
Citation: Ke, T.-M.; Lophatananon, A.;

Muir, K.R. An Integrative Pancreatic

Cancer Risk Prediction Model in the

UK Biobank. Biomedicines 2023, 11,

3206. https://doi.org/10.3390/

biomedicines11123206

Academic Editor: Jan Trna

Received: 7 November 2023

Revised: 20 November 2023

Accepted: 26 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

An Integrative Pancreatic Cancer Risk Prediction Model in the
UK Biobank
Te-Min Ke, Artitaya Lophatananon and Kenneth R. Muir *

Division of Population Health, Health Services Research and Primary Care, School of Health Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK;
te-min.ke@manchester.ac.uk (T.-M.K.); artitaya.lophatananon@manchester.ac.uk (A.L.)
* Correspondence: kenneth.muir@manchester.ac.uk; Tel.: +44-161-2785677

Abstract: Pancreatic cancer (PaCa) is a lethal cancer with an increasing incidence, highlighting the
need for early prevention strategies. There is a lack of a comprehensive PaCa predictive model derived
from large prospective cohorts. Therefore, we have developed an integrated PaCa risk prediction
model for PaCa using data from the UK Biobank, incorporating lifestyle-related, genetic-related, and
medical history-related variables for application in healthcare settings. We used a machine learning-
based random forest approach and a traditional multivariable logistic regression method to develop
a PaCa predictive model for different purposes. Additionally, we employed dynamic nomograms to
visualize the probability of PaCa risk in the prediction model. The top five influential features in the
random forest model were age, PRS, pancreatitis, DM, and smoking. The significant risk variables
in the logistic regression model included male gender (OR = 1.17), age (OR = 1.10), non-O blood
type (OR = 1.29), higher polygenic score (PRS) (Q5 vs. Q1, OR = 2.03), smoking (OR = 1.82), alcohol
consumption (OR = 1.27), pancreatitis (OR = 3.99), diabetes (DM) (OR = 2.57), and gallbladder-related
disease (OR = 2.07). The area under the receiver operating curve (AUC) of the logistic regression
model is 0.78. Internal validation and calibration performed well in both models. Our integrative
PaCa risk prediction model with the PRS effectively stratifies individuals at future risk of PaCa,
aiding targeted prevention efforts and supporting community-based cancer prevention initiatives.

Keywords: pancreatic cancer; polygenic score; risk prediction model; nomogram; random forest
model; UK Biobank cohort

1. Introduction

Pancreatic cancer (PaCa) is a lethal cancer with an increasing incidence and a poor
survival rate. In 2020, PaCa was the 12th most common cancer and the 7th primary cause
of cancer death in both sexes worldwide [1,2]. In the UK, PaCa is the 10th leading cancer,
accounting for 3% of total cancer cases, with around 10,452 people diagnosed annually
(years 2016–2018) [3]. Regarding cancer-related deaths, PaCa ranked as the 5th most
common contributor to cancer-related mortality in the UK (years 2017–2019) [4], accounting
for approximately 6% of total cancer deaths. It is challenging to diagnose PaCa at an early
stage among patients with no specific symptoms, together with there being no specific
screening program for PaCa, resulting in a poor survival rate and prognosis. The five-year
survival rate is only approximately 7% [5]. Therefore, identifying the at-risk population in
the community for early prevention is important.

In addition to the lifestyle risk factors, such as tobacco smoking or medical history-
related diseases (such as diabetes mellitus), genetic predisposition is also emerging to play
an important role for disease prediction [6]. Single-nucleotide polymorphisms (SNPs) are
one of the common types of individual genetic variants [7], which have been used to predict
the risk of developing coronary heart disease [8], diabetes [9], and cancers [10–12]. Various
susceptible loci for pancreatic cancer have been identified from genome-wide association
studies (GWAS) [13–17]. Currently, at least 194 variants and risk alleles associated with
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pancreatic cancer are listed in the GWAS Catalogue [18]. Of these, most PaCa risk loci
have been found in the European population. The previous studies [19,20] have com-
bined pancreatic cancer-associated SNPs obtained from GWAS into a polygenic risk score
(PRS) to develop the risk prediction models. A case-control study [20] revealed that the
highest quintile of the weighted PRS was related to increased PaCa risk (OR = 2.70, 95%
CI: 1.99–3.68), compared to the lowest quintile of the weighted PRS. Another case-control
study [19] showed that the top quintile of the PRS was associated with higher PaCa risk
(OR = 2.25, 95% CI: 1.73–2.92) compared with the middle quintile of the PRS. Higher PRS
can thus be used to identify the higher risk of PaCa-associated SNPs. Therefore, PRS could
also be used for pancreatic cancer risk stratification in the population.

There are multiple models [21] that have been published associated with PaCa risk
prediction. However, each model concentrated only on selected risk variables, such as
symptoms-based, genetic-based, or lifestyle-related. There is still a lack of a comprehensive
model built in a large prospective cohort integrating the lifestyle-related modifiable risk
variables, genetic-related variables, and medical history-related variables. In this study,
therefore, we aimed to establish an integrative PaCa risk prediction model using data from
the UK Biobank (UKB), which could be applied in healthcare settings.

2. Materials and Methods
2.1. Study Population and Study Design

This study is a nested case-control study using the UK Biobank cohort dataset. The
UKB cohort is an ongoing cohort study that recruited 502,387 participants across the UK
from 2006 to 2010. The participants who withdrew from the UK Biobank study were
already removed from the UKB central dataset before we obtained it [22,23]. The age at
recruitment [24] for all participants ranged from 37 to 73 years old, and the last clinical
outcome follow-up date of this study was 5 December 2022. The dataset contains lifestyle,
genetic, and various health information, and more details on the UK Biobank can be found
at: http://www.ukbiobank.ac.uk/ (accessed on 5 December 2022).

This analysis identified pancreatic cancer cases and cancer-free controls according to
the criteria listed in Table S1. Three coding systems, including the International Classifica-
tion of Diseases 9 and 10 (ICD9 and ICD10) codes, and self-reported data were used. PaCa
cases included all the subtypes and different anatomic parts of pancreatic malignancies
to PaCa (Table S1). Incident or prevalent cases were distinguished by the diagnosis time
in relation to the study enrolment date. The total number of participants with PaCa as
an incident case (diagnosis time was recorded after enrolment in all three sources) was
1402 in the UKB cohort. A participant was categorized as a prevalent case only if they
were a prevalent case in at least one of three different sources and were not considered an
incident case in any of the data sources (n = 92). Only PaCa incident cases were included in
this study. Cancer-free controls were defined as the participants without any records of
neoplasms, in situ neoplasms, benign neoplasms, and neoplasms of uncertain or unknown
behavior (n = 389,027). In sum, 92 prevalent cases and 111,866 participants with records of
any other neoplasms were excluded from our analysis. This study also investigated the
roles of genetic component variables in the prediction model; therefore, only participants
who passed sample quality control (QC) were included in this study. Therefore, there were
258,308 participants with 960 PaCa cases and 257,348 cancer-free controls included in the
analyses. The flowchart of the PaCa cases and cancer-free controls selection process is
illustrated in Figure S1.

The exposure variables were classified into non-modifiable, lifestyle-related modifiable,
and medical history-related variables. The non-modifiable variables included gender, age,
blood type, family history of bowel cancer, and polygenic score (PRS). Family history of
pancreatic cancer is considered one of the risk factors for developing pancreatic cancer [25].
However, this variable was unavailable in this UKB cohort study. On the other hand, a
previous study [26] advocated that a family history of bowel cancer might be associated
with a higher PaCa risk, and some hereditary colorectal cancers were reported [27] to
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share common germline mutation genes with hereditary PaCa. Therefore, in this study,
we adopted a family history of bowel cancer as a surrogate instead of a family history of
PaCa [26,27] based on the evidence suggesting a link between family history of bowel cancer
and pancreatic cancer. The lifestyle-related modifiable variables were tobacco smoking,
alcohol intake amount, body mass index (BMI), waist-to-hip ratio (WHR), and physical
activity. Medical history-related variables include pancreatitis, diabetes mellitus (DM),
hepatitis B, gallbladder-related disease (cholecystitis, cholelithiasis, and cholecystectomy),
Helicobacter pylori (H. pylori) infection, peritonitis, vitamin D deficiency, and systemic
lupus erythematosus (SLE). The alcohol consumption classification was based on the 2018
World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR)
recommendations [28,29]: men and women who consume no more than 28 g and 14 g
of ethanol per day, respectively. Alcohol consumption was first converted to alcohol
intake amount as g/day. We applied one unit as equal to 10 mL or 8 g of pure alcohol
according to the National Health Service (NHS) instructions [30]. Details on the alcohol
consumption calculations are described in Table S2. BMI was divided into three groups:
normal or underweight (BMI < 25), overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30).
The classification of BMI was also based on the NHS suggestion [31]. The WHR variable
was initially calculated by dividing the waist circumference by the hip circumference
and then categorizing into the normal group, which served as a reference (men: <0.90,
women: <0.85), and the abdominal obesity group (men: ≥0.90, women: ≥0.85), according
to the WHO recommendations [32]. The physical activity variable was measured as the
summed metabolic equivalent of task (MET) minutes per week for all activity, provided by
the UK Biobank. The MET categories (<600 MET-min/week, 600–3000 MET-min/week,
and >3000 MET-min/week) were adapted from the 2018 WCRF/AICR Cancer Prevention
Recommendations [28] and a previous UK Biobank study [33]. All medical history-related
variables were obtained using records of self-reported medical conditions and ICD9 and
ICD10 diagnoses in hospital records. All the exposure variables information is further
described in Table S2.

2.2. Derivation of the Polygenic Risk Score (PRS)

The polygenic score (PRS) in this study was constructed by using the single-nucleotide
polymorphisms (SNPs) associated with PaCa from the GWAS Catalogue [18]. Only SNPs
with reported effect size estimation and risk alleles from the GWAS Catalogue in any
population were included. Thus, 96 SNPs were extracted from the UK Biobank imputation
genotype file. This process was manipulated by QCTOOL [34] through the UK Biobank
Research Analysis Platform (RAP), Swiss-Army-Knife APP. SNPs QC was conducted by
PLINK1.9 [35] (excluding 24 SNPs, n = 72 SNPs). Only SNPs with a 90% genotyping rate
(≤10% missing) were included. Next, we excluded SNPs that failed the Hardy–Weinberg
test at a threshold of 10−10. Linkage disequilibrium (LD) was also assessed using the
threshold for LD pruning (r2 > 0.8) (excluding 4 SNPs, n = 68 SNPs). This study did not
include any ambiguous, palindromic SNPs or SNPs with an imputation score < 0.8 [36].
Finally, only the SNPs that passed the SNP QC from the Caucasian GWAS (n = 40 SNPs)
were included in this study.

The sample QC was performed using STATA/MP software [37] version 17. Any in-
dividuals with missing SNPs information greater than 20% were excluded. Sex QC was
evaluated by analyzing the difference between genetically inferred and self-reported sex.
All the sex-chromosome aneuploidy were excluded. In the heterozygosity assessment,
samples exhibiting outliers for heterozygosity (those falling outside ±3 standard deviations
(SD) above or below the mean of the heterozygosity principal component analysis (PCA)-
corrected values) were initially excluded. Subsequently, samples with poor heterozygosity
or missingness, as suggested by the UK Biobank genomic analysis, were further removed.
The identification of ancestral groups and assessment of relatedness to other participants in
the dataset were conducted through PCA. Genetically Caucasian samples were verified
based on their proximity to the mean, within ±3 SD of the first three genetic principal com-
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ponents. Ultimately, only genetically Caucasian samples were included in the established
PRS and PaCa predictive model (n = 258,308).

The PaCa PRS was generated by the SNPs that passed the above SNP QC and were in
the Caucasian GWAS (n = 40 SNPs). The individual weighted PRS values were calculated
by summing the number of risk alleles of each SNP and then multiplying the sum by the
effect size from the published GWAS. The weighted PRS values were applied to the classic
PRS formula [38]:

PRS = β1 × SNP1 + β2 × SNP2 + · · ·+ βk × SNPk . . . + βn × SNPn

where βk is the log odds ratio (OR) for SNPk from the previous GWAS, SNPk is the allele
dosage for SNPk, and n is the number of SNPs included in this study. The standardized
PRS was then derived by dividing each raw PRS by the SD of the raw PRS in the controls.
Then, we employed quintile genetic risk classification, which was determined using the
standardized PRS within the control group. The control standardized PRS served as the
reference, with quintiles defined as follows: first quintile (Q1—up to 20%) PRS < 5.013,
second quintile (Q2 > 20% to <40%) PRS ≥ 5.013 to <5.531, third quintile (Q3 > 40% to 60%)
PRS ≥ 5.531 to <6.003, fourth quintile (Q4 > 60% to 80%) PRS ≥ 6.003 to <6.589, and fifth
quintile (Q5 > 80%) PRS ≥ 6.589. Subsequently, PaCa cases were stratified into the PRS
groups based on the quintile cut-off values.

The flowchart of SNPs extraction, SNPs QC, sample QC, and PRS construction is
shown in Figure S2. The SNPs, risk alleles, and other summary statistics information used
to extract SNPs from the UKB cohort and build the PRS are listed in Tables S3 and S4.

2.3. Statistical Analysis

The missing exposure variables were imputed by multivariate imputation using the
chained equations (MICE) method [39]. A binary dependent variable was coded as PaCa
cases and cancer-free controls. Independent exposure variables were classified as shown
in Table S2. In the demographic characteristic summary statistics, the Chi-square test was
used for categorical data, and the Student’s t-test was used for continuous data to compare
mean value differences between the cases and controls.

We applied a machine learning-based random forest method and a conventional
multivariable logistic regression method to establish the PaCa prediction model for different
purposes. Random forest is well known for dealing with high-dimensional and non-linear
data and avoiding overfitting [40]. The random forest model was used for the purpose of
identifying the most important risk factors. On the other hand, the multivariable logistic
regression method was used to quantify the risks of the PaCa risk factors and interpret the
PaCa probability in the prediction model.

In the random forest model, 85% of the dataset was initially set as a training dataset
and 15% as a testing dataset. There was no clear guidance on determining the most optimal
ratio for training and testing datasets [41]. However, the ideal ratio should depend on the
unique characteristics and complexities of the dataset. Considering the properties of the
large dataset in the UKB cohort and the relatively rare prevalent PaCa cases, we chose 85%
of the dataset for training. In the consequential sensitivity test, we set 70% of the dataset
as a training dataset and 30% as a testing dataset. The optimal hyperparameters were
found in the training dataset via the RandomizedSearchCV [42] and GridSearchCV [43]
functions in the Scikit-learn package by a 10-fold cross-validation process. The area under
the receiver operating curve (AUC) was measured to determine the random forest model’s
discriminatory power within the training and testing datasets. Internal validation was
performed using a 10-fold cross-validation method to measure the confusion matrix (pre-
diction, receiver operating characteristic (ROC) curve, and accuracy) between the training
and testing datasets. Finally, model visualization of the feature importance was created to
unveil the most influential variables. The feature importance was determined using the
feature_importances_ function [44], which calculates the mean and standard deviation of
the cumulative impurity decrease within each tree [44]. A summary SHapley Additive
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exPlanations (SHAP) plot [45] and a waterfall plot [46] were generated to illustrate how
individual features contribute to the predictive outcome.

A multivariable logistic regression model was built by the forward and backward
stepwise selection method to establish the risk prediction model. The multiple logistic
regression model computed each risk variable’s OR. Due to the imbalance of case numbers
to control numbers, we also performed a sensitivity test with three different ratios for
the case and control groups, set at 1:10, 1:15, and 1:20. To visualize the multivariable
logistic regression model, traditional and dynamic nomograms were created using the
rms, nomogramEx, and DynNom R packages. The AUC was measured to evaluate the
discrimination abilities of the multiple logistic regression model. The performance of the
prediction model was confirmed by internal validation and calibration. Internal validation
was performed via the 500 bootstrap resampling method, and the internal calibration was
measured through the Hosmer–Lemeshow goodness-of-fit test to explore the agreement
between the actual PaCa risk and the probability predicted risk.

A p-value less than 0.05 was considered “statistically significant,” and 95% confidence
intervals (95% CI), not including one, were also used to guide the delineation of statisti-
cal significance. All statistical analyses were performed using STATA/MP software [37]
version 17 (College Station, TX, USA: StataCorp LLC.), R software [47] (R version 4.2.1,
R Development Core Team, Vienna, Austria), and Python [48] (version 3.10.12, Scotts Valley,
CA: CreateSpace; 2009).

3. Results

After excluding the participants with other neoplasms, PaCa prevalent cases, and
genetically non-Caucasian samples, a total of 258,308 participants (123,314 men and
134,994 women) were included in this study. The mean age of participants when entering
the UKB cohort was 56.05 years (SD ± 8.10). Here, 960 participants were defined as PaCa
incident cases (0.37%), and 257,348 participants were categorized as cancer-free controls
(99.62%) (Table 1). There were missing data in four variables: blood type, WHR, tobacco
smoking, and physical activity, before MISE imputation was manipulated. The missing
data rates are shown in Table S5.

Table 1. Demographic characteristics of pancreatic cancer (PaCa) cases and cancer-free controls.

Characteristic Variables Pancreatic Cancer (PaCa)
Cases (n = 960)

Cancer-Free Controls
(n = 257,348) p-Value *

Gender <0.001
Woman 442 (46.04%) 134,552 (52.28%)
Man 518 (53.96%) 122,796 (47.72%)
Age # 61.60 56.03 <0.001
Polygenic score (PRS) #(con)
Standardized PRS 6.12 5.84 <0.001
Polygenic score (PRS) (cat) <0.001
Q1 135 (14.06%) 51,469 (20%)
Q2 141 (14.69%) 51,470 (20%)
Q3 168 (17.50%) 51,469 (20%)
Q4 234 (24.38%) 51,470 (20%)
Q5 282 (29.38%) 51,470 (20%)
Blood type <0.001
O blood type 355 (36.98%) 112,083 (43.55%)
Non-O blood type 605 (63.02%) 145,265 (56.45%)
Family history of bowel cancer 0.255
No 858 (89.38%) 232,791 (90.46%)
Yes 102 (10.63%) 24,557 (9.54%)
Tobacco smoking status <0.001
Never 441 (45.94%) 143,911 (55.92%)
Previous 373 (38.85%) 87,948 (34.17%)
Current 146 (15.21%) 25,489 (9.90%)
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Table 1. Cont.

Characteristic Variables Pancreatic Cancer (PaCa)
Cases (n = 960)

Cancer-Free Controls
(n = 257,348) p-Value *

Alcohol consumption amount 0.192
Never 226 (23.54%) 57,662 (22.41%)
Men: >0–≤28 g/d, Women: >0–≤14 g/d 347 (36.15%) 100,383 (39.01%)
Men: >28 g/d, Women: >14 g/d 387 (40.31%) 99,303 (38.59%)
Physical activity (MET-min/week) a 0.012
<600 206 (21.46%) 47,721 (18.54%)
600–3000 444 (46.25%) 130,485 (50.70%)
>3000 310 (32.29%) 79,142 (30.75%)
BMI <0.001
Normal or underweight (BMI < 25) 249 (25.94%) 85,040 (33.04%)
Overweight (25 ≤ BMI < 30) 421 (43.85%) 109,575 (42.58%)
Obese (BMI ≥ 30) 290 (30.21%) 62,733 (24.38%)
Waist–hip ratio (WHR) <0.001
Normal (Men: <0.90, Women: <0.85) 372 (38.75%) 131,445 (51.08%)
Abdominal obesity (Men: ≥0.90, Women: ≥0.85) 588 (61.25%) 125,903 (48.92%)
Medical history-related variables
Pancreatitis <0.001
No 888 (92.05%) 254,962 (99.07%)
Yes 72 (7.5%) 2386 (0.93%)
Diabetes mellitus <0.001
No 713 (74.27%) 235,818 (91.63%)
Yes 247 (25.73%) 21,530 (8.37%)
Hepatitis B 0.374
No 960 (100%) 257,136 (99.92%)
Yes 0 (0%) 212 (0.08%)
Cholecystitis/cholelithiasis/cholecystectomy <0.001
No 761 (79.27%) 237,575 (92.32%)
Yes 199 (20.73%) 19,773 (7.68%)
Helicobacter pylori infection 0.229
No 949 (98.85%) 255,291 (99.20%)
Yes 11 (1.15%) 2057 (0.80%)
Systemic lupus erythematosus (SLE) 0.607
No 959 (99.90%) 256,902 (99.83%)
Yes 1 (0.10%) 446 (0.17%)
Vitamin D deficiency
No 951 (99.06%) 255,368 (99.23%) 0.552
Yes 9 (0.94%) 1980 (0.77%)
Peritonitis 0.157
No 959 (99.90%) 256,349 (99.61%)
Yes 1 (0.10%) 999 (0.39%)

# Mean value; * Chi-square test statistic or Student’s t-test for mean values; a 600 MET-min/week = 150 min/week;
3000 MET-min/week = 750 min/week.

3.1. Demographic Characteristic Distributions

The demographic characteristic distribution between the PaCa case group and the
cancer-free control group is shown in Table 1. There was a slightly higher percentage of
men (53.96%) as compared to women (46.04%) in the PaCa case group. The proportion of
women (52.28%) was higher than men (47.72%) in controls. The mean age was higher in
cases (~62 years of age) than in controls (~56 years of age) (Student’s t-test p-values < 0.05).
In terms of PRS, the mean standardized PRS in cases was 6.12 (95% CI: 6.055–6.187), which
was significantly higher than that in controls (5.84, 95% CI: 5.833–5.841) (Student’s t-test
p-values < 0.05). Furthermore, the PRS quintile analysis revealed that more cases were
distributed in the higher PRS quintile than in the lower PRS quintile. For blood type, there
were more participants with a non-O blood type in cases than in controls (p-value < 0.05).
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There was no significant distribution difference between participants with a family history
of bowel cancer in cases and controls.

For the lifestyle-related modifiable variables, the proportion of current smokers, pre-
vious smokers, men with alcohol consumption of more than 28 g per day, and women
with alcohol consumption of more than 14 g per day were all higher in cases than in
controls (p-value < 0.05). The proportion of participants with lower physical activity habits
(<600 MET-minutes per week for all activity) was greater in cases compared to controls
(p-value < 0.05). There was more participants who were overweight, obese, and abdomi-
nally obese in cases than in controls (p-value < 0.05).

Regarding the medical history-related variables, there was significantly more partici-
pants with a medical history of pancreatitis, DM, or gallbladder-related disease (cholecys-
titis, cholelithiasis, or cholecystectomy) in the PaCa cases than in the cancer-free controls
(p-value < 0.05). Nonetheless, the distribution of hepatitis B, vitamin D deficiency, peri-
tonitis, H. pylori infection, and SLE between cases and controls showed no significant
differences. The distribution of demographic characteristics among the three different
ratios for the case and control groups (Table S6) was consistent with the results presented
in Table 1.

3.2. Random Forest Results

A machine learning-based random forest model was also applied in this study. The op-
timal parameters were finally set as n_estimators = 1000, min_samples_split = 5,
min_samples_leaf = 1, max_features = 4, and max_depth = 9, which were searched by
RandomizedSearchCV [42] and GridSearchCV [43] through the 10-fold cross-validation
method. To interpret the result of the random forest model, a visualized importance of
features is depicted in Figure 1. The x-axis in Figure 1 indicates the importance of features,
which corresponds to the mean decrease in impurity. The impurity-based feature impor-
tance method [44] was employed in this study for computing importance. In this method,
the relative values of feature importance should be taken into consideration in the interpre-
tation. As shown in Figure 1, the top ten influential variables were age, PRS, pancreatitis, DM,
tobacco smoking, alcohol consumption, cholecystitis/cholelithiasis/cholecystectomy, BMI,
physical activity, and gender. Among the top 10 risk variables, non-modifiable variables in-
cluded age, PRS, and gender. Lifestyle-related modifiable risk variables were tobacco smoking,
alcohol consumption, physical activity, and BMI. Medical history-related variables included
pancreatitis, DM, and gallbladder disease (cholecystitis/cholelithiasis/cholecystectomy).
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In the SHAP summary plot (Figure S3), higher age, higher PRS, the presence of DM,
pancreatitis, gallbladder-related disease, current smoking, non-O blood type carriers, and
consuming more alcohol contributed to an increased risk of PaCa. The summary SHAP
plot further explained the feature effects on the feature importance plot (Figure 1). We also
presented a case scenario in Supplementary Figure S4, with a waterfall plot (Supplementary
Figure S4) as an example.

ROC curve analysis was performed to measure the discrimination power in the
random forest model. The AUC was 0.88 and 0.77 in the training and testing datasets, re-
spectively (Figure S5). Internal validation was evaluated using the 10-fold cross-validation
method for calculating the mean values of prediction, ROC, and accuracy between the
training and testing datasets (Table S7). In Table S7, prediction, ROC curve, and accuracy
all showed similar values among the training and testing datasets.

In the sensitivity test, 70% of the dataset was set up as the training dataset and 30% as
the testing dataset. Consequently, we obtained the same result for the top 10 risk variables
(Figure S6). The discriminatory power and internal validation both performed well in this
sensitivity test (Figure S5 and Table S7).

3.3. Pancreatic Cancer (PaCa) Risk Factors in the Multivariate Logistic Regression Model by
Stepwise Selection

In the process of stepwise logistic regression analysis, a total of 18 variables were
initially included and subsequently analyzed using both forward and backward stepwise
selection methods. The same nine variables were seen in both approaches. The result of
the multivariable logistic regression model is illustrated in Table 2. The established risk
factors included male gender, age, non-O blood type, higher PRS, current smoker, higher
alcohol consumption, medical history of pancreatitis, DM, and cholecystitis, cholelithiasis,
or cholecystectomy.

Table 2. Pancreatic cancer (PaCa) risk factors in the multivariable logistic regression model.

Characteristic Variables OR 95% CI p-Value

Non-modifiable variables
Gender
Woman Ref.
Man 1.17 (1.02–1.33) 0.024
Age 1.10 (1.07–1.51) <0.001
Blood type
O blood type Ref.
Non-O blood type 1.29 (1.14–1.47) <0.001
Polygenic score (PRS)
Q1 Ref.
Q2 1.05 (0.83–1.33) 0.690
Q3 1.22 (0.97–1.53) 0.091
Q4 1.67 (1.35–2.07) <0.001
Q5 2.03 (1.65–2.50) <0.001
Lifestyle-related modifiable variables
Tobacco smoking status
Never Ref.
Previous 1.01 (0.88–1.16) 0.906
Current 1.82 (1.50–2.20) <0.001
Alcohol consumption amount
Never Ref.
Men > 0–28 g/d, Women > 0–14 g/d 1.01 (0.85–1.21) 0.873
Men > 28 g/d, Women > 14 g/d 1.27 (1.07–1.51) 0.005
Medical history-related variables
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Table 2. Cont.

Characteristic Variables OR 95% CI p-Value

Pancreatitis
No Ref.
Yes 3.99 (3.06–5.22) <0.001
Diabetes mellitus (DM)
No Ref.
Yes 2.57 (2.21–2.99) <0.001
Cholecystitis/cholelithiasis/cholecystectomy
No Ref.
Yes 2.04 (1.71–2.42) <0.001

The non-modifiable variables significantly associated with a higher PaCa risk included
male gender (OR = 1.17, 95% CI: 1.02–1.33) relative to female gender, increasing per year of
age (OR = 1.10, 95% CI: 1.07–1.51), non-O blood type carriers (OR = 1.29, 95% CI: 1.14–1.47)
compared to O blood type carriers, and the higher PRS quintile participants. The odds
of developing PaCa for participants in the fourth and fifth quintile PRS were 1.67 (95%
CI: 1.35–2.07) and 2.03 (95% CI: 1.65–2.50), compared with the first quintile PRS.

Regarding the lifestyle-related modifiable variables, current tobacco smokers had a higher
PaCa risk (OR = 1.82, 95% CI: 1.50–2.20) relative to never-smokers (Table 2). Compared to
non-alcohol-drinking participants, the odds of PaCa were higher (OR = 1.27, 95% CI: 1.07–1.51)
in the participants who consumed more alcohol (men > 28 g/d, women > 14 g/d).

In terms of the medical history-related variables, the odds of developing PaCa in the
participants with a history of pancreatitis was 3.99 (95% CI: 3.06–5.22), relative to partici-
pants without a history of pancreatitis. Participants with DM history had a higher OR = 2.57
(95% CI: 2.21–2.99) than those without DM history. The odds of having PaCa among par-
ticipants with a history of cholecystitis, cholelithiasis, or cholecystectomy were higher
(OR = 2.07, 95% CI: 1.713–2.422) than for people without these histories. In the sensitivity
test with various case and control ratios, the same nine variables were consistently selected
within the three case-control ratio groups (case:control = 1:10, 1:15, and 1:20) during the
stepwise logistic regression analysis. The results of the multivariable logistic regression
model (Table S8) also aligned with the findings presented in Table 2.

3.4. Model Performance

In the ROC curve analyses, the AUC of the PRS model was only 0.72 (95%
CI: 0.708–0.737) (Figure S7). For the complete logistic model with the PRS variable, it
was 0.78 (95% CI: 0.762–0.790), which is modestly higher than the model without the PRS
variable (AUC = 0.76, 95% CI: 0.751–0.780) (Figure S7). The internal validation of the model
performance via the 500-repetition bootstrap method is demonstrated in Table S9. In terms
of internal calibration, the Hosmer–Lemeshow goodness-of-fit test showed the predicted
probability, and the actual internal estimates also fit well (p-value = 0.1543).

3.5. Traditional and Dynamic Nomograms

A visual nomogram prediction model based on the multivariable logistic model was
constructed to predict the PaCa risk (Figure S8). The probability of PaCa can be obtained
by summing the weighted point value of each risk variable on the scale (Figure S8). The
nomogram demonstrated that a higher PaCa risk will be developed with a higher summa-
rized total score. In addition, the nomogram revealed that increasing age contributed the
most influence on the PaCa risk, followed by pancreatitis, DM, gallbladder-related disease
(cholecystitis/cholelithiasis/cholecystectomy), PRS, tobacco smoking, alcohol consump-
tion, blood type, and gender. The equation for calculating the total point value for each
variable is presented in Table S10.

Moreover, a dynamic nomogram was created for clinical or community applica-
tions, available at: https://ts35ky-temin-ke.shinyapps.io/DynNomapp/ (accessed on

https://ts35ky-temin-ke.shinyapps.io/DynNomapp/
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6 October 2023). This website-based dynamic nomogram displays the probability of devel-
oping PaCa immediately on the right side of the screen after each parameter setting on the
left side of the sketch map (Figure S9).

4. Discussion

To target the at-risk population of PaCa, our integrative PaCa risk prediction models
were established by combining the non-modifiable variables, genetic predisposition variables,
lifestyle-related modifiable variables, and medical history-related variables. Stepwise logistic
regression and machine learning-based random forest models were applied to establish the
prediction models. The most influential risk variables were revealed in visualizing the fea-
tures’ importance (Figure 1). Dynamic nomograms (https://ts35ky-temin-ke.shinyapps.io/
DynNomapp/ (accessed on 6 October 2023); Figure S9) were created for potential generaliza-
tion in the clinical/community-based prevention program.

In our multivariable logistic regression models, the significant risk variables were as
follows: non-modifiable—male gender and age, genetic predisposition—non-O blood type
and a higher PRS quintile (Q4 vs. Q1, OR = 1.67; Q5 vs. Q1, OR = 2.03), lifestyle-related
modifiable variables—current smokers and higher alcohol consumption, and medical
history-related variables—pancreatitis, DM, and cholecystitis, cholelithiasis, or cholecystec-
tomy. In previously published studies, a number of logistic regression models [20,21,49–69]
were built to explore pancreatic cancer risks. Of them, nine models [20,53,56,57,62–64,66,68]
were developed in the general population, and others were created in populations with
DM history or clinical gastrointestinal symptoms. The common risk factors among the
nine models [20,53,56,57,62–64,66,68] built in the general population were smoking, DM,
pancreatitis, alcohol consumption, family history of PaCa, genetic predisposition, age,
and sex. Nonetheless, no studies have evaluated a multi-domain model that integrates
PRS, lifestyle-related modifiable variables, medical history-related variables, and other
non-modifiable variables together in a single model such as ours. The study conducted
by Salvatore et al. [68], using data from UKB and the Michigan Genomics Initiative (MGI),
concentrated on the role of phenotype risk scores (PheRS) in the model with PRS, age, sex,
and only a few lifestyle risk factors. Another risk model built by Klein et al. [57] contained
genetic and non-genetic risk variables. However, their genetic variables only included three
SNPs, and the only medical history considered was DM. Hence, our model sheds light on
comprehensively measuring and integrating the multi-aspect risks of pancreatic cancer.

Regarding the model discrimination power, the ROC of our multivariable logistic
regression model showed a value of 0.78, which was higher than previously reported
studies [20,56,57,62,68]. In addition, most previous studies did not conduct model valida-
tion or calibration [20,53,56,57,62–64,66]. For their prediction model, Salvatore et al. [68]
performed the Hosmer–Lemeshow test. Their result showed a significant difference in the
calibration, whereas both the internal validation and calibration performed well in our
prediction model.

Previous studies [19,20] have revealed that the PRS was associated with pancreatic
ductal adenocarcinoma risk. In this study, higher PRS was presented as an essential risk
of PaCa. Participants with the fifth quintile PRS have 2-fold odds for developing PaCa
(p < 0.001) compared to those with the first quintile PRS. The AUC of the PRS alone model
illustrated an excellent discrimination performance of 0.72 (Figure S7). On top of that, PRS
also contributed to enhancing the PaCa model prediction power in this study. Compared
to the logistic regression risk model without PRS (AUC = 0.76), the AUC of the model
with PRS was slightly higher (AUC = 0.78) (Figure S7). One study, using PRS in the PaCa
prediction from the UKB cohort [70], reported an AUC of 0.6 for their PRS model. However,
some of the SNPs of their PRS were not from a Caucasian population GWAS, such as
those from a Japanese study [62]. Since the majority of the population in the UKB cohort
is Caucasian, the SNPs from other ethnicities would dilute the PRS prediction power. A
diverse population may lead to different disease-related genetic variants [71]. Besides,
the effect size value of each SNP was not from the published GWAS but instead from

https://ts35ky-temin-ke.shinyapps.io/DynNomapp/
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the UKB in the study by Sharma et al. [70]. Therefore, the effect size value still needs
other GWAS studies to validate it. Another PRS model, based on the Pancreatic Disease
Research Consortium, by Galeotti et al. [20] also presented the highest AUC of 0.6. In
another UKB cohort study conducted by Kachuri [72], their SNPs were also only extracted
from European-based GWAS, similar to our study. In accordance with our result, the AUC
of PRS for PaCa prediction in their research was displayed as around 0.7. Hence, PRS is also
useful for adding value to the PaCa prediction model, as well as the modifiable risk factors.

However, we also need to consider that the GWAS was produced by a large number
of cases and controls. This may imply the power to detect the magnitude of risk differences
between the groups of PRS. The role of PRS in the PaCa prediction has not been successfully
demonstrated. One reason is that there was only 4.1% of explainable phenotypic variations
from the current identified GWAS loci [73] for pancreatic cancer. As novel PaCa-associated
variants continue to be investigated, the predictive value of PRS is anticipated to signifi-
cantly improve. Furthermore, recent advancements, including methods such as combining
PRS with high-penetrance genes [74,75], exploring gene–environment interactions, devel-
oping multifactorial scores [20], or incorporating phenotype risk scores (PheRS) [68], have
the potential to enhance the predictive utility of PRS in clinical applications.

On the other hand, a machine learning-based random forest model was also used to
predict the most crucial risk variables. In our random forest model, eight of the top ten influ-
ential variables were consistent with the logistic regression model stepwise selection result.
The overlapped top five crucial features were echoed by the most influential features in the
nomogram. The common risk variables between the two models are age, PRS, pancreatitis,
DM, tobacco smoking, alcohol consumption, cholecystitis/cholelithiasis/cholecystectomy,
and gender, the top four of which were age, PRS, pancreatitis, and DM.

Regarding the discrimination power of the random forest model, the AUC perfor-
mance was good in the training and testing datasets (Figure S5), respectively. The 10-fold
cross-validation also showed high prediction and accuracy in the model performance
(Table S7). To our knowledge, there are no other random forest PaCa prediction models
in the previous studies. A study based on an artificial neural network (ANN) model was
developed by Muhammad et al. [76]. However, it is difficult to identify the most critical
features in that ANN model. Therefore, compared to our random forest model, it is less
accessible for an ANN model to be applied to raise population awareness and stratify the
high-risk population by showing the most significant risk factors.

Other machine learning models, including support vector machine (SVM) and gradient
boosting (GB), were also considered for application in clinical prediction models [77]. SVM
is one of the supervised learning methods commonly used for addressing classification
problems, particularly effective with unstructured and semi-structured data [78]. However,
considering the specific requirements of this study, which involve the quantification of risk
factors for interpretation, we opted for the logistic regression model. In comparison to
random forest (RF), GB trains trees sequentially by correcting errors from previous trees [79].
In addition, GB offers more parameters for fine-tuning [79]. Although GB can potentially
achieve optimal performance compared to RF, it tends to be more sensitive to overfitting [80].
Notably, one of the main advantages of RF is its resistance to overfitting [40]. Hence, for
this study, we employed the random forest model. Although it is recommended to explore
a novel ensemble learning model that combines different clinical machine learning models
and image-based deep learning models to forecast postoperative survival in pancreatic
cancer patients [81], in our study, we did not have image data available to explore this
novel approach.

Furthermore, the nomogram (Figure S8) displayed the PaCa probability risk by sum-
ming each risk variable point value. The dynamic nomogram (Figure S9) could make
the PaCa risk prediction model more accessible, feasible, and convenient in clinical or
community-based prevention programs. To our knowledge, no other PaCa risk prediction
models have been converted to nomograms previously.
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Comprehensively, there are different advantages and disadvantages of our two models.
The random forest model possesses the benefit of reducing overfitting and handling the
many variables, which can provide us with the most impactful risk factors. However,
when considering increasing the availability, feasibility, and accessibility of the PaCa
risk prediction, we suggest using the multiple logistic regression model to obtain the
OR information for the significant risk variables. This can then be applied to develop a
dynamic nomogram for generalized use in clinical, primary care, or community prevention
practice programs.

A systematic review [21] of pancreatic cancer models shows that a large number of
models have been previously built. Nevertheless, there is still a lack of a comprehensive
model integrating lifestyle-related modifiable risk variables, genetic-related variables, and
medical history-related variables for clinical and community application. Our integrated
PaCa prediction model can not only identify the most influential risk variables of PaCa and
show the odds ratio of each risk variable but can also be used practically to demonstrate
the risk of developing PaCa in the population. This integrated PaCa prediction model will
also be applied in our community-based iHelp project study.

5. Strengths and Limitations

The strengths of this study were, first, the UKB cohort has a large population sample
of half a million across the UK. The exposure data contained comprehensive, in-depth
genetic and health information. All the screening questionnaires, genetic data, and disease
status information are robust and of a high quality. Second, our PRS building was strictly
constrained to the SNPs that passed the SNPs QC and samples that passed the sample QC.
Moreover, only the SNPs from the Caucasian GWAS were considered in this study. Thus,
our PRS was built under a high-quality selection process. Third, to our knowledge, this is
the first PaCa prediction model integrating genetic-related, lifestyle-related, and medical
history-related variables with robust discrimination. Ultimately, the result was visualized
in a dynamic nomogram, which provides ease-of-use for applications in clinical practice.

There are still some limitations in our study. First is the healthy volunteer selection
bias in the UK Biobank, which has been considered previously [82,83]. Therefore, the
risk estimates of some of the variables may be underestimated compared to the general
population in the UK. This applies particularly to the lifestyle-related variables, such as
smoking and alcohol drinking. However, the genetic-related risk may be less influenced by
the healthy volunteer selection bias. In addition, the limitation of the currently explored
variables may restrict our PRS prediction power. To upgrade our PaCa predictive value,
we would consider combining the highly penetrating variables in the future. Another
limitation is that pancreatic cancer is relatively rare; therefore, the number of cases within
the follow-up timeframe was fewer than 5% of the whole cohort. This could have an
impact on the estimated probability [84]. Next, external validation of our predictive model
was constrained by the challenge of obtaining an appropriate large dataset that included
an adequate number of pancreatic cancer cases and all the variables presented in our
model. However, internal validity, assessed through bootstrapping, as an indicator of
wider validity [85], can also be considered as an approximation to external validity [86].
Finally, the PRS used in this study was constructed exclusively from SNPs identified in
the Caucasian GWAS. Moreover, the study samples were exclusively drawn from the
Caucasian population. It is crucial to exercise caution when extrapolating our findings
to non-Caucasian populations, as the genetic basis for PaCa may vary across different
ethnic groups.

6. Conclusions

Our integrative PaCa risk prediction model, developed using data from the UK
Biobank, allows for effectively stratifying individuals at future risk of PaCA in the UK
population. The inclusion of a polygenic score enhanced the discriminative power of our
PaCa risk prediction model. While pancreatic cancer remains a lethal disease without es-
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tablished prevention or screening programs, our model enables the identification of at-risk
individuals within the community, thereby facilitating targeted prevention efforts. Our
findings, encompassing non-modifiable genetic and non-genetic factors, lifestyle-related
variables, and medical history-related factors, can raise awareness of pancreatic cancer
risk factors among the public. Additionally, these risk variables can serve as a reference
for further etiological investigations. Moreover, incorporating the dynamic nomogram
into our visualization model will further support our ongoing community-based cancer
prevention initiatives, aimed at motivating community members to seek early prevention
for pancreatic cancer.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines11123206/s1, Table S1: Codes used to iden-
tify pancreatic cancer (PaCa) cases and cancer-free controls in the UK Biobank cohort. Table S2:
Classification of the exposure variables included in the analysis. Table S3: The 96 single-nucleotide
polymorphisms (SNPs) extracted from the UK Biobank cohort. Table S4: The 40 single-nucleotide
polymorphisms (SNPs) used in calculating the PaCa polygenic risk scores (PRS) in the UK Biobank
study. Table S5: Missing data rates of four variables. Table S6: Demographic characteristics of
pancreatic cancer (PaCa) were analyzed across different case and cancer-free control ratio groups.
Table S7: Confusion matrix assessed by the 10-fold cross-validation method in the training and testing
datasets. Table S8: Pancreatic cancer (PaCa) risk factors in the multivariable logistic regression model
across different case and cancer-free control ratio groups. Table S9: Bootstrapped 500 repetitions
for internal validation of the model performance. Table S10: The equation for constructing the
nomogram. Figure S1: The flowchart of the PaCa cases and cancer-free controls selection process in
the UKB cohort. Figure S2: The flowchart of single-nucleotide polymorphisms (SNPs) extraction,
SNPs quality control (QC), sample QC, and PRS construction. Figure S3: The SHAP summary plot.
Figure S4: The SHAP waterfall plot. Figure S5: The receiver operating characteristic (ROC) curve for
the random forest. (a) The receiver operating characteristic (ROC) curve for the random forest in the
85% training dataset. (b) The receiver operating characteristic (ROC) curve for the random forest in
the 15% testing dataset. (c) The receiver operating characteristic (ROC) curve for the random forest
in the 70% training dataset. (d) The receiver operating characteristic (ROC) curve for the random
forest in the 30% testing dataset. Figure S6: The importance of each variable in the sensitivity test.
Figure S7: The receiver operating characteristic curve (ROC) for whole logistic regression and without
the PRS model. Figure S8: A nomogram based on the multivariable logistic model. Figure S9: A
dynamic nomogram based on the multivariable logistic model.

Author Contributions: Conceptualization, K.R.M., T.-M.K. and A.L.; methodology, A.L. and T.-M.K.;
software, A.L. and T.-M.K.; validation, K.R.M. and A.L.; formal analysis, A.L. and T.-M.K. (writing
all the codes for all analyses); investigation, A.L. and T.-M.K.; resources, K.R.M.; data curation, A.L.;
writing—original draft preparation, T.-M.K.; writing—review and editing, A.L.; visualization, T.-M.K.
and A.L.; supervision, K.R.M.; project administration, K.R.M.; funding acquisition, K.R.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s funded Project iHelp, grant
number 101017441.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can only be accessed from the UK Biobank via the approved appli-
cation. The data is owned by the UK Biobank (www.ukbiobank.ac.uk (accessed on 5 December 2022))
and as researchers we are not entitled to republish or otherwise make available any UK Biobank data
at the individual participant level. The UK Biobank, however, is open to all bona fide researchers
anywhere in the world. Detailed access procedures can be found by following this link: https://www.
ukbiobank.ac.uk/enable-your-research/apply-for-access (accessed on 26 October 2023). The data
used in this study (application number 94611) can be requested by applying through the UK Biobank
Access Management System (www.ukbiobank.ac.uk/register-apply (accessed on 26 October 2023)).

Acknowledgments: The authors express gratitude to the UK Biobank participants and all staff. The
work was based on application number 94611.

https://www.mdpi.com/article/10.3390/biomedicines11123206/s1
www.ukbiobank.ac.uk
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
www.ukbiobank.ac.uk/register-apply


Biomedicines 2023, 11, 3206 14 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. World Cancer Research Foundation. Available online: https://www.wcrf.org/cancer-trends/pancreatic-cancer-statistics/
(accessed on 6 July 2023).

3. Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-
cancer-type/pancreatic-cancer/incidence#heading-Zero (accessed on 6 July 2023).

4. Cancer Research UK: Pancreatic Cancer Mortality Statistics. Available online: https://www.cancerresearchuk.org/health-
professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/mortality#heading-Zero (accessed on 6 July 2023).

5. Khadka, R.; Tian, W.; Hao, X.; Koirala, R. Risk factor, early diagnosis and overall survival on outcome of association between
pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int. J. Surg. 2018, 52, 342–346. [CrossRef] [PubMed]

6. Esplin, E.D.; Oei, L.; Snyder, M.P. Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease.
Pharmacogenomics 2014, 15, 1771–1790. [CrossRef] [PubMed]

7. Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.;
Eichler, E.E.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]

8. Roberts, R.; Stewart, A.F.R.; Wells, G.A.; Williams, K.A.; Kavaslar, N.; McPherson, R. Identifying genes for coronary artery disease:
An idea whose time has come. Can. J. Cardiol. 2007, 23 (Suppl. A), 7A–15A. [CrossRef]

9. Ali, O. Genetics of type 2 diabetes. World J. Diabetes 2013, 4, 114–123. [CrossRef]
10. Yau, C.; Mouradov, D.; Jorissen, R.N.; Colella, S.; Mirza, G.; Steers, G.; Harris, A.; Ragoussis, J.; Sieber, O.; Holmes, C.C. A

statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism
genotyping data. Genome Biol. 2010, 11, R92. [CrossRef]

11. Zhao, X.; Li, C.; Paez, J.G.; Chin, K.; Jänne, P.A.; Chen, T.-H.; Girard, L.; Minna, J.; Christiani, D.; Leo, C.; et al. An Integrated View
of Copy Number and Allelic Alterations in the Cancer Genome Using Single Nucleotide Polymorphism Arrays. Cancer Res. 2004,
64, 3060–3071. [CrossRef]

12. Laframboise, T.; Weir, B.A.; Zhao, X.; Beroukhim, R.; Li, C.; Harrington, D.; Sellers, W.R.; Meyerson, M. Allele-Specific Amplifica-
tion in Cancer Revealed by SNP Array Analysis. PLoS Comput. Biol. 2005, 1, e65. [CrossRef]

13. López De Maturana, E.; Rodríguez, J.A.; Alonso, L.; Lao, O.; Molina-Montes, E.; Martín-Antoniano, I.A.; Gómez-Rubio, P.;
Lawlor, R.; Carrato, A.; Hidalgo, M.; et al. A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer.
Genome Med. 2021, 13, 15. [CrossRef]

14. Klein, A.P.; Wolpin, B.M.; Risch, H.A.; Stolzenberg-Solomon, R.Z.; Mocci, E.; Zhang, M.; Canzian, F.; Childs, E.J.; Hoskins, J.W.;
Jermusyk, A.; et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 2018,
9, 556. [CrossRef] [PubMed]

15. Petersen, G.M.; Amundadottir, L.; Fuchs, C.S.; Kraft, P.; Stolzenberg-Solomon, R.Z.; Jacobs, K.B.; Arslan, A.A.; Bueno-De-
Mesquita, H.B.; Gallinger, S.; Gross, M.; et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on
chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 2010, 42, 224–228. [CrossRef] [PubMed]

16. Childs, E.J.; Mocci, E.; Campa, D.; Bracci, P.M.; Gallinger, S.; Goggins, M.; Li, D.; Neale, R.E.; Olson, S.H.; Scelo, G.; et al. Common
variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat. Genet. 2015, 47, 911–916.
[CrossRef] [PubMed]

17. Zhang, M.; Wang, Z.; Obazee, O.; Jia, J.; Childs, E.J.; Hoskins, J.; Figlioli, G.; Mocci, E.; Collins, I.; Chung, C.C.; et al. Three new
pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget 2016, 7, 66328–66343.
[CrossRef] [PubMed]

18. GWAS Catalog. Available online: https://www.ebi.ac.uk/gwas/ (accessed on 6 July 2023).
19. Bogumil, D.; Conti, D.V.; Sheng, X.; Xia, L.; Shu, X.-O.; Pandol, S.J.; Blot, W.J.; Zheng, W.; Le Marchand, L.; Haiman, C.A.; et al.

Replication and Genetic Risk Score Analysis for Pancreatic Cancer in a Diverse Multiethnic Population. Cancer Epidemiol. Biomark.
Prev. 2020, 29, 2686–2692. [CrossRef] [PubMed]

20. Galeotti, A.A.; Gentiluomo, M.; Rizzato, C.; Obazee, O.; Neoptolemos, J.P.; Pasquali, C.; Nentwich, M.; Cavestro, G.M.; Pezzilli, R.;
Greenhalf, W.; et al. Polygenic and multifactorial scores for pancreatic ductal adenocarcinoma risk prediction. J. Med. Genet. 2021, 58,
369–377. [CrossRef] [PubMed]

21. Santos, R.; Coleman, H.G.; Cairnduff, V.; Kunzmann, A.T. Clinical Prediction Models for Pancreatic Cancer in General and At-Risk
Populations: A Systematic Review. Am. J. Gastroenterol. 2023, 118, 26–40. [CrossRef]

22. Accessing UKB Data. Available online: https://biobank.ctsu.ox.ac.uk/~bbdatan/Data_Access_Guide.pdf (accessed
on 6 November 2023).

23. UKB Research Analysis Platform. Available online: https://dnanexus.gitbook.io/uk-biobank-rap/working-on-the-research-
analysis-platform/ukb-rap (accessed on 6 July 2023).

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://www.wcrf.org/cancer-trends/pancreatic-cancer-statistics/
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Zero
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/incidence#heading-Zero
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/mortality#heading-Zero
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer/mortality#heading-Zero
https://doi.org/10.1016/j.ijsu.2018.02.058
https://www.ncbi.nlm.nih.gov/pubmed/29535016
https://doi.org/10.2217/pgs.14.117
https://www.ncbi.nlm.nih.gov/pubmed/25493570
https://doi.org/10.1038/nature15393
https://doi.org/10.1016/S0828-282X(07)71000-0
https://doi.org/10.4239/wjd.v4.i4.114
https://doi.org/10.1186/gb-2010-11-9-r92
https://doi.org/10.1158/0008-5472.CAN-03-3308
https://doi.org/10.1371/journal.pcbi.0010065
https://doi.org/10.1186/s13073-020-00816-4
https://doi.org/10.1038/s41467-018-02942-5
https://www.ncbi.nlm.nih.gov/pubmed/29422604
https://doi.org/10.1038/ng.522
https://www.ncbi.nlm.nih.gov/pubmed/20101243
https://doi.org/10.1038/ng.3341
https://www.ncbi.nlm.nih.gov/pubmed/26098869
https://doi.org/10.18632/oncotarget.11041
https://www.ncbi.nlm.nih.gov/pubmed/27579533
https://www.ebi.ac.uk/gwas/
https://doi.org/10.1158/1055-9965.EPI-20-0963
https://www.ncbi.nlm.nih.gov/pubmed/32958499
https://doi.org/10.1136/jmedgenet-2020-106961
https://www.ncbi.nlm.nih.gov/pubmed/32591343
https://doi.org/10.14309/ajg.0000000000002022
https://biobank.ctsu.ox.ac.uk/~bbdatan/Data_Access_Guide.pdf
https://dnanexus.gitbook.io/uk-biobank-rap/working-on-the-research-analysis-platform/ukb-rap
https://dnanexus.gitbook.io/uk-biobank-rap/working-on-the-research-analysis-platform/ukb-rap


Biomedicines 2023, 11, 3206 15 of 17

24. UK Biobank: Age at Recruitment. Available online: https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21022 (accessed on
6 July 2023).

25. Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [CrossRef]
26. Jacobs, E.J.; Rodriguez, C.; Newton, C.C.; Bain, E.B.; Patel, A.V.; Feigelson, H.S.; Thun, M.J.; Calle, E.E. Family history of various

cancers and pancreatic cancer mortality in a large cohort. Cancer Causes Control 2009, 20, 1261–1269. [CrossRef]
27. Underhill, M.L.; Germansky, K.A.; Yurgelun, M.B. Advances in Hereditary Colorectal and Pancreatic Cancers. Clin. Ther. 2016,

38, 1600–1621. [CrossRef]
28. Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the

2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations:
A Standardized Scoring System. Nutrients 2019, 11, 1572. [CrossRef]

29. Scoring Standards for the 2018 WCRF/AICR Score. Available online: https://epi.grants.cancer.gov/wcrf-aicr-score/details.html
(accessed on 6 July 2023).

30. NHS Alcohol Units. Available online: https://www.nhs.uk/live-well/alcohol-advice/calculating-alcohol-units/ (accessed on
6 July 2023).

31. Body Mass Index from NHS. Available online: https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-
mass-index-bmi/ (accessed on 6 July 2023).

32. Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. Available online: https://www.who.int/
publications/i/item/9789241501491 (accessed on 6 November 2023).

33. Arthur, R.S.; Wang, T.; Xue, X.; Kamensky, V.; Rohan, T.E. Genetic Factors, Adherence to Healthy Lifestyle Behavior, and Risk of
Invasive Breast Cancer Among Women in the UK Biobank. J. Natl. Cancer Inst. 2020, 112, 893–901. [CrossRef] [PubMed]

34. qctool v2. Available online: https://www.well.ox.ac.uk/~gav/qctool_v2/index.html (accessed on 6 July 2023).
35. PLINK 1.90 Beta. Available online: https://www.cog-genomics.org/plink/1.9/ (accessed on 6 July 2023).
36. UK Biobank Genomic Search. Available online: https://biobank.ctsu.ox.ac.uk/crystal/gsearch.cgi (accessed on 6 July 2023).
37. STATA. Available online: https://www.stata.com/company/ (accessed on 6 July 2023).
38. Choi, S.W.; Mak, T.S.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772.

[CrossRef] [PubMed]
39. Royston, P.; White, I.R. Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J. Stat. Softw. 2011, 45, 1–20.

[CrossRef]
40. Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A.F.T. Data mining in the Life Sciences

with Random Forest: A walk in the park or lost in the jungle? Brief. Bioinform. 2012, 14, 315–326. [CrossRef] [PubMed]
41. Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022, 15, 531–538. [CrossRef]
42. RandomizedSearchCV. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

RandomizedSearchCV.html (accessed on 6 July 2023).
43. GridSearchCV. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

(accessed on 6 July 2023).
44. Feature Importances with a Forest of Trees. Available online: https://scikit-learn.org/stable/auto_examples/ensemble/plot_

forest_importances.html (accessed on 14 November 2023).
45. shap.summary_plot. Available online: https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html

(accessed on 16 November 2023).
46. shap.waterfall_plot. Available online: https://shap-lrjball.readthedocs.io/en/latest/generated/shap.waterfall_plot.html

(accessed on 16 November 2023).
47. R Software. Available online: https://www.r-project.org/ (accessed on 6 July 2023).
48. Python. Available online: https://www.python.org/ (accessed on 6 July 2023).
49. Badrick, E.; Lennon, H.; Sperrin, M.; Van Staa, T.; O’Reilly, D.; Buchan, I.; Renehan, A. Can we identify people with higher

pancreatic cancer risk who present with type 2 diabetes? Diabetologia 2017, 60, S562.
50. Baecker, A.; Kim, S.; Risch, H.A.; Nuckols, T.K.; Wu, B.U.; Hendifar, A.E.; Pandol, S.J.; Pisegna, J.R.; Jeon, C.Y. Do changes in

health reveal the possibility of undiagnosed pancreatic cancer? Development of a risk-prediction model based on healthcare
claims data. PLoS ONE 2019, 14, e0218580. [CrossRef]

51. Boursi, B.; Finkelman, B.; Giantonio, B.J.; Haynes, K.; Rustgi, A.K.; Rhim, A.D.; Mamtani, R.; Yang, Y.-X. A clinical prediction
model to assess risk for pancreatic cancer among patients with new-onset diabetes. Gastroenterology 2017, 152, 840–850.e843.
[CrossRef]

52. De Icaza, E.; López-Cervantes, M.; Arredondo, A.; Robles-Díaz, G. Likelihood ratios of clinical, laboratory and image data of
pancreatic cancer: Bayesian approach. J. Eval. Clin. Pract. 2009, 15, 62–68. [CrossRef]

53. Colditz, G.A.; Atwood, K.; Emmons, K.; Monson, R.; Willett, W.; Trichopoulos, D.; Hunter, D. Harvard report on cancer prevention
volume 4: Harvard Cancer Risk Index. Cancer Causes Control 2000, 11, 477–488. [CrossRef]

54. Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation
and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e1–e10. [CrossRef] [PubMed]

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=21022
https://doi.org/10.1016/S0140-6736(20)30974-0
https://doi.org/10.1007/s10552-009-9339-6
https://doi.org/10.1016/j.clinthera.2016.03.017
https://doi.org/10.3390/nu11071572
https://epi.grants.cancer.gov/wcrf-aicr-score/details.html
https://www.nhs.uk/live-well/alcohol-advice/calculating-alcohol-units/
https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-mass-index-bmi/
https://www.nhs.uk/common-health-questions/lifestyle/what-is-the-body-mass-index-bmi/
https://www.who.int/publications/i/item/9789241501491
https://www.who.int/publications/i/item/9789241501491
https://doi.org/10.1093/jnci/djz241
https://www.ncbi.nlm.nih.gov/pubmed/31899501
https://www.well.ox.ac.uk/~gav/qctool_v2/index.html
https://www.cog-genomics.org/plink/1.9/
https://biobank.ctsu.ox.ac.uk/crystal/gsearch.cgi
https://www.stata.com/company/
https://doi.org/10.1038/s41596-020-0353-1
https://www.ncbi.nlm.nih.gov/pubmed/32709988
https://doi.org/10.18637/jss.v045.i04
https://doi.org/10.1093/bib/bbs034
https://www.ncbi.nlm.nih.gov/pubmed/22786785
https://doi.org/10.1002/sam.11583
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.summary_plot.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.waterfall_plot.html
https://www.r-project.org/
https://www.python.org/
https://doi.org/10.1371/journal.pone.0218580
https://doi.org/10.1053/j.gastro.2016.11.046
https://doi.org/10.1111/j.1365-2753.2008.00955.x
https://doi.org/10.1023/A:1008984432272
https://doi.org/10.3399/bjgp13X660724
https://www.ncbi.nlm.nih.gov/pubmed/23336443


Biomedicines 2023, 11, 3206 16 of 17

55. Hsieh, M.H.; Sun, L.-M.; Lin, C.-L.; Hsieh, M.-J.; Hsu, C.-Y.; Kao, C.-H. Development of a prediction model for pancreatic
cancer in patients with type 2 diabetes using logistic regression and artificial neural network models. Cancer Manag. Res. 2018,
10, 6317–6324. [CrossRef] [PubMed]

56. Kim, J.; Yuan, C.; Babic, A.; Bao, Y.; Clish, C.B.; Pollak, M.N.; Amundadottir, L.T.; Klein, A.P.; Stolzenberg-Solomon, R.Z.;
Pandharipande, P.V. Genetic and circulating biomarker data improve risk prediction for pancreatic cancer in the general
population. Cancer Epidemiol. Biomark. Prev. 2020, 29, 999–1008. [CrossRef] [PubMed]

57. Klein, A.P.; Lindström, S.; Mendelsohn, J.B.; Steplowski, E.; Arslan, A.A.; Bueno-de-Mesquita, H.B.; Fuchs, C.S.; Gallinger, S.;
Gross, M.; Helzlsouer, K. An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general
population. PLoS ONE 2013, 8, e72311. [CrossRef] [PubMed]

58. Lee, J.H.; Kim, S.-A.; Park, H.Y.; Lee, K.H.; Lee, K.T.; Lee, J.K.; Bae, J.C.; Kim, K.W. New-onset diabetes patients need pancreatic
cancer screening? J. Clin. Gastroenterol. 2012, 46, e58–e61. [CrossRef] [PubMed]

59. Lu, X.-H.; Wang, L.; Li, H.; Qian, J.-M.; Deng, R.-X.; Zhou, L. Establishment of risk model for pancreatic cancer in Chinese Han
population. World J. Gastroenterol. WJG 2006, 12, 2229. [CrossRef] [PubMed]

60. Malhotra, A.; Rachet, B.; Bonaventure, A.; Pereira, S.P.; Woods, L.M. Can we screen for pancreatic cancer? Identifying a sub-
population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data.
PLoS ONE 2021, 16, e0251876. [CrossRef]

61. Munigala, S.; Singh, A.; Gelrud, A.; Agarwal, B. Predictors for pancreatic cancer diagnosis following new-onset diabetes mellitus.
Clin. Transl. Gastroenterol. 2015, 6, e118. [CrossRef]

62. Nakatochi, M.; Lin, Y.; Ito, H.; Hara, K.; Kinoshita, F.; Kobayashi, Y.; Ishii, H.; Ozaka, M.; Sasaki, T.; Sasahira, N. Prediction model
for pancreatic cancer risk in the general Japanese population. PLoS ONE 2018, 13, e0203386. [CrossRef]

63. Pang, T.; Ding, G.; Wu, Z.; Jiang, G.; Yang, Y.; Zhang, X.; Cao, L. A novel scoring system to analyze combined effect of lifestyle
factors on pancreatic cancer risk: A retrospective case-control study. Sci. Rep. 2017, 7, 13657. [CrossRef]

64. Risch, H.A.; Yu, H.; Lu, L.; Kidd, M.S. Detectable symptomatology preceding the diagnosis of pancreatic cancer and absolute risk
of pancreatic cancer diagnosis. Am. J. Epidemiol. 2015, 182, 26–34. [CrossRef]

65. Stapley, S.; Peters, T.; Neal, R.D.; Rose, P.; Walter, F.; Hamilton, W. The risk of pancreatic cancer in symptomatic patients in
primary care: A large case–control study using electronic records. Br. J. Cancer 2012, 106, 1940–1944. [CrossRef]

66. Yu, A.; Woo, S.M.; Joo, J.; Yang, H.-R.; Lee, W.J.; Park, S.-J.; Nam, B.-H. Development and validation of a prediction model to
estimate individual risk of pancreatic cancer. PLoS ONE 2016, 11, e0146473. [CrossRef] [PubMed]

67. Appelbaum, L.; Cambronero, J.P.; Stevens, J.P.; Horng, S.; Pollick, K.; Silva, G.; Haneuse, S.; Piatkowski, G.; Benhaga, N.; Duey, S.
Development and validation of a pancreatic cancer risk model for the general population using electronic health records: An
observational study. Eur. J. Cancer 2021, 143, 19–30. [CrossRef] [PubMed]

68. Salvatore, M.; Beesley, L.J.; Fritsche, L.G.; Hanauer, D.; Shi, X.; Mondul, A.M.; Pearce, C.L.; Mukherjee, B. Phenotype risk scores
(PheRS) for pancreatic cancer using time-stamped electronic health record data: Discovery and validation in two large biobanks.
J. Biomed. Inform. 2021, 113, 103652. [CrossRef] [PubMed]

69. Sharma, A.; Kandlakunta, H.; Nagpal, S.J.S.; Feng, Z.; Hoos, W.; Petersen, G.M.; Chari, S.T. Model to determine risk of pancreatic
cancer in patients with new-onset diabetes. Gastroenterology 2018, 155, 730–739.e733. [CrossRef] [PubMed]

70. Sharma, S.; Tapper, W.J.; Collins, A.; Hamady, Z.Z.R. Predicting Pancreatic Cancer in the UK Biobank Cohort Using Polygenic
Risk Scores and Diabetes Mellitus. Gastroenterology 2022, 162, 1665–1674.e1662. [CrossRef] [PubMed]

71. Haiman, C.A.; Stram, D.O. Exploring genetic susceptibility to cancer in diverse populations. Curr. Opin. Genet. Dev. 2010,
20, 330–335. [CrossRef]

72. Kachuri, L.; Graff, R.E.; Smith-Byrne, K.; Meyers, T.J.; Rashkin, S.R.; Ziv, E.; Witte, J.S.; Johansson, M. Pan-cancer analysis
demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat. Commun. 2020,
11, 6084. [CrossRef] [PubMed]

73. Chen, F.; Childs, E.J.; Mocci, E.; Bracci, P.; Gallinger, S.; Li, D.; Neale, R.E.; Olson, S.H.; Scelo, G.; Bamlet, W.R.; et al. Analysis of
Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc.
Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2019, 28, 1238–1245. [CrossRef] [PubMed]

74. Barnes, D.R.; Rookus, M.A.; McGuffog, L.; Leslie, G.; Mooij, T.M.; Dennis, J.; Mavaddat, N.; Adlard, J.; Ahmed, M.; Aittomäki, K.;
et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.
Genet. Med. 2020, 22, 1653–1666. [CrossRef] [PubMed]

75. Barnes, D.R.; Silvestri, V.; Leslie, G.; McGuffog, L.; Dennis, J.; Yang, X.; Adlard, J.; Agnarsson, B.A.; Ahmed, M.; Aittomäki, K.; et al.
Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.
J. Natl. Cancer Inst. 2022, 114, 109–122. [CrossRef]

76. Muhammad, W.; Hart, G.R.; Nartowt, B.; Farrell, J.J.; Johung, K.; Liang, Y.; Deng, J. Pancreatic Cancer Prediction Through an
Artificial Neural Network. Front. Artif. Intell. 2019, 2, 2. [CrossRef] [PubMed]

77. Song, X.; Liu, X.; Liu, F.; Wang, C. Comparison of machine learning and logistic regression models in predicting acute kidney
injury: A systematic review and meta-analysis. Int. J. Med. Inf. 2021, 151, 104484. [CrossRef]

78. Valkenborg, D.; Rousseau, A.J.; Geubbelmans, M.; Burzykowski, T. Support vector machines. Am. J. Orthod. Dentofac. Orthop. 2023,
164, 754–757. [CrossRef]

79. Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics 2013, 7, 21. [CrossRef]

https://doi.org/10.2147/CMAR.S180791
https://www.ncbi.nlm.nih.gov/pubmed/30568493
https://doi.org/10.1158/1055-9965.EPI-19-1389
https://www.ncbi.nlm.nih.gov/pubmed/32321713
https://doi.org/10.1371/journal.pone.0072311
https://www.ncbi.nlm.nih.gov/pubmed/24058443
https://doi.org/10.1097/MCG.0b013e318238348c
https://www.ncbi.nlm.nih.gov/pubmed/22138846
https://doi.org/10.3748/wjg.v12.i14.2229
https://www.ncbi.nlm.nih.gov/pubmed/16610026
https://doi.org/10.1371/journal.pone.0251876
https://doi.org/10.1038/ctg.2015.44
https://doi.org/10.1371/journal.pone.0203386
https://doi.org/10.1038/s41598-017-13182-w
https://doi.org/10.1093/aje/kwv026
https://doi.org/10.1038/bjc.2012.190
https://doi.org/10.1371/journal.pone.0146473
https://www.ncbi.nlm.nih.gov/pubmed/26752291
https://doi.org/10.1016/j.ejca.2020.10.019
https://www.ncbi.nlm.nih.gov/pubmed/33278770
https://doi.org/10.1016/j.jbi.2020.103652
https://www.ncbi.nlm.nih.gov/pubmed/33279681
https://doi.org/10.1053/j.gastro.2018.05.023
https://www.ncbi.nlm.nih.gov/pubmed/29775599
https://doi.org/10.1053/j.gastro.2022.01.016
https://www.ncbi.nlm.nih.gov/pubmed/35065983
https://doi.org/10.1016/j.gde.2010.02.007
https://doi.org/10.1038/s41467-020-19600-4
https://www.ncbi.nlm.nih.gov/pubmed/33247094
https://doi.org/10.1158/1055-9965.EPI-18-1235
https://www.ncbi.nlm.nih.gov/pubmed/31015203
https://doi.org/10.1038/s41436-020-0862-x
https://www.ncbi.nlm.nih.gov/pubmed/32665703
https://doi.org/10.1093/jnci/djab147
https://doi.org/10.3389/frai.2019.00002
https://www.ncbi.nlm.nih.gov/pubmed/33733091
https://doi.org/10.1016/j.ijmedinf.2021.104484
https://doi.org/10.1016/j.ajodo.2023.08.003
https://doi.org/10.3389/fnbot.2013.00021


Biomedicines 2023, 11, 3206 17 of 17

80. AlThuwaynee, O.F.; Kim, S.W.; Najemaden, M.A.; Aydda, A.; Balogun, A.L.; Fayyadh, M.M.; Park, H.J. Demystifying uncertainty
in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms.
Environ. Sci. Pollut. Res. Int. 2021, 28, 43544–43566. [CrossRef]

81. Lee, W.; Park, H.J.; Lee, H.J.; Jun, E.; Song, K.B.; Hwang, D.W.; Lee, J.H.; Lim, K.; Kim, N.; Lee, S.S.; et al. Preoperative data-based
deep learning model for predicting postoperative survival in pancreatic cancer patients. Int. J. Surg 2022, 105, 106851. [CrossRef]

82. Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic
and Health-Related Characteristics of UK Biobank Participants with Those of the General Population. Am. J. Epidemiol. 2017, 186,
1026–1034. [CrossRef]

83. Schoeler, T.; Speed, D.; Porcu, E.; Pirastu, N.; Pingault, J.B.; Kutalik, Z. Participation bias in the UK Biobank distorts genetic
associations and downstream analyses. Nat. Hum. Behav. 2023, 7, 1216–1227. [CrossRef] [PubMed]

84. Tomz, M.; King, G.; Zeng, L. ReLogit: Rare Events Logistic Regression. J. Stat. Softw. 2003, 8, 1–27. [CrossRef]
85. Assessing the Generalizability of Prognostic Information. Ann. Intern. Med. 1999, 130, 515–524. [CrossRef] [PubMed]
86. Steyerberg, E.W.; Harrell, F.E.; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of

predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11356-021-13255-4
https://doi.org/10.1016/j.ijsu.2022.106851
https://doi.org/10.1093/aje/kwx246
https://doi.org/10.1038/s41562-023-01579-9
https://www.ncbi.nlm.nih.gov/pubmed/37106081
https://doi.org/10.18637/jss.v008.i02
https://doi.org/10.7326/0003-4819-130-6-199903160-00016
https://www.ncbi.nlm.nih.gov/pubmed/10075620
https://doi.org/10.1016/S0895-4356(01)00341-9

	Introduction 
	Materials and Methods 
	Study Population and Study Design 
	Derivation of the Polygenic Risk Score (PRS) 
	Statistical Analysis 

	Results 
	Demographic Characteristic Distributions 
	Random Forest Results 
	Pancreatic Cancer (PaCa) Risk Factors in the Multivariate Logistic Regression Model by Stepwise Selection 
	Model Performance 
	Traditional and Dynamic Nomograms 

	Discussion 
	Strengths and Limitations 
	Conclusions 
	References

