Secreted Protein Acidic and Rich in Cysteine (SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design and Outcome Evaluation
2.3. Genetic Studies
2.4. Immunohistochemical Studies
2.5. Statistical Analyses
3. Results
3.1. Clinical Results
3.2. SPARC Polymorphisms and Clinical–Pathological Characteristics
3.3. SPARC Polymorphisms and Pathological Response
3.4. SPARC Polymorphisms and Survival
3.5. SPARC Polymorphisms and SPARC Expression
3.6. SPARC Expression and Clinical Outcomes
3.7. In Silico Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bear, H.D.; Anderson, S.; Smith, R.E.; Geyer, C.E.; Mamounas, E.P.; Fisher, B.; Brown, A.M.; Robidoux, A.; Margolese, R.; Kahlenberg, M.S.; et al. Sequential Preoperative or Postoperative Docetaxel Added to Preoperative Doxorubicin plus Cyclophosphamide for Operable Breast Cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 2006, 24, 2019–2027. [Google Scholar] [CrossRef]
- Buzdar, A.U.; Singletary, S.E.; Theriault, R.L.; Booser, D.J.; Valero, V.; Ibrahim, N.; Smith, T.L.; Asmar, L.; Frye, D.; Manuel, N.; et al. Prospective Evaluation of Paclitaxel versus Combination Chemotherapy with Fluorouracil, Doxorubicin, and Cyclophosphamide as Neoadjuvant Therapy in Patients with Operable Breast Cancer. J. Clin. Oncol. 1999, 17, 3412–3417. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; André, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to Neoadjuvant Therapy and Long-Term Survival in Patients with Triple-Negative Breast Cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Untch, M.; Fasching, P.A.; Konecny, G.E.; Hasmüller, S.; Lebeau, A.; Kreienberg, R.; Camara, O.; Müller, V.; Du Bois, A.; Kuḧn, T.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy plus Trastuzumab Predicts Favorable Survival in Human Epidermal Growth Factor Receptor 2-Overexpressing Breast Cancer: Results from the TECHNO Trial of the AGO and GBG Study Groups. J. Clin. Oncol. 2011, 29, 3351–3357. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological Complete Response and Long-Term Clinical Benefit in Breast Cancer: The CTNeoBC Pooled Analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Sejben, A.; Kószó, R.; Kahán, Z.; Cserni, G.; Zombori, T. Examination of Tumor Regression Grading Systems in Breast Cancer Patients Who Received Neoadjuvant Therapy. Pathol. Oncol. Res. 2020, 26, 2747–2754. [Google Scholar] [CrossRef] [PubMed]
- Symmans, W.F.; Wei, C.; Gould, R.; Yu, X.; Zhang, Y.; Liu, M.; Walls, A.; Bousamra, A.; Ramineni, M.; Sinn, B.; et al. Long-Term Prognostic Risk after Neoadjuvant Chemotherapy Associated with Residual Cancer Burden and Breast Cancer Subtype. J. Clin. Oncol. 2017, 35, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Podhajcer, O.L.; Benedetti, L.; Girotti, M.R.; Prada, F.; Salvatierra, E.; Llera, A.S. The Role of the Matricellular Protein SPARC in the Dynamic Interaction between the Tumor and the Host. Cancer Metastasis Rev. 2008, 27, 523–537. [Google Scholar] [CrossRef]
- Rosenblatt, S.; Bassuk, J.A.; Alpers, C.E.; Sage, E.H.; Timpl, R.; Preissner, K.T. Differential Modulation of Cell Adhesion by Interaction between Adhesive and Counter-Adhesive Proteins: Characterization of the Binding of Vitronectin to Osteonectin (BM40, SPARC). Biochem. J. 1997, 324, 311–319. [Google Scholar] [CrossRef]
- Maurer, P.; Hohenadl, C.; Hohenester, E.; Göhring, W.; Timpl, R.; Engel, J. The C-Terminal Portion of BM-40 (SPARC/Osteonectin) Is an Autonomously Folding and Crystallisable Domain That Binds Calcium and Collagen IV. J. Mol. Biol. 1995, 253, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Raines, E.W.; Lane, T.F.; Iruela-Arispe, M.L.; Ross, R.; Sage, E.H. The Extracellular Glycoprotein SPARC Interacts with Platelet-Derived Growth Factor (PDGF)-AB and -BB and Inhibits the Binding of PDGF to Its Receptors. Proc. Natl. Acad. Sci. USA 1992, 89, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Hasselaar, P.; Sage, E.H. SPARC Antagonizes the Effect of Basic Fibroblast Growth Factor on the Igration of Bovine Aortic Endothelial Cells. J. Cell. Biochem. 1992, 49, 272–283. [Google Scholar] [CrossRef]
- Tremble, P.M.; Lane, T.F.; Sage, E.H.; Werb, Z. SPARC, a Secreted Protein Associated with Morphogenesis and Tissue Remodeling, Induces Expression of Metalloproteinases in Fibroblasts through a Novel Extracellular Matrix-Dependent Pathway. J. Cell Biol. 1993, 121, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.J.; Moll, R.; Ramaswamy, A. Stromal Remodeling and SPARC (Secreted Protein Acid Rich in Cysteine) Expression in Invasive Ductal Carcinomas of the Breast. Virchows Arch. 2005, 446, 532–536. [Google Scholar] [CrossRef]
- Sato, N.; Fukushima, N.; Maehara, N.; Matsubayashi, H.; Koopmann, J.; Su, G.H.; Hruban, R.H.; Goggins, M. SPARC/Osteonectin Is a Frequent Target for Aberrant Methylation in Pancreatic Adenocarcinoma and a Mediator of Tumor-Stromal Interactions. Oncogene 2003, 22, 5021–5030. [Google Scholar] [CrossRef] [PubMed]
- Fernanda Ledda, M.; Adris, S.; Bravo, A.I.; Kairiyama, C.; Bover, L.; Chernajovsky, Y.; Mordoh, J.; Podhajcer, O.L. Suppression of SPARC Expression by Antisense RNA Abrogates the Tumorigenicity of Human Melanoma Cells. Nat. Med. 1997, 3, 171–176. [Google Scholar] [CrossRef]
- Massi, D.; Franchi, A.; Borgognoni, L.; Reali, U.M.; Santucci, M. Osteonectin Expression Correlates with Clinical Outcome in Thin Cutaneous Malignant Melanomas. Hum. Pathol. 1999, 30, 339–344. [Google Scholar] [CrossRef]
- Zhu, A.; Yuan, P.; Du, F.; Hong, R.; Ding, X.; Shi, X.; Fan, Y.; Wang, J.; Luo, Y.; Ma, F.; et al. SPARC Overexpression in Primary Tumors Correlates with Disease Recurrence and Overall Survival in Patients with Triple-Negative Breast Cancer. Oncotarget 2016, 7, 76628–76634. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Lien, H.C.; Hwa, H.L.; Kuo, W.H.; Chang, K.J.; Hsieh, F.J. SPARC (Osteonectin) in Breast Tumors of Different Histologic Types and Its Role in the Outcome of Invasive Ductal Carcinoma. Breast J. 2010, 16, 305–308. [Google Scholar] [CrossRef]
- Azim, H.A.; Singhal, S.; Ignatiadis, M.; Desmedt, C.; Fumagalli, D.; Veys, I.; Larsimont, D.; Piccart, M.; Michiels, S.; Sotiriou, C. Association between SPARC MRNA Expression, Prognosis and Response to Neoadjuvant Chemotherapy in Early Breast Cancer: A Pooled in-Silico Analysis. PLoS ONE 2013, 8, e62451. [Google Scholar] [CrossRef]
- Lindner, J.L.; Loibl, S.; Denkert, C.; Ataseven, B.; Fasching, P.A.; Pfitzner, B.M.; Gerber, B.; Gade, S.; Darb-Esfahani, S.; Sinn, B.V.; et al. Expression of Secreted Protein Acidic and Rich in Cysteine (SPARC) in Breast Cancer and Response to Neoadjuvant Chemotherapy. Ann. Oncol. 2015, 26, 95–100. [Google Scholar] [CrossRef]
- Untch, M.; Jackisch, C.; Schneeweiss, A.; Conrad, B.; Aktas, B.; Denkert, C.; Eidtmann, H.; Wiebringhaus, H.; Kümmel, S.; Hilfrich, J.; et al. Nab-Paclitaxel versus Solvent-Based Paclitaxel in Neoadjuvant Chemotherapy for Early Breast Cancer (GeparSepto-GBG 69): A Randomised, Phase 3 Trial. Lancet Oncol. 2016, 17, 345–356. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Qierang, C.; Huang, M.; Yang, X.; Li, L.; Jiang, J. Investigating the Relationship between Secreted Protein Acidic and Rich in Cysteine Expression Level and Therapeutic Efficacy of Nab-Paclitaxel: A Meta-Analysis. Transl. Cancer Res. 2021, 10, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, B.; Hey, S.P.; Kesselheim, A.S. Evaluating the Evidence behind the Surrogate Measures Included in the FDA’s Table of Surrogate Endpoints as Supporting Approval of Cancer Drugs. eClinicalMedicine 2020, 21, 100332. [Google Scholar] [CrossRef] [PubMed]
- Pathological Complete Response in Neoadjuvant Treatment of High-Risk Early-Stage Breast Cancer: Use as an Endpoint to Support Accelerated Approval Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pathological-complete-response-neoadjuvant-treatment-high-risk-early-stage-breast-cancer-use (accessed on 29 August 2020).
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A New Histological Grading System to Assess Response of Breast Cancers to Primary Chemotherapy: Prognostic Significance and Survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef]
- Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al. Measurement of Residual Breast Cancer Burden to Predict Survival after Neoadjuvant Chemotherapy. J. Clin. Oncol. 2007, 25, 4414–4422. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Albain, K.S.; André, F.; Bergh, J.; et al. Personalizing the Treatment of Women with Early Breast Cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013, 24, 2206–2223. [Google Scholar] [CrossRef]
- Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al. Ki67 Index, HER2 Status, and Prognosis of Patients with Luminal B Breast Cancer. J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef]
- Arqueros, C.; Salazar, J.; Arranz, M.J.; Sebio, A.; Mora, J.; Sullivan, I.; Tobeña, M.; Martín-Richard, M.; Barnadas, A.; Baiget, M.; et al. SPARC Gene Variants Predict Clinical Outcome in Locally Advanced and Metastatic Pancreatic Cancer Patients. Med. Oncol. 2017, 34, 136. [Google Scholar] [CrossRef]
- Smith, A.V. Browsing HapMap Data Using the Genome Browser. Cold Spring Harb. Protoc. 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A Global Reference for Human Genetic Variation. Nature 2015, 526, 68–74. [Google Scholar] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HaploReg: A Resource for Exploring Chromatin States, Conservation, and Regulatory Motif Alterations within Sets of Genetically Linked Variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef]
- Fedchenko, N.; Reifenrath, J. Different Approaches for Interpretation and Reporting of Immunohistochemistry Analysis Results in the Bone Tissue—A Review. Diagn. Pathol. 2014, 9, 221. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. REporting Recommendations for Tumor MARKer Prognostic Studies (REMARK). Breast Cancer Res. Treat. 2006, 100, 229–235. [Google Scholar] [CrossRef]
- Rivera, L.B.; Bradshaw, A.D.; Brekken, R.A. The Regulatory Function of SPARC in Vascular Biology. Cell. Mol. Life Sci. 2011, 68, 3165–3173. [Google Scholar] [CrossRef]
- Sangaletti, S.; Di Carlo, E.; Gariboldi, S.; Miotti, S.; Cappetti, B.; Parenza, M.; Rumio, C.; Brekken, R.A.; Chiodoni, C.; Colombo, M.P. Macrophage-Derived SPARC Bridges Tumor Cell-Extracellular Matrix Interactions toward Metastasis. Cancer Res. 2008, 68, 9050–9059. [Google Scholar] [CrossRef]
- Rempel, S.A.; Hawley, R.C.; Gutiérrez, J.A.; Mouzon, E.; Bobbitt, K.R.; Lemke, N.; Schultz, C.R.; Schultz, L.R.; Golembieski, W.; Koblinski, J.; et al. Splenic and Immune Alterations of the Sparc-Null Mouse Accompany a Lack of Immune Response. Genes Immun. 2007, 8, 262–274. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, Y.; Luo, P.; Zhao, Q.; Xiao, N.; Yu, Y.; Yan, Q.; Lu, G.; Cheng, L. SPARC Deficiency Affects Bone Marrow Stromal Function, Resulting in Impaired B Lymphopoiesis. J. Leukoc. Biol. 2014, 96, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Senju, S.; Hirata, S.; Ikuta, Y.; Hayashida, Y.; Irie, A.; Harao, M.; Imai, K.; Tomita, Y.; Tsunoda, T.; et al. Identification of SPARC as a Candidate Target Antigen for Immunotherapy of Various Cancers. Int. J. Cancer 2010, 127, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Winder, T.; Wilson, P.M.; Yang, D.; Zhang, W.; Ning, Y.; Power, D.G.; Bohanes, P.; Gerger, A.; Tang, L.H.; Shah, M.; et al. An Individual Coding Polymorphism and the Haplotype of the SPARC Gene Predict Gastric Cancer Recurrence. Pharmacogenom. J. 2013, 13, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xu, B.H.; Zhou, D.L.; Ye, Z.L.; He, H.C.; Yang, X.H.; Zhang, X.; Liu, Q.; Ma, J.J.; Shao, Q.; et al. Polymorphisms in Matricellular SPP1 and SPARC Contribute to Susceptibility to Papillary Thyroid Cancer. Genomics 2020, 112, 4959–4967. [Google Scholar] [CrossRef] [PubMed]
- Darweesh, S.K.; Abd Alziz, R.A.; Omar, H.; Sabry, D.; Fathy, W. Secreted Protein Acidic and Rich in Cysteine Gene Variants: Impact on Susceptibility and Survival of Hepatocellular Carcinoma Patients. J. Gastroenterol. Hepatol. 2019, 34, 1424–1431. [Google Scholar] [CrossRef]
- Bawazeer, S.; Sabry, D.; Mahmoud, R.H.; Elhanbuli, H.M.; Yassen, N.N.; Abdelhafez, M.N. Association of SPARC Gene Polymorphisms Rs3210714 and Rs7719521 with VEGF Expression and Utility of Nottingham Prognostic Index Scoring in Breast Cancer in a Sample of Egyptian Women. Mol. Biol. Rep. 2018, 45, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Watkins, G.; Douglas-Jones, A.; Bryce, R.; Mansel, R.E.; Jiang, W.G. Increased Levels of SPARC (Osteonectin) in Human Breast Cancer Tissues and Its Association with Clinical Outcomes. Prostaglandins Leukot. Essent. Fat. Acids 2005, 72, 267–272. [Google Scholar] [CrossRef]
- Jones, C.; Mackay, A.; Grigoriadis, A.; Cossu, A.; Reis-Filho, J.S.; Fulford, L.; Dexter, T.; Davies, S.; Bulmer, K.; Ford, E.; et al. Expression Profiling of Purified Normal Human Luminal and Myoepithelial Breast Cells: Identification of Novel Prognostic Markers for Breast Cancer. Cancer Res. 2004, 64, 3037–3045. [Google Scholar] [CrossRef]
- Helleman, J.; Jansen, M.P.H.M.; Ruigrok-Ritstier, K.; Van Staveren, I.L.; Look, M.P.; Meijer-van Gelder, M.E.; Sieuwerts, A.M.; Klijn, J.G.M.; Sleijfer, S.; Foekens, J.A.; et al. Association of an Extracellular Matrix Gene Cluster with Breast Cancer Prognosis and Endocrine Therapy Response. Clin. Cancer Res. 2008, 14, 5555–5564. [Google Scholar] [CrossRef]
- Graham, J.D.; Balleine, R.L.; Milliken, J.S.; Bilous, A.M.; Clarke, C.L. Expression of Osteonectin MRNA in Human Breast Tumours Is Inversely Correlated with Oestrogen Receptor Content. Eur. J. Cancer 1997, 33, 1654–1660. [Google Scholar] [CrossRef]
- Lakhani, S.R.; Reis-Filho, J.S.; Fulford, L.; Renault-Llorca, F.; Van Der Vijver, M.; Parry, S.; Bishop, T.; Benitez, J.; Rivas, C.; Bignon, Y.J.; et al. Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype. Clin. Cancer Res. 2005, 11, 5175–5180. [Google Scholar] [CrossRef]
- Von Minckwitz, G. Neoadjuvant Chemotherapy in Breast Cancer—Insights from the German Experience. Breast Cancer 2012, 19, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, Y.; Nakazawa, S.; Kurozumi, S.; Ogino, M.; Koibuchi, Y.; Odawara, H.; Oyama, T.; Horiguchi, J.; Fujii, T.; Shirabe, K. The Pathological Complete Response and Secreted Protein Acidic and Rich in Cysteine Expression in Patients with Breast Cancer Receiving Neoadjuvant Nab-Paclitaxel Chemotherapy. Oncol. Lett. 2020, 19, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Pan, H.; Shen, L. Pan-Cancer Analyses Reveal Prognostic Value of Osteomimicry Across 20 Solid Cancer Types. Front. Mol. Biosci. 2020, 7, 576269. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.A.; Gerhard, R.; Fregnani, J.H.T.G.; Nonogaki, S.; Rierger, R.B.; Netto, M.M.; Soares, F.A. Prognostic Value of NDRG1 and SPARC Protein Expression in Breast Cancer Patients. Breast Cancer Res. Treat. 2011, 126, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Ma, H.Y.; Han, X.Y.; Sang, Y.Z.; Yang, M.Y.; Zhang, Z.G. Prognostic Significance of SPARC Expression in Breast Cancer: A Meta-Analysis and Bioinformatics Analysis. Biomed Res. Int. 2022, 2022, 8600419. [Google Scholar] [CrossRef] [PubMed]
- Iacobuzio-Donahue, C.A.; Argani, P.; Hempen, P.M.; Jones, J.; Kern, S.E. The Desmoplastic Response to Infiltrating Breast Carcinoma: Gene Expression at the Site of Primary Invasion and Implications for Comparisons between Tumor Types. Cancer Res. 2002, 15, 5351–5357. [Google Scholar]
- Puolakkainen, P.A.; Brekken, R.A.; Muneer, S.; Sage, E.H. Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated with Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis. Mol. Cancer Res. 2004, 2, 215–224. [Google Scholar] [CrossRef]
- Said, N.; Motamed, K. Absence of Host-Secreted Protein Acidic and Rich in Cysteine (SPARC) Augments Peritoneal Ovarian Carcinomatosis. Am. J. Pathol. 2005, 167, 1739–1752. [Google Scholar] [CrossRef]
- Qadir, F.; Aziz, M.A.; Sari, C.P.; Ma, H.; Dai, H.; Wang, X.; Raithatha, D.; Da Silva, L.G.L.; Hussain, M.; Poorkasreiy, S.P.; et al. Transcriptome Reprogramming by Cancer Exosomes: Identification of Novel Molecular Targets in Matrix and Immune Modulation. Mol. Cancer 2018, 17, 97. [Google Scholar] [CrossRef]
Reference SNP | SNP Label | SNP Localization | MAF |
---|---|---|---|
rs4958487 | c.-14+2752T>C | Intron 1 | 0.41 |
rs12153644 | c.-13−4174A>T | Intron 1 | 0.33 ^ |
rs10065756 | c.-13−3184G>T | Intron 1 | 0.33 |
rs17718347 | c.-13−3131G>A | Intron 1 | 0.41 |
rs2347128 | c.-13−1945G>C | Intron 1 | 0.47 |
rs967527 | c.58−484A>G | Intron 2 | 0.11 |
rs1978707 | c.208+31C>T | Intron 4 | 0.43 |
rs3210714 | c.*1200G>A | Exon 10 (3’-UTR) | 0.46 |
Characteristic | N (%) |
---|---|
Age | |
<50 | 48 (36) |
≥50 | 84 (64) |
Menopausal status | |
Premenopausal | 53 (40) |
Postmenopausal | 71 (54) |
Perimenopausal | 8 (6) |
Tumor size | |
T1 | 9 (7) |
T2 | 58 (44) |
T3 | 37 (28) |
T4 | 28 (21) |
Tumor type | |
Ductal | 113 (86) |
Lobular | 12 (9) |
Mixed (ductal and lobular) | 3 (2) |
Other histologic type | 4 (3) |
Histologic grade | |
G1 | 8 (6) |
G2 | 86 (65) |
G3 | 38 (29) |
Lymphovascular invasion | |
Negative | 107 (81) |
Positive | 25 (19) |
Perineural invasion | |
Negative | 120 (91) |
Positive | 12 (9) |
ki-67 index | |
<14% | 42 (32) |
≥14% | 90 (68) |
Clinical N-stage | |
cN0 | 49 (37) |
cN+ | 83 (63) |
Estrogen receptor status | |
Positive | 97 (74) |
Negative | 35 (26) |
Progesterone receptor status | |
Positive | 81 (61) |
Negative | 51 (39) |
Pathological complete response (pCR) | |
No pCR | 111 (84) |
pCR | 21 (16) |
SNPs | Epithelium | Stroma | ||
---|---|---|---|---|
SPARC Median H-Score (Range) | p-Value | SPARC Median H-Score (Range) | p-Value | |
rs10065756 | ||||
CC | 160.0 (120.0, 195.0) | 0.068 | 120.0 (75.0, 145.0) | 0.046 |
AC | 100.0 (40.0, 180.0) | 40.0 (20.0, 140.0) | ||
AA | 40.0 (20.0, 60.0) | 100.0 (80.0, 120.0) | ||
rs12153644 | ||||
TT | 180.0 (150.0, 240.0) | 0.007 | 140.0 (120.0, 160.0) | 0.010 |
TA | 120.0 (40.0, 180.0) | 60.0 (20.0. 140.0) | ||
AA | 60.0 (40.0, 60.0) | 80.0 (40.0, 80.0) | ||
rs17718347 | ||||
TT | 160.0 (120.0, 180.0) | 0.030 | 120.0 (70.0, 140.0) | 0.161 |
TC | 120.0 (40.0, 180.0) | 40.0 (20.0, 140.0) | ||
CC | 40.0 (12.5, 60.0) | 100.0 (42.5, 130.0) | ||
rs19789707 | ||||
AA | 90.0 (60.0, 160.0) | 0.832 | 60.0 (20.0, 120.0) | 0.498 |
AG | 120.0 (60.0, 180.0) | 100.0 (40.0, 140.0) | ||
GG | 155.0 (70.0, 210.0) | 100.0 (70.0, 160.0) | ||
AA + AG a | 120.0 (60.0, 180.0) | 0.570 | 80.0 (20.0, 140.0) | 0.278 |
rs2347128 | ||||
CC | 155.0 (70.0, 180.0) | 0.350 | 110.0 (70.0, 140.0) | 0.540 |
CG | 155.0 (50.0, 180.0) | 70.0 (20.0, 145.0) | ||
GG | 80.0 (40.0, 160.0) | 60.0 (20.0, 120.0) | ||
rs3210714 | ||||
GG | 150.0 (70.0, 180.0) | 0.623 | 100.0 (70.0, 140.0) | 0.476 |
GA | 160.0 (40.0, 180.0) | 60.0 (20.0, 140.0) | ||
AA | 80.0 (60.0, 160.0) | 80.0 (20.0, 140.0) | ||
rs4958487 | ||||
AA | 210.0 (160.0, 240.0) | 0.005 | 150.0 (120.0, 160.0) | 0.005 |
AG | 120.0 (40.0, 160.0) | 40.0 (20.0, 140.0) | ||
GG | 70.0 (60.0, 120.0) | 80.0 (60.0, 100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arqueros, C.; Salazar, J.; Gallardo, A.; Andrés, M.; Tibau, A.; Lidia Bell, O.; Artigas, A.; Lasa, A.; Ramón y Cajal, T.; Lerma, E.; et al. Secreted Protein Acidic and Rich in Cysteine (SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients. Biomedicines 2023, 11, 3231. https://doi.org/10.3390/biomedicines11123231
Arqueros C, Salazar J, Gallardo A, Andrés M, Tibau A, Lidia Bell O, Artigas A, Lasa A, Ramón y Cajal T, Lerma E, et al. Secreted Protein Acidic and Rich in Cysteine (SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients. Biomedicines. 2023; 11(12):3231. https://doi.org/10.3390/biomedicines11123231
Chicago/Turabian StyleArqueros, Cristina, Juliana Salazar, Alberto Gallardo, Marta Andrés, Ariadna Tibau, Olga Lidia Bell, Alícia Artigas, Adriana Lasa, Teresa Ramón y Cajal, Enrique Lerma, and et al. 2023. "Secreted Protein Acidic and Rich in Cysteine (SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients" Biomedicines 11, no. 12: 3231. https://doi.org/10.3390/biomedicines11123231
APA StyleArqueros, C., Salazar, J., Gallardo, A., Andrés, M., Tibau, A., Lidia Bell, O., Artigas, A., Lasa, A., Ramón y Cajal, T., Lerma, E., & Barnadas, A. (2023). Secreted Protein Acidic and Rich in Cysteine (SPARC) Polymorphisms in Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer Patients. Biomedicines, 11(12), 3231. https://doi.org/10.3390/biomedicines11123231