An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Derivation of the Polygenic Risk Score (PRS)
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristic Distributions
3.2. Random Forest Results
3.3. Pancreatic Cancer (PaCa) Risk Factors in the Multivariate Logistic Regression Model by Stepwise Selection
3.4. Model Performance
3.5. Traditional and Dynamic Nomograms
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- World Cancer Research Foundation. Available online: https://www.wcrf.org/cancer-trends/pancreatic-cancer-statistics/ (accessed on 6 July 2023).
- Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Zero (accessed on 6 July 2023).
- Cancer Research UK: Pancreatic Cancer Mortality Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/mortality#heading-Zero (accessed on 6 July 2023).
- Khadka, R.; Tian, W.; Hao, X.; Koirala, R. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int. J. Surg. 2018, 52, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Esplin, E.D.; Oei, L.; Snyder, M.P. Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease. Pharmacogenomics 2014, 15, 1771–1790. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef]
- Roberts, R.; Stewart, A.F.R.; Wells, G.A.; Williams, K.A.; Kavaslar, N.; McPherson, R. Identifying genes for coronary artery disease: An idea whose time has come. Can. J. Cardiol. 2007, 23 (Suppl. A), 7A–15A. [Google Scholar] [CrossRef]
- Ali, O. Genetics of type 2 diabetes. World J. Diabetes 2013, 4, 114–123. [Google Scholar] [CrossRef]
- Yau, C.; Mouradov, D.; Jorissen, R.N.; Colella, S.; Mirza, G.; Steers, G.; Harris, A.; Ragoussis, J.; Sieber, O.; Holmes, C.C. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol. 2010, 11, R92. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Paez, J.G.; Chin, K.; Jänne, P.A.; Chen, T.-H.; Girard, L.; Minna, J.; Christiani, D.; Leo, C.; et al. An Integrated View of Copy Number and Allelic Alterations in the Cancer Genome Using Single Nucleotide Polymorphism Arrays. Cancer Res. 2004, 64, 3060–3071. [Google Scholar] [CrossRef]
- Laframboise, T.; Weir, B.A.; Zhao, X.; Beroukhim, R.; Li, C.; Harrington, D.; Sellers, W.R.; Meyerson, M. Allele-Specific Amplification in Cancer Revealed by SNP Array Analysis. PLoS Comput. Biol. 2005, 1, e65. [Google Scholar] [CrossRef]
- López De Maturana, E.; Rodríguez, J.A.; Alonso, L.; Lao, O.; Molina-Montes, E.; Martín-Antoniano, I.A.; Gómez-Rubio, P.; Lawlor, R.; Carrato, A.; Hidalgo, M.; et al. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Med. 2021, 13, 15. [Google Scholar] [CrossRef]
- Klein, A.P.; Wolpin, B.M.; Risch, H.A.; Stolzenberg-Solomon, R.Z.; Mocci, E.; Zhang, M.; Canzian, F.; Childs, E.J.; Hoskins, J.W.; Jermusyk, A.; et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 2018, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Petersen, G.M.; Amundadottir, L.; Fuchs, C.S.; Kraft, P.; Stolzenberg-Solomon, R.Z.; Jacobs, K.B.; Arslan, A.A.; Bueno-De-Mesquita, H.B.; Gallinger, S.; Gross, M.; et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 2010, 42, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Childs, E.J.; Mocci, E.; Campa, D.; Bracci, P.M.; Gallinger, S.; Goggins, M.; Li, D.; Neale, R.E.; Olson, S.H.; Scelo, G.; et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 2015, 47, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Z.; Obazee, O.; Jia, J.; Childs, E.J.; Hoskins, J.; Figlioli, G.; Mocci, E.; Collins, I.; Chung, C.C.; et al. Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 2016, 7, 66328–66343. [Google Scholar] [CrossRef] [PubMed]
- GWAS Catalog. Available online: https://www.ebi.ac.uk/gwas/ (accessed on 6 July 2023).
- Bogumil, D.; Conti, D.V.; Sheng, X.; Xia, L.; Shu, X.-O.; Pandol, S.J.; Blot, W.J.; Zheng, W.; Le Marchand, L.; Haiman, C.A.; et al. Replication and Genetic Risk Score Analysis for Pancreatic Cancer in a Diverse Multiethnic Population. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2686–2692. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, A.A.; Gentiluomo, M.; Rizzato, C.; Obazee, O.; Neoptolemos, J.P.; Pasquali, C.; Nentwich, M.; Cavestro, G.M.; Pezzilli, R.; Greenhalf, W.; et al. Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. J. Med. Genet. 2021, 58, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Coleman, H.G.; Cairnduff, V.; Kunzmann, A.T. Clinical Prediction Models for Pancreatic Cancer in General and At-Risk Populations: A Systematic Review. Am. J. Gastroenterol. 2023, 118, 26–40. [Google Scholar] [CrossRef]
- Accessing UKB Data. Available online: https://biobank.ctsu.ox.ac.uk/~bbdatan/Data_Access_Guide.pdf (accessed on 6 November 2023).
- UKB Research Analysis Platform. Available online: https://dnanexus.gitbook.io/uk-biobank-rap/working-on-the-research-analysis-platform/ukb-rap (accessed on 6 July 2023).
- UK Biobank: Age at Recruitment. Available online: https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21022 (accessed on 6 July 2023).
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Jacobs, E.J.; Rodriguez, C.; Newton, C.C.; Bain, E.B.; Patel, A.V.; Feigelson, H.S.; Thun, M.J.; Calle, E.E. Family history of various cancers and pancreatic cancer mortality in a large cohort. Cancer Causes Control 2009, 20, 1261–1269. [Google Scholar] [CrossRef]
- Underhill, M.L.; Germansky, K.A.; Yurgelun, M.B. Advances in Hereditary Colorectal and Pancreatic Cancers. Clin. Ther. 2016, 38, 1600–1621. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients 2019, 11, 1572. [Google Scholar] [CrossRef]
- Scoring Standards for the 2018 WCRF/AICR Score. Available online: https://epi.grants.cancer.gov/wcrf-aicr-score/details.html (accessed on 6 July 2023).
- NHS Alcohol Units. Available online: https://www.nhs.uk/live-well/alcohol-advice/calculating-alcohol-units/ (accessed on 6 July 2023).
- Body Mass Index from NHS. Available online: https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-mass-index-bmi/ (accessed on 6 July 2023).
- Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 6 November 2023).
- Arthur, R.S.; Wang, T.; Xue, X.; Kamensky, V.; Rohan, T.E. Genetic Factors, Adherence to Healthy Lifestyle Behavior, and Risk of Invasive Breast Cancer Among Women in the UK Biobank. J. Natl. Cancer Inst. 2020, 112, 893–901. [Google Scholar] [CrossRef] [PubMed]
- qctool v2. Available online: https://www.well.ox.ac.uk/~gav/qctool_v2/index.html (accessed on 6 July 2023).
- PLINK 1.90 Beta. Available online: https://www.cog-genomics.org/plink/1.9/ (accessed on 6 July 2023).
- UK Biobank Genomic Search. Available online: https://biobank.ctsu.ox.ac.uk/crystal/gsearch.cgi (accessed on 6 July 2023).
- STATA. Available online: https://www.stata.com/company/ (accessed on 6 July 2023).
- Choi, S.W.; Mak, T.S.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Royston, P.; White, I.R. Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J. Stat. Softw. 2011, 45, 1–20. [Google Scholar] [CrossRef]
- Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A.F.T. Data mining in the Life Sciences with Random Forest: A walk in the park or lost in the jungle? Brief. Bioinform. 2012, 14, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022, 15, 531–538. [Google Scholar] [CrossRef]
- RandomizedSearchCV. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html (accessed on 6 July 2023).
- GridSearchCV. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (accessed on 6 July 2023).
- Feature Importances with a Forest of Trees. Available online: https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html (accessed on 14 November 2023).
- shap.summary_plot. Available online: https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html (accessed on 16 November 2023).
- shap.waterfall_plot. Available online: https://shap-lrjball.readthedocs.io/en/latest/generated/shap.waterfall_plot.html (accessed on 16 November 2023).
- R Software. Available online: https://www.r-project.org/ (accessed on 6 July 2023).
- Python. Available online: https://www.python.org/ (accessed on 6 July 2023).
- Badrick, E.; Lennon, H.; Sperrin, M.; Van Staa, T.; O’Reilly, D.; Buchan, I.; Renehan, A. Can we identify people with higher pancreatic cancer risk who present with type 2 diabetes? Diabetologia 2017, 60, S562. [Google Scholar]
- Baecker, A.; Kim, S.; Risch, H.A.; Nuckols, T.K.; Wu, B.U.; Hendifar, A.E.; Pandol, S.J.; Pisegna, J.R.; Jeon, C.Y. Do changes in health reveal the possibility of undiagnosed pancreatic cancer? Development of a risk-prediction model based on healthcare claims data. PLoS ONE 2019, 14, e0218580. [Google Scholar] [CrossRef]
- Boursi, B.; Finkelman, B.; Giantonio, B.J.; Haynes, K.; Rustgi, A.K.; Rhim, A.D.; Mamtani, R.; Yang, Y.-X. A clinical prediction model to assess risk for pancreatic cancer among patients with new-onset diabetes. Gastroenterology 2017, 152, 840–850.e843. [Google Scholar] [CrossRef]
- De Icaza, E.; López-Cervantes, M.; Arredondo, A.; Robles-Díaz, G. Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach. J. Eval. Clin. Pract. 2009, 15, 62–68. [Google Scholar] [CrossRef]
- Colditz, G.A.; Atwood, K.; Emmons, K.; Monson, R.; Willett, W.; Trichopoulos, D.; Hunter, D. Harvard report on cancer prevention volume 4: Harvard Cancer Risk Index. Cancer Causes Control 2000, 11, 477–488. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.H.; Sun, L.-M.; Lin, C.-L.; Hsieh, M.-J.; Hsu, C.-Y.; Kao, C.-H. Development of a prediction model for pancreatic cancer in patients with type 2 diabetes using logistic regression and artificial neural network models. Cancer Manag. Res. 2018, 10, 6317–6324. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yuan, C.; Babic, A.; Bao, Y.; Clish, C.B.; Pollak, M.N.; Amundadottir, L.T.; Klein, A.P.; Stolzenberg-Solomon, R.Z.; Pandharipande, P.V. Genetic and circulating biomarker data improve risk prediction for pancreatic cancer in the general population. Cancer Epidemiol. Biomark. Prev. 2020, 29, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P.; Lindström, S.; Mendelsohn, J.B.; Steplowski, E.; Arslan, A.A.; Bueno-de-Mesquita, H.B.; Fuchs, C.S.; Gallinger, S.; Gross, M.; Helzlsouer, K. An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS ONE 2013, 8, e72311. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.-A.; Park, H.Y.; Lee, K.H.; Lee, K.T.; Lee, J.K.; Bae, J.C.; Kim, K.W. New-onset diabetes patients need pancreatic cancer screening? J. Clin. Gastroenterol. 2012, 46, e58–e61. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-H.; Wang, L.; Li, H.; Qian, J.-M.; Deng, R.-X.; Zhou, L. Establishment of risk model for pancreatic cancer in Chinese Han population. World J. Gastroenterol. WJG 2006, 12, 2229. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, A.; Rachet, B.; Bonaventure, A.; Pereira, S.P.; Woods, L.M. Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data. PLoS ONE 2021, 16, e0251876. [Google Scholar] [CrossRef]
- Munigala, S.; Singh, A.; Gelrud, A.; Agarwal, B. Predictors for pancreatic cancer diagnosis following new-onset diabetes mellitus. Clin. Transl. Gastroenterol. 2015, 6, e118. [Google Scholar] [CrossRef]
- Nakatochi, M.; Lin, Y.; Ito, H.; Hara, K.; Kinoshita, F.; Kobayashi, Y.; Ishii, H.; Ozaka, M.; Sasaki, T.; Sasahira, N. Prediction model for pancreatic cancer risk in the general Japanese population. PLoS ONE 2018, 13, e0203386. [Google Scholar] [CrossRef]
- Pang, T.; Ding, G.; Wu, Z.; Jiang, G.; Yang, Y.; Zhang, X.; Cao, L. A novel scoring system to analyze combined effect of lifestyle factors on pancreatic cancer risk: A retrospective case-control study. Sci. Rep. 2017, 7, 13657. [Google Scholar] [CrossRef]
- Risch, H.A.; Yu, H.; Lu, L.; Kidd, M.S. Detectable symptomatology preceding the diagnosis of pancreatic cancer and absolute risk of pancreatic cancer diagnosis. Am. J. Epidemiol. 2015, 182, 26–34. [Google Scholar] [CrossRef]
- Stapley, S.; Peters, T.; Neal, R.D.; Rose, P.; Walter, F.; Hamilton, W. The risk of pancreatic cancer in symptomatic patients in primary care: A large case–control study using electronic records. Br. J. Cancer 2012, 106, 1940–1944. [Google Scholar] [CrossRef]
- Yu, A.; Woo, S.M.; Joo, J.; Yang, H.-R.; Lee, W.J.; Park, S.-J.; Nam, B.-H. Development and validation of a prediction model to estimate individual risk of pancreatic cancer. PLoS ONE 2016, 11, e0146473. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, L.; Cambronero, J.P.; Stevens, J.P.; Horng, S.; Pollick, K.; Silva, G.; Haneuse, S.; Piatkowski, G.; Benhaga, N.; Duey, S. Development and validation of a pancreatic cancer risk model for the general population using electronic health records: An observational study. Eur. J. Cancer 2021, 143, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.; Beesley, L.J.; Fritsche, L.G.; Hanauer, D.; Shi, X.; Mondul, A.M.; Pearce, C.L.; Mukherjee, B. Phenotype risk scores (PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks. J. Biomed. Inform. 2021, 113, 103652. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kandlakunta, H.; Nagpal, S.J.S.; Feng, Z.; Hoos, W.; Petersen, G.M.; Chari, S.T. Model to determine risk of pancreatic cancer in patients with new-onset diabetes. Gastroenterology 2018, 155, 730–739.e733. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Tapper, W.J.; Collins, A.; Hamady, Z.Z.R. Predicting Pancreatic Cancer in the UK Biobank Cohort Using Polygenic Risk Scores and Diabetes Mellitus. Gastroenterology 2022, 162, 1665–1674.e1662. [Google Scholar] [CrossRef] [PubMed]
- Haiman, C.A.; Stram, D.O. Exploring genetic susceptibility to cancer in diverse populations. Curr. Opin. Genet. Dev. 2010, 20, 330–335. [Google Scholar] [CrossRef]
- Kachuri, L.; Graff, R.E.; Smith-Byrne, K.; Meyers, T.J.; Rashkin, S.R.; Ziv, E.; Witte, J.S.; Johansson, M. Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat. Commun. 2020, 11, 6084. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Childs, E.J.; Mocci, E.; Bracci, P.; Gallinger, S.; Li, D.; Neale, R.E.; Olson, S.H.; Scelo, G.; Bamlet, W.R.; et al. Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2019, 28, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.R.; Rookus, M.A.; McGuffog, L.; Leslie, G.; Mooij, T.M.; Dennis, J.; Mavaddat, N.; Adlard, J.; Ahmed, M.; Aittomäki, K.; et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet. Med. 2020, 22, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.R.; Silvestri, V.; Leslie, G.; McGuffog, L.; Dennis, J.; Yang, X.; Adlard, J.; Agnarsson, B.A.; Ahmed, M.; Aittomäki, K.; et al. Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores. J. Natl. Cancer Inst. 2022, 114, 109–122. [Google Scholar] [CrossRef]
- Muhammad, W.; Hart, G.R.; Nartowt, B.; Farrell, J.J.; Johung, K.; Liang, Y.; Deng, J. Pancreatic Cancer Prediction Through an Artificial Neural Network. Front. Artif. Intell. 2019, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, X.; Liu, F.; Wang, C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int. J. Med. Inf. 2021, 151, 104484. [Google Scholar] [CrossRef]
- Valkenborg, D.; Rousseau, A.J.; Geubbelmans, M.; Burzykowski, T. Support vector machines. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 754–757. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [Google Scholar] [CrossRef]
- AlThuwaynee, O.F.; Kim, S.W.; Najemaden, M.A.; Aydda, A.; Balogun, A.L.; Fayyadh, M.M.; Park, H.J. Demystifying uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms. Environ. Sci. Pollut. Res. Int. 2021, 28, 43544–43566. [Google Scholar] [CrossRef]
- Lee, W.; Park, H.J.; Lee, H.J.; Jun, E.; Song, K.B.; Hwang, D.W.; Lee, J.H.; Lim, K.; Kim, N.; Lee, S.S.; et al. Preoperative data-based deep learning model for predicting postoperative survival in pancreatic cancer patients. Int. J. Surg 2022, 105, 106851. [Google Scholar] [CrossRef]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants with Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef]
- Schoeler, T.; Speed, D.; Porcu, E.; Pirastu, N.; Pingault, J.B.; Kutalik, Z. Participation bias in the UK Biobank distorts genetic associations and downstream analyses. Nat. Hum. Behav. 2023, 7, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Tomz, M.; King, G.; Zeng, L. ReLogit: Rare Events Logistic Regression. J. Stat. Softw. 2003, 8, 1–27. [Google Scholar] [CrossRef]
- Assessing the Generalizability of Prognostic Information. Ann. Intern. Med. 1999, 130, 515–524. [CrossRef] [PubMed]
- Steyerberg, E.W.; Harrell, F.E.; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef]
Characteristic Variables | Pancreatic Cancer (PaCa) Cases (n = 960) | Cancer-Free Controls (n = 257,348) | p-Value * |
---|---|---|---|
Gender | <0.001 | ||
Woman | 442 (46.04%) | 134,552 (52.28%) | |
Man | 518 (53.96%) | 122,796 (47.72%) | |
Age # | 61.60 | 56.03 | <0.001 |
Polygenic score (PRS) #(con) | |||
Standardized PRS | 6.12 | 5.84 | <0.001 |
Polygenic score (PRS) (cat) | <0.001 | ||
Q1 | 135 (14.06%) | 51,469 (20%) | |
Q2 | 141 (14.69%) | 51,470 (20%) | |
Q3 | 168 (17.50%) | 51,469 (20%) | |
Q4 | 234 (24.38%) | 51,470 (20%) | |
Q5 | 282 (29.38%) | 51,470 (20%) | |
Blood type | <0.001 | ||
O blood type | 355 (36.98%) | 112,083 (43.55%) | |
Non-O blood type | 605 (63.02%) | 145,265 (56.45%) | |
Family history of bowel cancer | 0.255 | ||
No | 858 (89.38%) | 232,791 (90.46%) | |
Yes | 102 (10.63%) | 24,557 (9.54%) | |
Tobacco smoking status | <0.001 | ||
Never | 441 (45.94%) | 143,911 (55.92%) | |
Previous | 373 (38.85%) | 87,948 (34.17%) | |
Current | 146 (15.21%) | 25,489 (9.90%) | |
Alcohol consumption amount | 0.192 | ||
Never | 226 (23.54%) | 57,662 (22.41%) | |
Men: >0–≤28 g/d, Women: >0–≤14 g/d | 347 (36.15%) | 100,383 (39.01%) | |
Men: >28 g/d, Women: >14 g/d | 387 (40.31%) | 99,303 (38.59%) | |
Physical activity (MET-min/week) a | 0.012 | ||
<600 | 206 (21.46%) | 47,721 (18.54%) | |
600–3000 | 444 (46.25%) | 130,485 (50.70%) | |
>3000 | 310 (32.29%) | 79,142 (30.75%) | |
BMI | <0.001 | ||
Normal or underweight (BMI < 25) | 249 (25.94%) | 85,040 (33.04%) | |
Overweight (25 ≤ BMI < 30) | 421 (43.85%) | 109,575 (42.58%) | |
Obese (BMI ≥ 30) | 290 (30.21%) | 62,733 (24.38%) | |
Waist–hip ratio (WHR) | <0.001 | ||
Normal (Men: <0.90, Women: <0.85) | 372 (38.75%) | 131,445 (51.08%) | |
Abdominal obesity (Men: ≥0.90, Women: ≥0.85) | 588 (61.25%) | 125,903 (48.92%) | |
Medical history-related variables | |||
Pancreatitis | <0.001 | ||
No | 888 (92.05%) | 254,962 (99.07%) | |
Yes | 72 (7.5%) | 2386 (0.93%) | |
Diabetes mellitus | <0.001 | ||
No | 713 (74.27%) | 235,818 (91.63%) | |
Yes | 247 (25.73%) | 21,530 (8.37%) | |
Hepatitis B | 0.374 | ||
No | 960 (100%) | 257,136 (99.92%) | |
Yes | 0 (0%) | 212 (0.08%) | |
Cholecystitis/cholelithiasis/cholecystectomy | <0.001 | ||
No | 761 (79.27%) | 237,575 (92.32%) | |
Yes | 199 (20.73%) | 19,773 (7.68%) | |
Helicobacter pylori infection | 0.229 | ||
No | 949 (98.85%) | 255,291 (99.20%) | |
Yes | 11 (1.15%) | 2057 (0.80%) | |
Systemic lupus erythematosus (SLE) | 0.607 | ||
No | 959 (99.90%) | 256,902 (99.83%) | |
Yes | 1 (0.10%) | 446 (0.17%) | |
Vitamin D deficiency | |||
No | 951 (99.06%) | 255,368 (99.23%) | 0.552 |
Yes | 9 (0.94%) | 1980 (0.77%) | |
Peritonitis | 0.157 | ||
No | 959 (99.90%) | 256,349 (99.61%) | |
Yes | 1 (0.10%) | 999 (0.39%) |
Characteristic Variables | OR | 95% CI | p-Value |
---|---|---|---|
Non-modifiable variables | |||
Gender | |||
Woman | Ref. | ||
Man | 1.17 | (1.02–1.33) | 0.024 |
Age | 1.10 | (1.07–1.51) | <0.001 |
Blood type | |||
O blood type | Ref. | ||
Non-O blood type | 1.29 | (1.14–1.47) | <0.001 |
Polygenic score (PRS) | |||
Q1 | Ref. | ||
Q2 | 1.05 | (0.83–1.33) | 0.690 |
Q3 | 1.22 | (0.97–1.53) | 0.091 |
Q4 | 1.67 | (1.35–2.07) | <0.001 |
Q5 | 2.03 | (1.65–2.50) | <0.001 |
Lifestyle-related modifiable variables | |||
Tobacco smoking status | |||
Never | Ref. | ||
Previous | 1.01 | (0.88–1.16) | 0.906 |
Current | 1.82 | (1.50–2.20) | <0.001 |
Alcohol consumption amount | |||
Never | Ref. | ||
Men > 0–28 g/d, Women > 0–14 g/d | 1.01 | (0.85–1.21) | 0.873 |
Men > 28 g/d, Women > 14 g/d | 1.27 | (1.07–1.51) | 0.005 |
Medical history-related variables | |||
Pancreatitis | |||
No | Ref. | ||
Yes | 3.99 | (3.06–5.22) | <0.001 |
Diabetes mellitus (DM) | |||
No | Ref. | ||
Yes | 2.57 | (2.21–2.99) | <0.001 |
Cholecystitis/cholelithiasis/cholecystectomy | |||
No | Ref. | ||
Yes | 2.04 | (1.71–2.42) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, T.-M.; Lophatananon, A.; Muir, K.R. An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank. Biomedicines 2023, 11, 3206. https://doi.org/10.3390/biomedicines11123206
Ke T-M, Lophatananon A, Muir KR. An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank. Biomedicines. 2023; 11(12):3206. https://doi.org/10.3390/biomedicines11123206
Chicago/Turabian StyleKe, Te-Min, Artitaya Lophatananon, and Kenneth R. Muir. 2023. "An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank" Biomedicines 11, no. 12: 3206. https://doi.org/10.3390/biomedicines11123206
APA StyleKe, T. -M., Lophatananon, A., & Muir, K. R. (2023). An Integrative Pancreatic Cancer Risk Prediction Model in the UK Biobank. Biomedicines, 11(12), 3206. https://doi.org/10.3390/biomedicines11123206