XIAP (sc-55551), and caspase 9
(sc-17784) were purchased from Santa Cruz Biotechnology (Dallas, Texas, USA). Antibodies
against cleaved PARP (#9541), AKT (#9272), phosphorylated AKT at S473 (#9271), STAT3
(#9139), phosphorylated STAT3 at Y705 (#9145), phosphorylated STAT3 at S727 (#92994),
ERK (#9102), phosphorylated ERK at T202/T204 (#9101), p38 (#9212), phosphorylated
p38 at T180/T182 (#9211), FGFR1 (#9740), phosphorylated FGFR1 at Y653/Y654 (#52928),
phosphorylated FRS2 at Y196 (#3864), EGFR (#2232), phosphorylated EGFR at Y1045
(#2237), BCL-XL (#2764), MCL-1 (#5453), BAX (#5023), caspase 3 (#9665), cleaved caspase 3
(#9664), Survivin (#2803), and MDR1/ABCB1 (#12693S) were obtained from Cell Signaling
Technology (Beverly, MA, USA). The antibody against BCL-2 (A19693) was purchased from
ABclonal (Woburn, MA, USA), and the antibody against FGFR2 (PA5-14651) was obtained
from Invitrogen (Waltham, MA, USA).

The membranes were incubated with secondary antibodies for 2 h. Anti-mouse IgG
and anti-rabbit IgG were purchased from Cell Signaling Technology (Beverly, MA, USA).
The protein expression levels were confirmed using the Clarity Western ECL Substrate
(Biorad, CA, USA). The protein band intensities were quantified using ImageJ software
from the National Institutes of Health (ImageJ 1.52a, Bethesda, MD, USA).

2.6. Fluorescence-Activated Cell Sorting (FACS) Analysis

A FACS analysis was examined to determine the effect of treatment with tephrosin
and paclitaxel on cell cycle progression. SKOV3-TR cells (6.0 × 105) were seeded in 100 mm
plates for 24 h and then treated with two drugs. After 48 h of treatment, cells were washed
twice with DPBS, pelleted, and fixed with 80% ethanol for 30 min. After being washed
twice with cold DPBS, cells were incubated with 200 mg/mL RNase A (Qiagen, Hilden,
German) for 30 min at 37 ◦C. Then, the cells were stained with 100 mg/mL propidium
iodide (Sigma-Aldrich, Darmstadt, Germany) for 30 min at room temperature. The samples
were immediately analyzed using FACS (BD Bioscience, Mountain View, CA, USA).

2.7. Fluo-3 Acetoxymethyl (AM) Assay

SKOV3 cells and SKOV3-TR cells (6.0 × 105) were incubated for 24 h. Cells were
treated with DMSO (mock), paclitaxel (200 nM), tephrosin (10 µM), and a combination
treatment composed of paclitaxel and tephrosin for 48 h. Then, 4 µM fluo-3 acetoxylmethyl
(AM) solution (Sigma-Aldrich, Darmstadt, Germany) was added and incubated for an
additional 1 h at 37 ◦C.

2.8. Statistical Analysis

The experimental data were presented by expressing the mean ± standard deviation
(SD) obtained from three distinct experiments. Significance in statistical variations was
assigned to cases where the p-value ≤ 0.05. Furthermore, statistical differences were
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analyzed using a one-way analysis of variance (ANOVA), followed by Dunnett’s post
hoc test.

3. Results
3.1. Combination Treatment with Paclitaxel and Tephrosin Effectively Induced Cytotoxicity in
SKOV3-TR Cells

To examine whether cell cytotoxicity is affected by treatment with tephrosin alone in
paclitaxel-resistant ovarian cancer SKOV3-TR cells, the LDH assay was used. Cells were
treated with tephrosin (0, 1, 2, 5, 10, 20, and 40 µM) for 48 h. As shown in Figure 1A,
the LDH assay showed that 4.3% cytotoxicity was observed when cells were treated
with 20 µM of tephrosin. On the other hand, cytotoxicity did not appear at treatment
concentrations below 10 µM. Next, we examined the effect of tephrosin on paclitaxel
resistance using the WST-1 assay in SKOV3-TR cells. Cells were treated with serially diluted
concentrations of paclitaxel (0–500 nM) together with dose-dependent concentrations of
tephrosin (0, 5, and 10 µM) for 48 h. As shown in Figure 1B, the combination treatment
with paclitaxel and tephrosin effectively decreased the cell viability of SKOV3-TR cells
in a dose-dependent manner (p ≤ 0.05). The crystal violet analysis also showed that
tephrosin induced cytotoxicity in paclitaxel-treated SKOV3-TR cells (Figure 1C). To identify
whether the mechanism of tephrosin in paclitaxel resistance is related to cellular apoptosis,
immunoblotting was performed to detect the expression of cleaved PARP. As shown in
Figure 1D, SKOV3-TR cells were treated with paclitaxel and tephrosin for 24, 32, 40, and
48 h. Immunoblotting showed that cleaved PARP was not induced by treatment with
paclitaxel and tephrosin alone. On the other hand, a combination treatment composed of
paclitaxel and tephrosin increased the expression of cleaved PARP at 40 and 48 h (Figure 1D).
As shown in Figure 1E, SKOV3-TR cells were cotreated with paclitaxel (0, 1, 10, 100, and
200 nM) and tephrosin (0, 1, 5, and 10 µM) for 48 h. Cleaved PARP expressions were
increased by a combination treatment composed of paclitaxel and tephrosin in a dose-
dependent manner. SKOV3-TR cells were treated with paclitaxel (200 nM), tephrosin
(10 µM), and the paclitaxel and tephrosin combination treatment for 48 h. As shown in
Figure 1F, microscopic observations showed that the combination treatment with paclitaxel
and tephrosin increased cell toxicity in SKOV3-TR cells. To determine the fraction of the
sub-G1 phase in SKOV3-TR cells, flow cytometry was performed (Figure 1G). The sub-G1
fraction phase of the combination treatment composed of paclitaxel and tephrosin was
significantly increased compared to the other treatments (p ≤ 0.05) (2.65% in control, 4.83%
in paclitaxel-treated, 7.62% in tephrosin-treated, and 36.00% in paclitaxel and tephrosin
combination-treated). These data indicated that tephrosin effectively restored paclitaxel
sensitivity in SKOV3-TR cells.
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Figure 1. The cytotoxicity effect of combination treatment with paclitaxel and tephrosin in SKOV3-TR
cells. (A) Cells (5.0 × 103) were seeded in 96-well plates for 24 h. After treatment with tephrosin (0, 1,
2, 5, 10, 20, and 40 µM) for 48 h, the cell cytotoxicity was examined using the lactate dehydrogenase
(LDH) assay. (B) SKOV3-TR cells (5.0 × 103) were seeded in 96-well plates for 24 h. Cells were then
treated with serially diluted paclitaxel (0–500 nM) with dose-varying combinations of tephrosin (0,
5, and 10 µM) for 48 h. Cell viability was measured using the water-soluble tetrazolium (WST-1)
assay. (C) Cells (5.0 × 104) were seeded in 24-well plates. After 24 h of incubation, cells were treated
with serially diluted tephrosin (0–10 µM). Additionally, cells were treated with paclitaxel (0, 25, 50,
100, 200, and 400 nM) with dose-different combinations of tephrosin (0, 5, and 10 µM) for 48 h. The
visualization of cell viability was determined using the crystal violet assay. (D) SKOV3-TR cells
(6.0 × 105) were seeded in 100 mm culture plates and then treated with dimethyl sulfoxide (DMSO)
(mock), paclitaxel (200 nM), tephrosin (10 µM), and combination treatment with paclitaxel (200 nM)
and tephrosin (10 µM) for 24 h, 32 h, 40 h, and 48 h, respectively. After the cells were harvested, the
protein expression of cleaved PARP was analyzed using immunoblotting. Actin was used as a loading
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control. (E) Cells were treated with paclitaxel (200 nM) with dose-different combinations of tephrosin
(0, 1, 5, and 10 µM) for 48 h. In addition, cells were treated with tephrosin (10 µM) with dose-different
combinations of paclitaxel (0, 1, 10, 100 and 200 nM). Immunoblotting was used to determine the
expression of cleaved PARP. (F,G) SKOV3-TR cells were treated with paclitaxel (200 nM), tephrosin
(10 µM), and combination treatment with paclitaxel and tephrosin for 48 h. The morphological
changes in the cells were observed using microscopy. Fluorescence-activated cell sorting analysis was
performed to analyze the apoptotic fractions by co-treating with paclitaxel and tephrosin. Protein
expression levels were quantified relative to the control, following normalization to the corresponding
expression of actin using ImageJ software. All experiments were repeated three times. Significant
differences were calculated using a one-way analysis of variance (ANOVA), and * p ≤ 0.05, as
analyzed using the concentration, was considered significant. PTX, paclitaxel; Teph, tephrosin.

3.2. Tephrosin Inhibited the Phosphorylation of AKT, STAT3, ERK, and p38 MAPK in
SKOV3-TR Cells

Previous studies have reported that intracellular signaling factors such as
PI3K/AKT [70,71], STAT3 [21], ERK [72], and p38 MAPK [24] are closely related to cell
proliferation and survival. Additionally, these factors are known to mediate the chemore-
sistance of various cancers [28–36]. To determine whether tephrosin affects the PI3K/AKT,
STAT3, ERK, and p38 MAPK signaling pathways in SKOV3-TR cells, immunoblotting
was examined. As a result of Figure 2, the phosphorylation levels of AKT (S473), STAT3
(Y705), ERK (T202/Y204), and p38 MAPK (T180/T182) were effectively inhibited in a treat-
ment composed of tephrosin alone and in a combination treatment made up of paclitaxel
and tephrosin. These data suggested the possibility that tephrosin reverses chemoresis-
tance by downregulating the prosurvival signaling pathway of paclitaxel-resistant ovarian
cancer cells.
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Cells were then treated with DMSO (mock), paclitaxel (200 nM), tephrosin (10 µM), and combination
treatment with paclitaxel and tephrosin for 48 h. After harvesting all the cells, AKT, STAT3, ERK, p38
MAPK, and their phosphorylation expression levels were analyzed using immunoblotting. Actin was
used as a loading control. Protein expression levels were quantified relative to the control, following
normalization to the corresponding expression of actin using ImageJ software. PTX, paclitaxel;
Teph, tephrosin.

3.3. Tephrosin Downregulated the Phosphorylation of FGFR1/FRS2 Signaling Pathway in
SKOV3-TR Cells

An extensive number of studies have shown that RTKs play an important role in
a variety of oncogenic processes, including the regulation of proliferation, motility, and
metastasis [73,74]. Recently, RTK signaling was studied as one of the major mechanisms that
regulate chemoresistance in various cancer cells, including breast cancer [75] and ovarian
cancer [76]. We sought to investigate whether the activity of the EGFR and FGFR, as
representative types of RTKs, is regulated by tephrosin, and we examined immunoblotting
in SKOV3-TR cells treated with a combination of tephrosin and paclitaxel. In Figure 3A,
treatment with tephrosin did not affect the expression of the EGFR or its phosphorylation
at Y1045 residue in SKOV3-TR cells. Interestingly, treatment with tephrosin effectively
inhibited the phosphorylation of FGFR1 at Y653/654 residues, and cotreatment with
tephrosin and paclitaxel effectively decreased the expression level of FGFR1 (Figure 3A). In
addition, the phosphorylation of FRS2, an adaptor protein of FGFR1, was also inhibited
by tephrosin treatment in SKOV3-TR cells. We also verified the inhibition of FGFR1
signaling by tephrosin in SKOV3-TR cells using a selective pan-FGFR inhibitor, BGJ398. As
shown in lane 5 and 6 of Figure 3A, BGJ398 treatment downregulated the phosphorylation
of FGFR1 and its adaptor protein FRS2 in the same way as tephrosin, indicating that
tephrosin effectively inhibits FGFR1 signaling in SKOV3-TR cells. Next, SKOV3-TR cells
were cotreated with paclitaxel (0, 1, 10, 100, and 200 nM) and tephrosin (0, 1, 5, and 10 µM)
for 48 h. Its expression and the phosphorylation levels of FGFR1 and FRS2 were examined
using immunoblotting. FGFR1 signaling was effectively downregulated by the combination
treatment with paclitaxel and tephrosin in a dose-dependent manner (Figure 3B). As shown
in Figure 3A,B, treatment with tephrosin downregulated FGFR1 phosphorylation and the
cellular protein levels simultaneously. RT-PCR and RT-qPCR tests were performed to
confirm whether the decrease in the FGFR1 expression induced by tephrosin was at the
transcriptional level. Figure 3C,D showed that treatment with tephrosin did not affect the
transcriptional expression of FGFR1 and FRS2. The difference in the gene expression of
FGFR1 and FRS2 was non-significant for all experimental groups (p > 0.05), indicating that
tephrosin downregulated FGFR1 phosphorylation and also inhibited receptor stability in
SKOV3-TR cells.
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Figure 3. The effect of tephrosin on downregulation of the FGFR1/FRS2 signaling pathway in
SKOV3-TR cells. (A) Cells were treated with DMSO (mock), paclitaxel (200 nM), tephrosin (10 µM),
combination treatment with paclitaxel and tephrosin, BGJ398 (2 µM), and combination treatment
with paclitaxel and BGJ398. After 48 h of treatment, immunoblotting was performed to determine
the expressions of FGFR1, FRS2, EGFR, and their phosphorylation forms. The expression of cleaved
PARP showed apoptotic cell death for each treatment condition. (B) SKOV3-TR cells were treated
with paclitaxel (200 nM) with dose-different combinations of tephrosin (0, 1, 5, and 10 µM) for 48 h.
In addition, cells were treated with tephrosin (10 µM) with dose-different combinations of paclitaxel
(0, 1, 10, 100, and 200 nM). The expressions of FGFR1, FRS2, and their phosphorylation forms were
analyzed using immunoblotting. Protein expression levels were quantified relative to the control,
following normalization to the corresponding expression of actin using ImageJ software. (C) Cells
were treated with paclitaxel and tephrosin, as shown in Figure 3A, and the mRNA expressions
of FGFR1 and FRS2 were analyzed using RT-PCR tests. GAPDH was used as a loading control.
(D) Relative quantifications of FGFR1 and FRS2 were analyzed using RT-qPCR tests, and the mRNA
relative expression was normalized using GAPDH. Significant differences were calculated using
a one-way analysis of variance (ANOVA). p > 0.05 indicated no significant (ns) difference. PTX,
paclitaxel; Teph, tephrosin; BGJ, BGJ398.

3.4. Tephrosin Suppressed Paclitaxel Resistance Independently of P-Glycoprotein (P-gp) Expression
and Function in SKOV3-TR Cells

Accumulating amounts of evidence are showing that P-gp has substrates for sev-
eral anticancer drugs, including paclitaxel and cisplatin, and its overexpression has been
reported to be closely related to the chemoresistance of various cancers [44–46]. To in-
vestigate whether P-gp was overexpressed in SKOV3-TR cells compared to SKOV3 cells,
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immunoblotting was performed (Figure S2). The expression of P-gp was overexpressed
in SKOV3-TR cells compared to SKOV3 cells. To determine whether tephrosin affects
the expression of P-gp in SKOV3-TR cells, immunoblotting was analyzed. As shown in
Figure 4A, the combination treatment composed of paclitaxel and tephrosin had no effect
on the expression of P-gp in SKOV3-TR cells. It has been reported that the fluo-3/AM is
a cell-permeable fluorescent molecule that acts as a substrate for P-gp and can be used to
evaluate the function of P-gp [77]. In Figure 4B, SKOV3-TR cells did not show fluorescence
after fluo-3/AM treatment compared to SKOV3 cells. Additionally, fluo-3/AM fluorescence
was not observed in SKOV3-TR cells, even when tephrosin and paclitaxel were treated
alone or together at 24 h and 48 h (Figure 4B,C). Collectively, these data suggested that the
tephrosin-induced mechanism of restoring chemoresistance is not related to the expression
and function of P-gp.
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Figure 4. The non-significant effect of tephrosin on P-glycoprotein (P-gp) function in SKOV3-TR cells.
(A) SKOV3-TR cells (6.0 × 105) were seeded in 100 mm culture plates for 24 h and then treated with
paclitaxel (200 nM), tephrosin (10 µM), and combination treatment with paclitaxel and tephrosin for
48 h. After all the cells were harvested, the expression of P-gp was determined using immunoblot-
ting. Actin was used as a loading control. Protein expression levels were quantified relative to the
control, following normalization to the corresponding expression of actin using ImageJ software.
(B,C) SKOV3 cells were treated with DMSO (mock), and SKOV3-TR cells were treated according to
the treatment condition of (A). After 24 h (B) and 48 h (C) treatment, cells were incubated with a
4 µM fluo-3 acetoxymethyl solution for 1 h. The amount of fluorescence produced by each experi-
mental group was compared through a fluorescence microscope. PTX, paclitaxel; Teph, tephrosin;
P-glycoprotein, P-gp.

3.5. Tephrosin Inhibited the Expression of XIAP in SKOV3-TR Cells

Previous studies have reported that the regulation of endogenous ROS levels and the
total antioxidant capacity of cells involves cancer proliferation, cellular apoptosis, and drug
sensitivity [39,78,79]. To determine whether cellular apoptosis caused by the treatment
combination composed of paclitaxel and tephrosin was mediated by intracellular ROS,
N-acetylcysteine (NAC) was added in the treatment combination made up of paclitaxel
and tephrosin in SKOV3-TR cells. As shown in Figure 5A, decreased cell viability caused
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by the treatment combination composed of paclitaxel and tephrosin was not restored by
treatment with NAC (p > 0.05). The crystal violet analysis also showed that cell viability
was effectively decreased by treatment with paclitaxel and tephrosin, regardless of NAC
treatment (Figure 5B). It has been reported that changes in the expression of intracellular
apoptosis factors such as the BCL-2 family regulate apoptosis and chemoresistance in
cancer [41,42]. In Figure 5C, immunoblotting showed no significant difference in the
expression of BCL-2, BCL-XL, MCL-1, BAX, or Survivin. Interestingly, the expression of
the X-linked apoptosis protein (XIAP) was inhibited by the treatment with tephrosin alone
and the combination treatment with paclitaxel and tephrosin. In addition, the expressions
of cleaved caspase 3 and cleaved PARP were effectively increased using the combination
treatment with paclitaxel and tephrosin. RT-PCR and RT-qPCR tests showed that there was
no difference in the transcriptional expression of BCL-2, BCL-XL, MCL-1, BAX, XIAP, or
SURVIVIN (Figure 5D,E). When the difference in the gene expression of BCL-2, BCL-XL,
MCL-1, BAX, XIAP, and SURVIVIN was quantified, it was non-significant, as shown in
Figure 5E (p > 0.05). These results indicated that tephrosin inhibits the expression of XIAP
in paclitaxel-treated SKOV3-TR cells.
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plates for 24 h. Cells were then treated with serially diluted paclitaxel (0–500 nM) with N-
acetylcysteine (NAC) (5 mM), tephrosin (10 µM), and combination treatment with tephrosin and
NAC for 48 h. Cell viability was measured using the WST-1 assay. (B) Cells (5.0 × 104) were seeded
in 24-well plates. After 24 h of incubation, cells were treated with paclitaxel (0, 25, 50, 100, 200, and
400 nM), with NAC (5 mM), tephrosin (10 µM), and combination treatment with tephrosin and NAC
for 48 h. The visualization of cell viability was determined using the crystal violet assay. (C) Cells
were treated with paclitaxel (200 nM), tephrosin (10 µM), and combination treatment with paclitaxel
and tephrosin for 48 h. Immunoblotting was performed to analyze the expressions of BCL-2, BCL-XL,
MCL-1, BAX, Survivin, XIAP, caspase 9, caspase 3, cleaved caspase 3, and cleaved PARP. Actin was
used as a loading control. Protein expression levels were quantified relative to the control, following
normalization to the corresponding expression of actin using ImageJ software. (D) Cells were treated
with paclitaxel and tephrosin as shown in (C), and the mRNA expressions of BCL-2, BCL-XL, MCL-1,
BAX, XIAP, and SURVIVIN were analyzed using RT-PCR tests. GAPDH was used as a loading
control. (E) Relative quantifications of BCL-2, BCL-XL, MCL-1, BAX, XIAP, and SURVIVIN were
analyzed using RT-qPCR tests, and the mRNA relative expression was normalized using GAPDH.
All experiments were repeated three times. Significant differences were calculated using one-way
ANOVA. * p ≤ 0.05, as analyzed using the concentration, was considered significant, and p > 0.05
indicated no significant (ns) difference. PTX, paclitaxel; Teph, tephrosin; NAC, N-acetylcysteine.

3.6. Tephrosin Also Restored Paclitaxel Resistance in Other Paclitaxel-Resistant Ovarian
HeyA8-MDR Cells

To determine whether the mechanism of tephrosin-induced paclitaxel resensitization
was a cell-specific phenomenon in SKOV3-TR cells, the cell viability assay was examined
using HeyA8-MDR cells. Cells were treated with serially diluted concentrations of pacli-
taxel (0–500 nM) with dose-dependent concentrations of tephrosin (0, 5, and 10 µM) for
48 h. As shown in Figure 6A, the WST-1 analysis showed that the treatment combination
composed of paclitaxel and tephrosin effectively induced cytotoxicity in HeyA8-MDR cells.
The crystal violet analysis also identified the decreased cell viability of the paclitaxel and
tephrosin combination treatment (Figure 6B). As shown in Figure 6C, tephrosin inhibited
the FGFR1/FRS2 signaling pathway in HeyA8-MDR cells. These data suggested that
tephrosin-induced paclitaxel resensitization was not a specific reaction for SKOV3-TR cells
alone but that it also occurred in other paclitaxel-resistant ovarian cancer cell lines.
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Figure 6. The cytotoxicity effect of combination treatment with paclitaxel and tephrosin in other
paclitaxel-resistant ovarian cancer cell lines. (A) HeyA8-MDR cells were seeded in 96-well plates
for 24 h. Cells were then treated with serially diluted paclitaxel (0–500 nM) with dose-varying
combinations of tephrosin (0, 5, and 10 µM) for 48 h. Cell viability was measured through the WST-1
assay. (B) HeyA8-MDR cells were seeded in 24-well plates. After 24 h of incubation, cells were treated
with paclitaxel (0, 25, 50, 100, 200, and 400 nM) with dose-different combinations of tephrosin (0,
5, and 10 µM) for 48 h. Additionally, cells were treated with serially diluted tephrosin (0–10 µM).
The visualization of cell viability was determined using the crystal violet assay. (C) HeyA8-MDR
cells were treated with DMSO (mock), paclitaxel (200 nM), tephrosin (10 µM), and combination
treatment with paclitaxel and tephrosin for 48 h. Immunoblotting was performed to determine
the expressions of FGFR1, FRS2, and their phosphorylation forms. Actin was used as a loading
control. Protein expression levels were quantified relative to the control, following normalization to
the corresponding expression of actin using ImageJ software. All experiments were repeated three
times. Significant differences were calculated using one-way ANOVA, and * p ≤ 0.05, as analyzed
using the concentration, was considered significant. PTX, paclitaxel; Teph, tephrosin.

4. Discussion

Despite the fact that pharmaceutical research on anticancer drugs is active, paclitaxel
is still used as the first-line treatment for ovarian patients [7]. It has been reported that
the majority of recurrences of ovarian cancer occur due to chemoresistance to primary
treatment [13]. Therefore, finding strategies for overcoming chemoresistance has emerged
as one of the most important issues in ovarian cancer research. This study demonstrates
that tephrosin effectively inhibits paclitaxel resistance by downregulating the FGFR1/FRS2
signaling pathway. These findings are expected to show the potential of tephrosin as a new
target anticancer drug that can be applied in the treatment of paclitaxel-resistant ovarian
cancer patients.

Tephrosin is one of the rotenoid families that is isolated from the Derris, Lonchocarpus,
and Tephrosia species [80]. Rotenoid-based substances have long been used as phytochemi-
cals due to their strong insecticidal activity [64]. It has been demonstrated that rotenone
is a natural toxin that inhibits complex 1 of the mitochondrial electron transport chain,
and chronic exposure to the strong toxicity of rotenone increases the risk of Parkinson’s
disease [81]. On the other hand, a previous study showed that tephrosin has an anticancer
effect and it contains less cell cytotoxicity than rotenone [68]. Figure 1A showed that cyto-
toxicity was not induced in up to 10 µM of treatment with tephrosin alone in SKOV3-TR
cells. Previous reports have also suggested that tephrosin has anticancer activity against
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various cancer cells, including pancreatic cancer [68], lung cancer [69], and colon cancer
cells [82]. However, the anticancer effects of tephrosin on ovarian cancer and related mech-
anisms of chemoresistance are still unclear. In this study, we demonstrated for the first time
that tephrosin could suppress paclitaxel resistance in ovarian cancer cells.

The aim of our study is to reveal the effects of tephrosin on paclitaxel-resistant ovarian
cancer cells. In lane 3 and 4 of Figure 2, the phosphorylation of AKT (S473), STAT3 (Y705),
ERK (T202/Y204), and p38 MAPK (T180/182) was effectively inhibited by tephrosin. Stud-
ies have indicated that prosurvival signaling, such as AKT, STAT3, ERK, and p38 MAPK
is one of the crucial mechanisms of paclitaxel in ovarian cancer [17]. Yang YI et al. have
reported that tectorigenin increased the paclitaxel sensitivity of paclitaxel-resistant human
ovarian cancer cells through the downregulation of the AKT and NF-κB signaling path-
ways [29]. MiR-181c was also identified to improve the paclitaxel sensitivity of ovarian
carcinoma cells through the PI3K/AKT pathway [83]. Previous studies have shown that
the STAT3 pathway mediates paclitaxel resistance [84,85]. Sheng H et al. have demon-
strated that the inhibition of the STAT3 pathway restores paclitaxel resistance in ovarian
cancer by downregulating G6PD expression [86]. Previous studies have demonstrated that
the inhibition of the ERK signaling pathway induces paclitaxel sensitivity in paclitaxel-
resistant ovarian cancers [22,87]. Also, it has been reported that the p38 MAPK signaling
pathway is related to paclitaxel resistance in ovarian carcinoma, meaning that blocking
this pathway can promote cellular apoptosis [25]. Fan LL et al. have suggested that the
octreotide–paclitaxel conjugate reverses paclitaxel resistance by downregulating the p38
MAPK signaling pathway [36]. Our results suggest that tephrosin inhibits prosurvival
signaling, and it may also affect paclitaxel resistance in SKOV3-TR cells.

Receptor tyrosine kinase (RTK) pathways have been known to regulate intracellular
prosurvival signaling [73,74]. There is an accumulating amount of evidence implying
that the aberration of the EGFR mediates oncogenesis and paclitaxel resistance in various
cancers, including lung adenocarcinoma [88], cervical cancer [89], and ovarian cancer [90].
Tephrosin has been reported to have anticancer effects by inducing the degradation and
internalization of the EGFR in human colon cancer cells [82], suggesting that tephrosin
possibly restored paclitaxel sensitivity by inhibiting the EGFR signaling pathway. Our
data indicated that the expression of the EGFR and its phosphorylation at the Y1045
residue showed no significant difference in the combination treatment with paclitaxel
and tephrosin (Figure 3A). Interestingly, the phosphorylation of FGFR1 (Y653/654) was
dramatically inhibited in the treatment with tephrosin. Consistent with this finding, the
phosphorylation of FRS2 (Y196) led to a decrease in tephrosin-treated SKOV3-TR cells
(Figure 3A). Our data suggested that tephrosin suppresses the FGFR1/FRS2 signaling
pathway in paclitaxel-resistant ovarian cancer cells. Although the defined mechanism of
action of RTK by tephrosin needs to be further elucidated, this does not rule out that there
may be differential action depending on cell types.

Previous studies have shown that the FGFR signaling pathway also mediates the
progression and chemoresistance of cancer [91–93]. Helsten T et al. have reported that
aberrations in the FGFR signaling pathway contribute to the development of cancer and the
degree of the amplification of the FGFR is overexpressed in ovarian cancer [54]. AZD4547,
an inhibitor of the FGFR family, has been identified to exhibit an antitumor effect on
ovarian cancer cells [94]. Moreover, our previous study indicated that cell viability is
effectively reduced when BGJ398, a pan-FGFR inhibitor, is treated in a sphere culture of
epithelial ovarian carcinoma cells, in which the prosurvival pathway is overexpressed [95].
In particular, several studies have demonstrated that a correlation exists between the FGFR
signaling pathway and chemotherapy [62,96]. Szymczyk, J. et al. identified that fibroblast
growth factor 1 (FGF1) triggers the activation of AKT activation FGFR-overexpressed
cancer cells, consequently affording protection against the effects of paclitaxel [96]. Paul M
et al. reported that the effect of chemotherapy was increased in the combination treatment
with paclitaxel and derazantinib, an inhibitor of FGFR1-3, on human gastric tumors [62].
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Collectively, we expected that the inhibition of FGFR signaling by tephrosin is a possible
target to reduce paclitaxel resistance in ovarian cancer cells.

Additionally, we observed that tephrosin downregulates the expression of FGFR1
alone, but not FRS2 (Figure 3A). It has been known that the binding of ligands to FGFRs
leads to the activation of receptor dimerization and the subsequent activation of the intra-
cellular signaling pathway. FGFRs undergo internalization and lysosomal degradation to
terminate activated signals [97–99]. The decreased expression of FGFR1 in lane 3 and 4 of
Figure 3 is a phenomenon that occurred at the time, showing the possibility that tephrosin
can act directly on FGFR1 (Figure 3A). Moreover, we observed that tephrosin had no effect
on the expression of FGFR2 (Figure S1), implying that tephrosin effectively acts on FGFR1.
We cannot rule out the possibility that tephrosin may affect other FGFR family members;
the exact mechanism of action is being studied further.

The clinical success of paclitaxel has been limited by chemoresistance in cancers,
mainly caused by the overexpression of the drug efflux transporters of the ATP binding
cassette (ABC) family [9]. It has been revealed that the intracellular expression of P-
gp confers paclitaxel resistance in ovarian cancer [9,100]. Accordingly, previous studies
have shown that the inhibition of P-gp is being proposed as a therapeutic option for
paclitaxel resistance [101,102]. We investigated whether the mechanism of tephrosin-
induced paclitaxel resensitization occurs by regulating the expression and function of P-gp
(Figure 4). Immunoblotting and the fluo-3/AM assay indicated that tephrosin had no effect
on the expression or function of P-gp. Our data exclusively rule out the possibility that
tephrosin may affect paclitaxel resistance through a mechanism of P-gp. Meanwhile, several
studies have reported that cell cytotoxicity is induced by an increase in ROS as the AKT
signaling pathway is inhibited in cancer cells [103,104]. Additionally, it has been found that
tephrosin induces apoptosis in human pancreatic cancer cells by increasing the production
of ROS [68]. These reports led us to investigate whether the cytotoxic effect of tephrosin in
paclitaxel-treated SKOV3-TR cells was due to the induction of intracellular ROS. NAC did
not restore the decreased cell viability in a SKOV3-TR combination treatment composed of
paclitaxel and tephrosin, suggesting that the cell cytotoxicity induced by the cotreatment
with paclitaxel and tephrosin in SKOV3-TR cells was not caused by ROS (Figure 5A,B).

It has been reported that paclitaxel-induced cell cytotoxicity is regulated by the pro-
apoptotic and anti-apoptotic BCL-2 family proteins [105]. It has also been shown that
these pro-apoptotic and anti-apoptotic BCL-2 families are regulated by survival signaling
mechanisms and affect paclitaxel resistance in various cancer types [106–108]. However,
the expression of BCL-2 families in tephrosin-treated SKOV3-TR cells was not observed.
Interestingly, anti-apoptotic factor XIAP was significantly reduced by tephrosin (Figure 5C).
Previous studies have revealed that the increased expression of XIAP and Survivin ac-
tivates the metastasis and chemoresistance of cancer [109–111]. In particular, Lai et al.
reported that apoptosis caused by inhibiting the FGFR1 signaling pathway is related to the
downregulation of XIAP, BCL-2, and Survivin in pancreatic ductal adenocarcinoma [112].
In ovarian cancer, there is evidence demonstrating that the expression of XIAP not only
regulates drug-induced apoptosis but also mediates chemoresistance [113–116]. Previous
studies related to the effects of paclitaxel on apoptosis showed that apoptosis is increased
by the combination of the Smac N7 peptide and paclitaxel due to the downregulation of
XIAP and Survivin [117]. Our study suggested the possibility that the downregulation
of XIAP is involved in apoptosis through the combination treatment with paclitaxel and
tephrosin. The precise mechanism of tephrosin in the inhibition of XIAP expression and its
role in suppressing paclitaxel resistance in SKOV3-TR cells need to be explored to further
elucidate the underlying mechanism.

In conclusion, the present study suggests that tephrosin is a potent therapeutic agent
for paclitaxel-resistant ovarian cancer. In addition, the mechanism for tephrosin is based
on the FGFR1/FRS2 signaling pathway without P-gp function or intracellular ROS level
changes. According to reports that aberrated FGFR signaling occurs at a relatively high
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rate in gynecological cancers, including breast and ovarian cancer [54], tephrosin may be
used as a drug to suppress paclitaxel resistance in malignant gynecological cancers.

5. Conclusions

We demonstrated that a treatment combination composed of paclitaxel and tephrosin
can inhibit paclitaxel resistance in paclitaxel-resistant ovarian SKOV3-TR cells and HeyA8-
MDR cells. Although tephrosin alone did not decrease the cell viability of paclitaxel-
resistant ovarian cells, the combination treatment composed of paclitaxel and tephrosin
effectively induced cell cytotoxicity and apoptosis. Moreover, tephrosin suppressed the
phosphorylation of AKT, STAT3, ERK, and p38 MAPK via the FGFR1/FRS2 signaling
pathway. Interestingly, the mechanisms of tephrosin-induced paclitaxel resensitization
were not related to the function of P-glycoprotein or the cellular level of reactive oxygen
species. Our study suggested that tephrosin, a chemical derived from natural products, can
effectively modulate paclitaxel resistance in ovarian cancer with a combination treatment
including paclitaxel.
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